UniSim Design. Metanolgyártó üzem modellezése. Havasi Dávid Stelén Gábor
|
|
- Áron Vincze
- 6 évvel ezelőtt
- Látták:
Átírás
1 UniSim Design Metanolgyártó üzem modellezése Havasi Dávid Stelén Gábor Folyamatok tervezése és irányítása 2016/17/2 BME Kémiai és Környezeti Folyamatmérnöki Tanszék 1
2 Alapadatok Célkitűzések: Megismerkedni a folyamatszimulátorok alapjaival, majd konkrétan a UniSim Design folyamatszimulátorral metanolgyártó üzem steady state modellezésén keresztül Dinamikus modellezés alapjainak elsajátítása Tervezési feladat megoldása Feladatok: Tervezési feladat (30%) leadási határidő: május 2. Szóbeli beszámoló (20%) Tantárgy honlapja: 2
3 Oktatási hét Kezdő nap Előadás Lab1 Lab2 Lab3 Lab4 H P Cs H 8-10 Sze SS bemutató SS bemutató SS bemutató SS bemutató SS bemutató SS bemutató SS bemutató SS bemutató Március Dinamikus bemutató Dinamikus bemutató Dinamikus bemutató Dinamikus bemutató Dinamikus bemutató Dinamikus bemutató Húsvét Húsvét Dinamikus bemutató Dinamikus bemutató ZH Szóbeli besz. Szóbeli besz. Szóbeli besz. Szóbeli besz Munka ünnepe Munka ünnepe Tervezés beszámoló Pótlási Pót ZH 3
4 Mire jók a folyamatszimulátorok? Egyedi készülékek és egyszerűbb rendszerek modellezése Üzemi problémák megoldása Új javaslatok vizsgálata mi lenne ha vizsgálatok Milyen hatása van egy adott módosításnak Készülékek működésének vizsgálata (pl. hőcserélők, reaktorok, desztillálóoszlopok) Bonyolultabb rendszerek modellezése Teljes üzemi modellek Hőintegráció Dinamikus modellek OTS (Operator Training Simulator) Ipari folyamatok számítása akár több ezer egyenletből álló egyenletrendszer megoldása szükséges rövid idő alatt; erre való a folyamatszimulátor Nem helyettesítheti a mérnököt! 4
5 A szimulációk alapjai Steady-state (időben állandó) Anyag- és energiamérlegek Különböző esetek vizsgálata Szűk keresztmetszetek vizsgálata Nem mérhető paraméterek meghatározás Dinamikus (időben változó) Szabályozó rendszerek modellezése Paraméterek időbeli változásának vizsgálata Szimulációs lépések Mértékegységrendszer kiválasztása (angolszász, SI, egyéni) Komponensek kiválasztása TERMODINAMIKAI MODELL KIVÁLASZTÁSA Szimulációs modell felépítése (fokozatosan célszerű haladni) 5
6 A feladat Metanolgyártó üzem steady-state modellezése Az üzem főbb részei: Hőcserélők Tökéletesen kevert tartályreaktor Fázisszeparátor Rektifikáló kolonna Gázrecirkuláció Kompresszor Kiindulási anyagok: hidrogén, szén-dioxid Termékek: metanol, víz 6
7 Alapbeállítások: Simulation Basis Manager Mértékegységrendszer: Tools/Preferences/Variables 7
8 Komponensek kiválasztása Components fül Komponensek: CO 2, H 2, MeOH, H 2 O 8
9 Termodinamikai modellek Ideális eset ha lenne egy olyan egyenlet, amely leírná az összes komponens és elegy fázisegyensúlyi viszonyait minden körülmények között Valóság részleges modellek, melyek adott komponensekre és elegyekre érvényesek Az optimális modell kiválasztása a vegyészmérnök feladata! Ebben a folyamatszimulátorok segítséget nyújtanak Főbb modelltípusok: állapotegyenletek. aktivitási koefficiens modellek, gőznyomás modellek, elektrolit modellek 9
10 Termodinamikai modellek Főbb típusok állapotegyenletek Ideális gáz Raoult és Henry törvények Van der Waals reális gázokra Redlich-Kwong (RK) szénhidrogének modellezésére; kritikus nyomás közelében és folyadékok esetén nem használható Soave-Redlich-Kwong (SRK) az RK modell hiányosságait kiküszöböli Benedict-Webb-Rubin (BWR) alkalmas szénhidrogének gőz-és folyadékfázisainak, valamint könnyű szénhidrogének, szén-dioxid és víz keverékének számítására Lee-Kesler-Plocker (LKP) a BWR egyenlet továbbfejlesztése (több anyagra alkalmazható) Chao-Seader (CS) könnyű szénhidrogénekből és hidrogénből álló rendszerek számítására (max 530 K-ig) Grayson-Stread (GS) a CS kibővített változata, hidrogénben gazdag keverékek, valamint nagy nyomású és hőmérsékletű rendszerek számítására (200 bar és 4700 K) Peng-Robinson (PR) a SRK egyenleten alapul, kiküszöböli a SRK instabilitását a kritikus pont közelében Brown K10 (B K10) alacsony nyomású rendszerek esetén alkalmazható 10
11 Termodinamikai modellek Főbb típusok aktivitási koefficiens modellek Margules empírikus sorfejtés Van Laar a van der Waals állapotegyenletből származtatható; durva közelítés Wilson erősen nem ideális rendszerekre; nem alkalmazható folyadék-folyadék megoszlás számítására Non-random two liquid (NRTL) erősen nem ideális rendszerekre; kiküszöböli a Wilson-modell hiányosságait; alkalmas folyadék-folyadék megoszlás számítására Universal quasi-chemical (UNIQUAC): erősen nem ideális rendszerekre; az NRTL-hez hasonlóan alkalmas folyadék-folyadék megoszlás számítására UNIQUAC Functional-group activity coefficient (UNIFAC) csoportjárulék módszer; durva tájékoztató közelítést nyújt; azeotrópok esetén félrevezető lehet; akkor érdemes alkalmazni, amikor nem áll rendelkezésre mérési adat egy adott elegyről Közös jellemző: a biner elegyekhez illesztett két paraméter jól használható terner és még több komponensű elegyek tulajdonságainak számításához. 11
12 Termodinamikai modell kiválasztása Fluid Pkgs fül Modell: UNIQUAC 12
13 Reakció megadása Reactions fül 13
14 A reakció paraméterei Reakció megadása Kinetikus reakció Stoichiometry Reaktánsok: negatív együttható Termékek: pozitív együttható Részrend: az egyszerűség kedvéért megegyezik a sztöchiometriai együtthatóval Basis Molar concn Vapour phase Basis units: kmol/m3 Rate units: kmol/m3h Parameters: A, E, A, E 3 i i 1 H C O C H O H H O ' 2 2 k 3 2 r k c c k i a b 1 2 k 1 E A e x p RT A E 2 2 E 1.7 E 0 5 k J / k m o l ' A 2.6 E 2 8 E 2.2 E 0 5 k J / k m o l 14
15 Reakció hozzárendelése a termodinamikai modellhez 15
16 A szimulációs környezet 16
17 Anyagáramok definiálása, keverése Anyagáram: Kék nyíl az eszköztárban Keverő: Jobbra mutató ötszög az eszköztárban Kimenet: Mixed Feed Recycle Temperature: 25 C Temperature: 25 C Pressure: 4000 kpa Molar flow: 200 kmol/h X CO2 =0.25n/n, X H2 =0.75 Pressure: 4000 kpa Mass flow: 1000 kg/h X CO2 =0.1n/n, X H2 =0.9 17
18 Előmelegítő Külön műveleti egység van hűtésre és fűtésre Név: Feed Heater Bemenet: Mixed Energiaáram: Heater duty Kimenet: To Reactor Nyomásesés: 50 kpa Kimeneti hőmérséklet: 200 C 18
19 Reaktor Tökéletesen kevert tartályreaktor (CSTR) Név: Reaktor Bemenet: To Reactor Két kimenet gőz és folyadék (Vapour product és Liquid product) Gőzfázisú a reakció, nem lesz folyékony halmazállapotú termék A program működése érdekében kell megadni a folyadéknak kimenetet Gőz kimeneti hőmérséklete: 200 C Szükséges egy energiaáram (Reactor Heating) 19
20 Reaktor; a termékek hűtése Szükséges egy reakciószett reactions fül Válasszuk ki a korábban létrehozott reakciószettet! Méretezés: Rating fül Legyen 100 m 3 a térfogat Egyéb paraméterek: Design fül/parameters A reakció 1 fázisú; a reaktor nyomásesése 100 kpa A reaktorban el nem reagált H 2 és CO 2 recirkulációjához először le kell választani a metanolt és a vizet a gőzfázisból hűtéssel Hűtő kimeneti hőmérséklete 25 C, nyomásesése 1000 kpa 20
21 Eddig elért folyamatábra 21
22 Reaktorméretezés Elsőre túl nagy reaktort terveztünk. Tools/Databook Változók megadásainsert variables: Reactor/Tank Volume Reactor/Rxn-Actual % conversion/rxn-1 Vapour product/temperature Case Studies Add : Designing reactor Independent: Tank Volume, Temperature Dependent: Conversion Szükséges alsó és felső korlátot, valamint lépésközt megadni Térfogat: 1 és 26 m3; lépésköz: 5 m3 Hőmérséklet: 100 és 150 C; lépésköz: 5 C 22
23 Reaktorméretezés 23
24 Az esettanulmány eredménye 24
25 Gázszeparáció A To separator áram kétfázisú, a két fázist el kell választani Be: To separator Ki: Vapour, Liquid A leválasztott gázok recirkulálhatóak A recirkulációs körben felhalmozódó nem kondenzálódó gázok lefuvatásához a vapour áramot meg kell osztani Be: Vapour Ki: Purge, Recycled Split: Recycled:=0.9 25
26 Recirkulálás A visszavezetendő áram nyomása alacsonyabb, mint a Feed áramé, komprimálás szükséges. Be: Recycled Ki: To Recycle (p=4000 kpa) Energy: Compressor Power Adiabatic Efficiency: 75% A recirkuláció bekötése modellezés közben gyakran okoz instabilitást: Mentés! Recycle: nem valós műveleti egység Be: To Recycle Ki: Recycle 26
27 A termék tisztítása A Liquid áram metanolt és vizet tartalmaz, desztilláció szükséges Előtte elő kell melegíteni forrpontra (Heater) In: Liquid Out: To Distill (75 C, p=200 kpa) Energy: Preheater Tisztítás: rektifikáló kolonna Tisztasági követelmények: a kolonnába lépő MeOH 96%-a kerüljön bele a termékbe a termék víztartalma max. 1 m/m%. 27
28 Desztilláló kolonna 28
29 Desztilláló kolonna Be: To distill Tányérszám: 10 tányér Betáp helye: 5. tányérra Kondenzátor típusa: Parciális Kondenzátor hőáram: Condenser duty Fejtermékek: Gases, Methanol Visszaforraló hőáram: Reboiler duty Fenéktermék: Water Fejnyomás: 150 kpa Fenéknyomás: 200 kpa 29
30 Desztilláló kolonna 30
31 Oldalt monitor: Meglévő active-ok kikapcsolása/törlése Add spec Megkötések megadása 31
32 Első megkötés Metanol visszanyerése Column component recovery (egy bizonyos komponens mekkora része jöjjön ki a fej vagy fenéktermékben) Name: MeOH rec Draw: Methanol@COL1 (Áram neve) Spec value 0,96 (96%-os visszanyerés) Components: Methanol 32
33 Víz mennyisége a termékben Második megkötés Column component fraction (Komponens aránya az adott áramban) Átállítás Stage-ről Stream-re Name: Water in product Draw: Methanol@COL1 Basis: Mass fraction Spec value: 0,01 Components: Water 33
34 Harmadik megkötés Nem kondenzálódó gázok elvezetése Nézzük meg, mennyi ilyen gáz megy be az oszlopba! To distill áram Composition (oldalt) Basis gomb Mole flows Maradék hidrogén és szén-dioxid mennyisége: kb. 0,54 kmol/h gáz Desztilláló oszlop Monitoring, Add spec Column draw rate (mennyi az összes elvétel egy áramban) Name: Uncondensed Draw: Flow basis: Molar Spec value: 0,54 Run Az érték változtatásával változik a kondenzátor hőmérséklete és a Gases áramba kerülő metanol mennyisége 34
35 Kitárolási hőmérséklet Termékek és melléktermék tulajdonságainak tárolási körülményekre állítása Methanol cooler Inlet: Methanol Outlet: To MeOH tank Energy: MeOH cooling 25 C, nyomása 100 kpa Waste water cooler Inlet: Water Outlet: WasteW Energy: WW cooling 25 C, nyomása 100 kpa 35
36 A kész modell 36
37 Esettanulmányok készítése Vizsgáljuk meg: A fejtermék összetételének és a visszaforraló fűtésigényének változását; A kondenzátorban a hűtés árának változását a refluxarány függvényében. Első lépés: hozzá kell adni a fejtermék összetételét és a visszaforraló fűtésigényét a kolonna specifikációihoz Fejtermék összetétele: Desztilláló oszlop/monitor fül/add specs/column component fraction Stage: Condenser; Mass basis; methanol Visszaforraló fűtésigénye: Monitor fül/add specs/column duty Energiaáram megadása 37
38 38
39 Esettanulmányok készítése Tools/Databook Legyen megnyitva az oszlop párbeszédablakának Monitor füle Databook/Variables fül változók áthúzása jobb egérgombbal a desztilláló oszlop párbeszédablakából 39
40 Esettanulmányok készítése Case Studies fül/add Változók kijelölése A refluxarány független változó, a többi függő View gomb szélsőértékek és lépésköz beállítása MENTÉS Start, majd Results gomb; az eredmények megtekinthetőek táblázatosan és grafikusan is 40
41 Esettanulmányok készítése Hűtés árának változása Spreadsheet (alulról a 3. sor) Szükséges paraméterek: kondenzátor hűtésigénye, a hűtőközeg ára (0,5 Ft/kJ; tizedespont!!!) Spreadsheet/Spreadsheet fül a cellákat adatokkal feltölteni P=p*Q_reb A kondenzátor energiaárama legyen megnyitva; a hűtésigény jobb egérgombbal áthúzható B1 cella Variable type Unitless 41
42 Tools/Databook Variables fül/insert gomb Esettanulmányok készítése A Spreadsheet azon cellájának kiválasztása, melybe ki lett számolva a P költség érték OK gomb 42
43 Esettanulmányok készítése Case Studies/Add Független változó: refluxarány, függő változó: kondenzátor hőigénye Az ismert módon készítsük el az esettanulmányt 43
UniSim Design. Metanolgyártó üzem modellezése. Stelén Gábor
UniSim Design Metanolgyártó üzem modellezése Stelén Gábor stelen.gabor@mail.bme.hu Bevezetés a UNISim folyamatszimulátor használatába 2016/17/1 BME Kémiai és Környezeti Folyamatmérnöki Tanszék Alapadatok
Folyamattan gyakorlat. BME-KKFT Készítette: Stelén Gábor
Folyamattan gyakorlat BME-KKFT Készítette: Stelén Gábor 1 Mire jók a folyamatszimulátorok? Egyedi készülékek és egyszerűbb rendszerek modellezése Üzemi problémák megoldása Új javaslatok vizsgálata mi lenne
UniSim Design. - steady state modelling - BME Kémiai és Környezeti Folyamatmérnöki Tanszék Dr. Mizsey Péter, Dr. Benkő Tamás, Dr.
UniSim Design - steady state modelling - BME Kémiai és Környezeti Folyamatmérnöki Tanszék Dr. Mizsey Péter, Dr. Benkő Tamás, Dr. Meszéna Zsolt 1 Átteknintés A metanol gyártó folyamat bemutatása. A folyamat
UniSim Design. Áttekintés. Modellépítés célja egy példa. Dinamikus üzemmodell OTS-hez. Kezelőfelület felugró ablakok 2015.11.05.
Áttekintés UniSim Design Metanol szintézis i dinamikus ik modellezése Bevezetés az UNISIM folyamatszimulátor használatába (BMEVEKFA004) 2015. Dr. Benkő Tamás, Honeywell Kft, tamas.benko@honeywell.com Dr
Gőz-folyadék egyensúly
Gőz-folyadék egyensúly UNIFAC modell: csoport járulék módszer A UNIQUAC modellből kiindulva fejlesztették ki A molekulákat különböző csoportokból építi fel - csoportokra jellemző, mért paraméterek R és
Folyamattan gyakorlat Alapok. 2017/ félév BME-KKFT Készítette: Stelén Gábor
Folyamattan gyakorlat Alapok 2017/18. 1. félév BME-KKFT Készítette: Stelén Gábor 1 Alapadatok Elérhetőségeim: F II. épület alagsor, MD labor, 2035-ös mellék stelen.gabor@mail.bme.hu Célkitűzés: Megismerkedni
Többjáratú hőcserélő 3
Hőcserélők Q = k*a*δt (a szoftver U-val jelöli a hőátbocsátási tényezőt) Ideális hőátadás Egy vagy két bemenetű hőcserélő Egy bemenet: egyszerű melegítőként/hűtőként funkcionál Design mód: egy specifikáció
UniSim Design. Dinamikus modellezés. BME-KKFT Farkasné Szőke-Kis Anita Stelén Gábor
UniSim Design Dinamikus modellezés BME-KKFT Farkasné Szőke-Kis Anita Stelén Gábor A szabályozás hatásvázlata Áramlásszabályozás Alapadatok Komponens: víz Modell: SRK Folyamatábra: két anyagáram, szelep,
BME-KKFT Folyamatok tervezése és irányítása. Dinamikus modellezés alapok Készítette: Stelén Gábor 2017
BME-KKFT Folyamatok tervezése és irányítása Dinamikus modellezés alapok Készítette: Stelén Gábor 2017 A szabályozás hatásvázlata Áramlásszabályozás Komponens: víz Modell: SRK Folyamatábra: két anyagáram,
Folyamattan gyakorlat. 2017/ félév BME-KKFT Készítette: Stelén Gábor
Folyamattan gyakorlat 2017/18. 1. félév BME-KKFT Készítette: Stelén Gábor 1 Gőz-folyadék egyensúly Folyadékelegyek szétválasztása rektifikálás Szükségesek a gőz-folyadék egyensúlyi adatok Ideális elegyek
Aceton abszorpciójának számítógépes modellezése
Aceton abszorpciójának számítógépes modellezése. Elméleti összefoglalás A vegyészmérnök feladata, adott célkitűzésnek megfelelően, a vegyipari folyamatok és berendezések tervezése. Valós berendezések üzemeltetését
Desztilláció: gyakorló példák
Desztilláció: gyakorló példák 1. feladat Számítsa ki egy 40 mol% benzolt és 60 mol% toluolt tartalmazó folyadékelegy egyensúlyi gőzfázisának összetételét 60 C-on! Az adott elegyre érvényes Raoult törvénye.
Kiegészítő desztillációs példa. 1. feladatsor. 2. feladatsor
Kiegészítő desztillációs példa D3. példa: Izopropanol propanol elegy rektifikálása tányéros oszlopon 2104 kg/h 45 tömeg% izopropanol-tartalmú propanol izopropanol elegyet folyamatos üzemű rektifikáló oszlopon,
Szénhidrogén elegy rektifikálásának modellezése SZÉNHIDROGÉNIPARI TECHNOLÓGIA ÉS KATALÍZIS GYAKORLAT KUBOVICSNÉ STOCZ KLÁRA ( MOL.
Szénhidrogén elegy rektifikálásának modellezése SZÉNHIDROGÉNIPARI TECHNOLÓGIA ÉS KATALÍZIS GYAKORLAT KUBOVICSNÉ STOCZ KLÁRA ( KKUBOVICSNE@ MOL. HU) 2019. Február/március Gyakorlat célja 1. Kőolaj/ nehéz
Technológiai hulladékvizek kezelése fiziko-kémiai módszerekkel a körforgásos gazdaság jegyében
Technológiai hulladékvizek kezelése fiziko-kémiai módszerekkel a körforgásos gazdaság jegyében Ipari Szennyvíztisztítás Szakmai Nap Budapest, 2017. 11. 30. Mizsey Péter 1,2, Tóth András József 1, Haáz
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Fiziko-kémiai módszerek a finomkémiai ipar hulladékvizeinek kezelésére
Fiziko-kémiai módszerek a finomkémiai ipar hulladékvizeinek kezelésére Környezettudományi Doktori Iskolák Konferenciája 2012. 08. 31. Tóth András József 1 Dr. Mizsey Péter 1, 2 andras86@kkft.bme.hu 1 Kémiai
Gépészeti Eljárástechnika Tanszék. Szakaszos rektifikálás mérés
BME Gépészeti Eljárástechnika Tanszék zakaszos rektifikálás mérés Budapest, 006 1. Elméleti összefoglaló A mérés célja: laboratóriumi rektifikáló oszlopban szakaszos rektifikálás elvégzése, etanol víz
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
Extraktív heteroazeotróp desztilláció: ökologikus elválasztási eljárás nemideális
Ipari Ökológia pp. 17 22. (2015) 3. évfolyam, 1. szám Magyar Ipari Ökológiai Társaság MIPOET 2015 Extraktív heteroazeotróp desztilláció: ökologikus elválasztási eljárás nemideális elegyekre* Tóth András
8.9. Folyamatos rektifikálás vizsgálata félüzemi méretű rektifikáló oszlopon.
8.9. Folyamatos rektifikálás vizsgálata félüzemi méretű rektifikáló oszlopon. 8.9.1. Bevezetés. Az egyszerű, egyfokozatú reflux nélküli desztillációnál az elválasztás egyetlen egyensúlyi fokozatnak felel
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:
Dinamikus modellek felállítása mérnöki alapelvek segítségével
IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20
Folyamatok tervezése és irányítása - BME VEFK M /19/02 Oktatók: Dr. Mizsey Péter, Dr. Havasi Dávid, Stelén Gábor, Dr. Tóth András József
Tervezési feladat A feladat a vegyipari folyamatszintézis egyes lépéseinek és feladatainak tanulmányozása egy kumol előállító üzem részletes megtervezése, modellezése és optimalizálása során. A kumolt
Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo
Hidrotermális képződmények genetikai célú vizsgálata Bevezetés a fluidum-kőzet kölcsönhatás, és a hidrotermális ásványképződési környezet termodinamikai modellezésébe Dr Molnár Ferenc ELTE TTK Ásványtani
Desztillációs technológiák vizsgálata szénhidrogén elegy példáján
Desztillációs technológiák vizsgálata szénhidrogén elegy példáján TDK dolgozat Tarjáni Ariella Janka IV. évf. BSc. vegyészmérnök hallgató Témavezető: Farkasné Szőke-Kis Anita doktorandusz BME Kémiai és
Szénhidrogén elegy rektifikálásának modellezése
Hőmérséklet C Szénhidrogén elegy rektifikálásának modellezése 1. Elméleti összefoglalás Napjainkban a kőolaj az egyik legfontosabb bányászott és feldolgozott nyersanyag, meghatározó primer energia hordozó.
Overset mesh módszer alkalmazása ANSYS Fluent-ben
Overset mesh módszer alkalmazása ANSYS Fluent-ben Darázs Bence & Laki Dániel 2018.05.03. www.econengineering.com1 Overset / Chimaera / Overlapping / Composite 2018.05.03. www.econengineering.com 2 Khimaira
Tóth István gépészmérnök, közgazdász. levegő-víz hőszivattyúk
Tóth István gépészmérnök, közgazdász levegő-víz hőszivattyúk Összes hőszivattyú eladás 2005-2008 Hőszivattyú eladások típusonként 2005-2008 (fűtés szegmens) Pályázatok Lakossági: ZBR-09-EH megújuló energiákra
Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;
1. Bevezetés. 2. Kiindulási adatok a szimulációk elvégzéséhez
Szén-dioxid leválasztás aminos és ammóniás abszorpcióval Carbon dioxid capture by amine and ammonia absorption Tóbel Kitti, Hégely László, Láng Péter BME, Épületgépészeti és Gépészeti Eljárástechnika Tanszék
8.8. Folyamatos egyensúlyi desztilláció
8.8. olyamatos egyensúlyi desztilláció 8.8.1. Elméleti összefoglalás olyamatos egyensúlyi desztillációnak vagy flash lepárlásnak nevezzük azt a desztillációs műveletet, amelynek során egy folyadék elegyet
A VEGYIPARI SZIMULÁCIÓS PROGRAMOK MŰKÖDÉSÉHEZ ALKALMAZHATÓ TERMODINAMIKAI MODELLEK
Anyagmérnöki Tudományok, 38/1. (213), pp. 231 243. A VEGYIPARI SZIMULÁCIÓS PROGRAMOK MŰKÖDÉSÉHEZ ALKALMAZHATÓ TERMODINAMIKAI MODELLEK PROPER THERMODYNAMICS MODELS FOR OPERATION OF THE CHEMICAL SIMULATION
1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye
Kémiai egyensúlyok CH 3 COOH + C 2 H 5 OH CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] Egyensúlyban: v 1 = v 2 azaz k 1 [CH 3 COOH].[C 2 H 5 OH] = k
IX. Alkalmazott Informatikai Konferencia Kaposvári Egyetem február 25.
Kaposvári Egyetem 2011. február 25. Egedy Attila, Varga Tamás, Chován Tibor Pannon Egyetem, Mérnöki Kar, Folyamatmérnöki Intézeti Tanszék Veszprém, 8200 Egyetem utca 10. Bevezetés Cellás modellezés Kvalitatív
Munkaközegek. 1. Előadás Fázisok, fázisátmenetek és állapotegyenletek
Munkaközegek 1. Előadás Fázisok, fázisátmenetek és állapotegyenletek Fázisok, fázisátmenetek, fázisegyensúlyok Halmazállapotok: folyadék, légnemű/gáz, szilárd, (plazma) Alap fázisok: folyadék, gáz/gőz,
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
Chloroform LP. Acetone. At the beginning: Chloroform+ Acetone+ Toluene in V. At the end: V is empty
Kloroform - Aceton - Toluol elegy szétválasztása nyomásváltó szakaszos desztillációval egy új kolonna konfigurációban Separation of a Chloroform-Acetone-Toluene mixture by pressure-swing batch distillation
Modla G., Láng P., Kopasz Á. Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészeti Eljárások Tanszék
Új kolonna konfigurációk nyomásváltó szakaszos desztillációhoz II. Részletes számítások New column configurations for pressure swing batch distillation II. Rigorous Simulation Modla G., Láng P., Kopasz
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:
1. feladat Összesen: 26 pont. 2. feladat Összesen: 20 pont
É 2048-06/1/ 1. feladat Összesen: 26 pont ) z alábbi táblázatban fontos vegyipari termékeket talál. dja meg a táblázat kitöltésével a helyes információkat! termék lapanyagok Előállítás megnevezése Felhasználás
8.9. Folyamatos rektifikálás vizsgálata félüzemi mérető rektifikáló oszlopon.
8.9. Folyamatos rektifikálás vizsgálata félüzemi mérető rektifikáló oszlopon. 8.9.1. Bevezetés. Az egyszerő, egyfokozatú reflux nélküli desztillációnál az elválasztás egyetlen egyensúlyi fokozatnak felel
Művelettan 3 fejezete
Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV.
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBFÁZISÚ, TÖBBKOMPONENS RENDSZEREK Kétkomponens szilárd-folyadék egyensúlyok Néhány fogalom: - olvadék - ötvözetek - amorf anyagok Állapotok feltüntetése:
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet
5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet Ideális gáz Az ideális gáz állapotegyenlete pv=nrt empírikus állapotegyenlet, a Boyle-Mariotte (pv=konstans) és
A folyamatmodellezés alapjai
A folyamatmodellezés alapjai Piglerné Lakner Rozália Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/55 Tartalom 1 A folyamatrendszer
Általános és szervetlen kémia Laborelıkészítı elıadás I.
Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció
DIPLOMADOLGOZAT. Balaton Miklós Gábor
DIPLOMADOLGOZAT Balaton Miklós Gábor 2009 Pannon Egyetem Vegyészmérnöki- és Folyamatmérnöki Intézet, Folyamatmérnöki Intézeti Tanszék Vegyészmérnöki szak DIPLOMADOLGOZAT Szakaszos gyártócella szimulációja
Kulcsszavak: heteroazeotróp, szakaszos desztilláció, dinamikus szimuláció
Új szakaszos heteroazeotrop rektifikáló rendszer vizsgálata részletes modellezéssel Rigorous simulation of a new batch heteroazeotropic distillation configuration Láng Péter, Dénes Ferenc, Modla Gábor
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
ALLEGRO gázhűtésű gyorsreaktor CATHARE termohidraulikai rendszerkódú számításai
ALLEGRO gázhűtésű gyorsreaktor CATHARE termohidraulikai rendszerkódú számításai Takács Antal MTA EK Siklósi András Gábor OAH XII. Nukleáris technikai Szimpózium 2013 Gázhűtésű reaktorok és PWR-ek összehasonlítása
Problémás regressziók
Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer
Mivel foglalkozik a hőtan?
Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:
Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar
Folyamatirányítás Számítási gyakorlatok Gyakorlaton megoldandó feladatok Készítette: Dr. Farkas Tivadar 2010 I.-II. RENDŰ TAGOK 1. feladat Egy tökéletesen kevert, nyitott tartályban folyamatosan meleg
Bevezetés. 1. ábra: Az osztott terű kolonna elvi sémája. A szétválasztási feladat
Osztott terű rektifikáló kolonna modellezése Modeling of divided wall column Szabó László, Németh Sándor, Szeifert Ferenc Pannon Egyetem, Folyamatmérnöki Intézeti Tanszék 8200 Veszprém, Egyetem utca 10.
Figure 1. Scheme of a double column batch stripper in open mode with thermal integration
Aceton-metanol elegy elválasztása nyomásváltó szakaszos desztillációval termikusan csatolt két oszlopos rendszerben Separation of acetone-methanol mixture by pressure swing batch distillation in double
Működésbiztonsági veszélyelemzés (Hazard and Operability Studies, HAZOP) MSZ
Működésbiztonsági veszélyelemzés (Hazard and Operability Studies, HAZOP) MSZ-09-960614-87 Célja: a szisztematikus zavar-feltárás, nyomozás. A tervezett működési körülményektől eltérő állapotok azonosítása,
Eötvös József Főiskola Műszaki Fakultás
1 Eötvös József Főiskola Műszaki Fakultás Vincze Lászlóné dr. Levegőtisztaságvédelem Példatár II. évfolyamos nappali tagozatos környezetmérnök, III. évfolyamos levelező tagozatos környezetmérnök hallgatók
SZIVATTYÚK ENERGETIKAI JELLEMZŐI EER, COP, ESEER. Hűtőkör energetikai jellemzői
HŰTŐBERENDEZÉSEK ÉS S HŐSZIVATTYH SZIVATTYÚK ENERGETIKAI JELLEMZŐI EER, COP, ESEER BME KOLL. február 17. Összeállította: Göntér Miklós főmérnök, CLH Hűtés- és Klímatchnikai Kt. 1 HŰTŐGÉPEK ENERGETIKAI
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Segédlet az ADCA szabályzó szelepekhez
Segédlet az ADCA szabályzó szelepekhez Gőz, kondenzszerelvények és berendezések A SZELEP MÉRETEZÉSE A szelepek méretezése a Kv érték számítása alapján történik. A Kv érték azt a vízmennyiséget jelenti
A problémamegoldás lépései
A problémamegoldás lépései A cél kitűzése, a csoportmunka megkezdése egy vagy többféle mennyiség mérése, műszaki-gazdasági (például minőségi) problémák, megoldás célszerűen csoport- (team-) munkában, külső
1. feladat Összesen 25 pont
1. feladat Összesen 25 pont Centrifugál szivattyúval folyadékot szállítunk az 1 jelű, légköri nyomású tartályból a 2 jelű, ugyancsak légköri nyomású tartályba. A folyadék sűrűsége 1000 kg/m 3. A nehézségi
8.9. Folyamatos rektifikálás vizsgálata félüzemi méretű rektifikáló oszlopon.
8.9. Folyamatos rektifikálás vizsgálata félüzemi méretű rektifikáló oszlopon. 8.9.1. Bevezetés Az egyszerű, egyfokozatú reflux nélküli desztillációnál az elválasztás egyetlen egyensúlyi fokozatnak felel
A szén-dioxid megkötése ipari gázokból
A szén-dioxid megkötése ipari gázokból KKFTsz Mizsey Péter 1,2 Nagy Tibor 1 mizsey@mail.bme.hu 1 Kémiai és Környezeti Budapesti Műszaki és Gazdaságtudományi Egyetem H-1526 2 Műszaki Kémiai Kutatóintézet
Mekkora az égés utáni elegy térfogatszázalékos összetétele
1) PB-gázelegy levegőre 1 vonatkoztatott sűrűsége: 1,77. Hányszoros térfogatú levegőben égessük, ha 1.1. sztöchiometrikus mennyiségben adjuk a levegőt? 1.2. 100 % levegőfelesleget alkalmazunk? Mekkora
Hermetikus tér viselkedése tervezési és tervezésen túli üzemzavarok során a Paksi Atomerőműben
MTA SUKO-MNT-Óbudai Egyetem Kockázatok értékelése az energetikában Budapest, 2015.06.15. Hermetikus tér viselkedése tervezési és tervezésen túli üzemzavarok során a Paksi Atomerőműben Tóthné Laki Éva MVM
Beüzemelési riport FUJITSU Airstage VRF V-II
Beüzemelési riport FUJITSU Airstage VRF V-II Dátum Beüzemelést végző szakember Név Cégnév Cím Város Ország Felhasználó adatai Cégnév Cím Város Ország Szerviz telefonszáma Beépítés helye Megnevezés Cím
LEVEGŐ VÍZ HŐSZIVATTYÚ
LEVEGŐ VÍZ HŐSZIVATTYÚ LEVEGŐ VÍZ HŐSZIVATTYÚ Működése és felépítésük Környezet védelem Energetikai jellemzők Minősítés EU-ban Újdonság: Therma-V Mono R32 Kiválasztás elvek Alkalmazás Működés Felépítés
Modellezési esettanulmányok. elosztott paraméterű és hibrid példa
Modellezési esettanulmányok elosztott paraméterű és hibrid példa Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/38 Tartalom
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete
Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz
Optimalizálás az olajiparban II.
Optimalizálás az olajiparban II. BME 2015/2016 II. félév Szimulációs alapok Kubovicsné Stocz Klára kkubovicsne@mol.hu Miről lesz szó? Mikor/hol/miért használunk szimulációt Milyen modellek Szimuláció általában
AUTOMATA REAKTOR. Kémiai Technológia Gyakorlat
AUTOMATA REAKTOR Kémiai Technológia Gyakorlat Az iparban számos különböző reaktor típust használnak a laboratóriumi munkában is megszokott reakciók kivitelezésére. A reaktorokban lejátszódó folyamatok
Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer
Gázok -1 Gáznyoás - Egyszerű gáztörvények -3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet -4 tökéletes gáz egyenlet alkalazása -5 Gáz halazállapotú reakciók -6 Gázkeverékek
1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont
1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó
A kapacitás növelése és energiafelhasználás csökkentése ásványolajat desztilláló oszlopokon
RACIONÁLIS ENERGIAFELHASZNÁLÁS, ENERGIATAKARÉKOSSÁG 3.3 A kapacitás növelése és energiafelhasználás csökkentése ásványolajat desztilláló oszlopokon Tárgyszavak: olajfinomító; desztillálóoszlop; hőcserélő;
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
Számítógéppel segített folyamatmodellezés p. 1/20
Számítógéppel segített folyamatmodellezés Piglerné Lakner Rozália Számítástudomány Alkalmazása Tanszék Pannon Egyetem Számítógéppel segített folyamatmodellezés p. 1/20 Tartalom Modellező rendszerektől
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
Segédenergia-nélküli hőm. szab. Danfoss Elektronikus Akadémia. www.futestechnika.danfoss.com
Segédenergia-nélküli hőm. szab. Danfoss Elektronikus Akadémia www.futestechnika.danfoss.com Fűtési és távfűtési alkalmazások Danfoss a segédenergia-nélküli hőmérséklet-szabályozók teljes skáláját ajánlja:
HRB 3, HRB 4 típusú keverőcsapok
Leírás A HRB keverőcsapok az AMB 162 és AMB 182 elektromos szelepmozgatókkal kombinálvahasználhatók. Tulajdonságok: Osztályában a legkisebb átszivárgás Egyedi helyzetjelző (akkor is látható, amikor a szelepmozgató
Projektfeladatok 2014, tavaszi félév
Projektfeladatok 2014, tavaszi félév Gyakorlatok Félév menete: 1. gyakorlat: feladat kiválasztása 2-12. gyakorlat: konzultációs rendszeres beszámoló a munka aktuális állásáról (kötelező) 13-14. gyakorlat:
Hőszivattyúk - kompresszor technológiák Január 25. Lurdy Ház
Hőszivattyúk - kompresszor technológiák 2017. Január 25. Lurdy Ház Tartalom Hőszivattyú felhasználások Fűtős kompresszor típusok Elérhető kompresszor típusok áttekintése kompresszor hatásfoka Minél kisebb
Forgattyús mechanizmus modelljének. Adams. elkészítése, kinematikai vizsgálata,
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Forgattyús mechanizmus modellezése SZIE-K1 alap közepes - haladó Adams
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van!
TÖKOMPONENS RENDSZEREK FÁZISEGYENSÚLYI II Ismerjük fel hogy többkomonens fázisegyensúlyokban a folyadék fázisnak kitüntetett szeree van! Eddig: egymásban korátlanul oldódó folyadékok folyadék-gz egyensúlyai
GÁZKROMATOGRÁFIA 1952 James és Martin -gáz-folyadék kromatográfia; -Nobel díj a megoszlási kromatográfia kidolgozásáért.
GÁZKROMATOGRÁFIA 1952 James és Martin -gáz-folyadék kromatográfia; -Nobel díj a megoszlási kromatográfia kidolgozásáért. típus állófázis mozgófázis mechanizmus gáz-szilárd GSC gázfolyadék GLC szilárd gáz
Ülékes szelepek (PN 16) VS 2 1-utú szelep, külső menet
Ülékes szelepek (PN 16) VS 2 1-utú szelep, külső menet Leírás Jellemzők: A legnagyobb igénybevételt jelentő alkalmazásokhoz kifejlesztett SPLIT jelleggörbe (DN 20 és DN 25) Több k VS érték Rányomó csatlakozás
CFX számítások a BME NTI-ben
CFX számítások a BME NTI-ben Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet CFD Workshop, 2005. április 18. Dr. Aszódi Attila, BME NTI CFD Workshop, 2005. április 18. 1 Hűtőközeg-keveredés
REAKCIÓKINETIKA ÉS KATALÍZIS
REAKCIÓKINETIKA ÉS KATALÍZIS ANYAGMÉRNÖK MESTERKÉPZÉS VEGYIPARI TECHNOLÓGIAI SZAKIRÁNY MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET PETROLKÉMIAI KIHELYEZETT (TVK) INTÉZETI TANSZÉK Miskolc,
HRB 3, HRB 4 típusú keverőcsapok
Leírás A HRB keverőcsapok az AMB 162 és AMB 182 elektromos szelepmozgatókkal kombinálvahasználhatók. Tulajdonságok: Osztályában a legkisebb átszivárgás Egyedi helyzetjelző (akkor is látható, amikor a szelepmozgató
2011/2012 tavaszi félév 2. óra. Tananyag:
2011/2012 tavaszi félév 2. óra Tananyag: 2. Gázelegyek, gőztenzió Gázelegyek összetétele, térfogattört és móltört egyezősége Gázelegyek sűrűsége Relatív sűrűség Parciális nyomás és térfogat, Dalton-törvény,
Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion
Kiválasztási segédlet
Kiválasztási segédlet www.alfalaval.hu/hutestechnika Léghűtők és folyadékhűtők Gyors kiválasztási segédlet cikkszámmal rendelkező és raktárról rendelhető hűtéstechnikai hőcserélőkhöz. Léghűtők Forrasztott
Szabályozó szelepek (PN 16) VRB 2 2-utú szelep, belső illetve külső menettel VRB 3 3-utú szelep, belső illetve külső menettel
datlap Szabályozó szelepek (PN 16) VR 2 2-utú szelep, belső illetve külső menettel VR 3 3-utú szelep, belső illetve külső menettel eírás VR 2 belső menettel VR 3 belső menettel VR 2 külső menettel VR 3
2011/2012 tavaszi félév 3. óra
2011/2012 tavaszi félév 3. óra Redoxegyenletek rendezése (diszproporció, szinproporció, stb.); Sztöchiometria Vegyületek sztöchiometriai együtthatóinak meghatározása elemösszetétel alapján Adott rendezendő
Levegős hőszivattyúk alkalmazása. Tóth István
Levegős hőszivattyúk alkalmazása Tóth István VRF - Midea V5X Áttekintés ESEER = EER(100%) 0.03 + EER(75%) 0.33 + EER(50%) 0.41 + EER(25%) 0.23. Egy egység teljesítménye: 22HP Összesen: akár 88HP (246,4