Polimer anyagtudomány
|
|
- Ferenc Soós
- 6 évvel ezelőtt
- Látták:
Átírás
1 Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG04, 3+0+1v, 5 krp III. POLIMEREK SZERKEZETVIZSGÁLATI MÓDSZEREI Vas László Mihály 1 Felhasznált források Irodalom 1. Bodor G.-Vas L.M.: Polimerek szerkezettana. Műegyetemi Kiadó, Bp Halász L.-Zrínyi M.: Bevezetés a polimerfizikába. Műszaki K., Bp Bodor G.: A polimerek szerkezete. Műszaki K. Bp Bodor G.-Vas L.M.: Polimer anyagtudomány. Kézirat. BME, Bp Ehrenstein G.W.: Polymerwerkstoffe. Struktur und mechanische Verhalten. C.Hanser Verlag, München, Pukánszky B.: Műanyagok. Műegyetemi Kiadó, Bp Oswald T.A.-Menges G.: Materials Science of Polymers for Engineers. Hanser Pub., New York, Ajánlott irodalom 8. Ward I.M.-Hadley D.W.: An Introduction to the Properties of Solid Polymers. J.Wiley&Sons, Chichester, Strobl G.: The Physics of Polymers. Concepts of Understanding their Structures and Behaviour. Springer Verlag, Berlin Menges G.: Werkstoffkunde der Kunststoffe. C.Hanser Verlag, München, Eisele U.: Introduction to Plymer Physics. Springer-Verlag, Berlin Vas László M. 2 1
2 Morfológiai szerkezetvizsgálat módszerei 1. Kristályosodási folyamat vizsgálata Dilatometria Hőasztalos fénymikroszkópia Kristályos szerkezet vizsgálata Fényszóródás mérés (SALS) Elektronmikroszkópia (TEM, SEM) Atomerő mikroszkópia (AFM) Termoanalízis Termogravimetria (TG, DTG) Differenciál termoanalízis (DTA) és kalorimetria (DSC) Szerkezeti jellemzők mérése Röntgendiffrakció (WAXS) Infravörös (FTIR) és RAMAN spektroszkópia (és NMR) DSC mérés Kettőstörés, ultrahangsebesség mérés Sűrűségmérés 3 Morfológiai szerkezetvizsgálat módszerei 2. Dilatometria Olvasztófürdő: T>T m Kristályosító fürdő: T g <T<T m Polimer minta: 0,1 cm 3 Termosztálás pontossága: ±0,01 o C Avrami egyenlet 4 2
3 Morfológiai szerkezetvizsgálat módszerei 3. Hőasztalos fénymikroszkópia Polimer: nagy szferolitokat képző (PP, PE, PEO, PA) Megolvasztás: T>T m Kristályosítás: T g <T<T m Termosztálás pontossága: ±0,03 o C Polarizált fénnyel: a kristályos területek növekedése Normál fénnyel: a szferolit átmérőjének növekedése 5 Morfológiai szerkezetvizsgálat módszerei 4. Fényszóródásmérés (SALS) (Small Angle Light Scattering) PP He-Ne gázlézer λ=632.8 nm Szferolitsugár [µm] θ [fok] 6 3
4 Morfológiai szerkezetvizsgálat módszerei 5. Elektronmikroszkópia (EM) TEM (transzmissziós) SEM (pásztázó) REM (reflexiós) STEM (pásztázó transzmissziós) EDS (Energy Dispersive Spectroscopy energia diszperziós spektroszkópia) EDS analitikai feltéttel az elektronnyaláb egy pontba fókuszálható, és így például lokális összetételmérés végezhető. 7 Morfológiai szerkezetvizsgálati módszerei 5. Elektronmikroszkópia TEM Nagyvákuum, vékonyréteg minta vagy metszet ( nm), kiválasztott helyen elektrondiffrakciós felvétel, elektronsűrűséget növelő nehézfém ionokkal az adalék szerkezete feltárható SEM Nagyvákuum (újabban anélkül is), akár több cm 3 nagyságú minta, elektronsűrűség növeléséhez fémbevonás (Au, Al), nagy mélységélességű felvételek, szeres nagyítás, EDS Felbontóképesség: Fénymikroszkóp: 0,2 µm Elektronmikroszkóp: 0,1 0,2 nm 8 4
5 Morfológiai szerkezetvizsgálat módszerei 6. Elektronmikroszkópia Transzmissziós EM (TEM) Ütésálló PS-ben a kaucsuk típusú adalék szerkezete. Benne az üregek nehézfém ionok bejuttatásával láthatók. ABS-ben a fekete gömbök az akrilnitril-sztirol láncokra ojtott kaucsuk (butadién) részecskék 9 Morfológiai szerkezetvizsgálat módszerei 7. Elektronmikroszkópia Pásztázó EM (SEM) Szuszpenziós PVC por Emulziós PVC por Tömegében polimerizált PVC por Klórozott PE-vel adalékolt ütésálló PVC ionmaratott felülete 10 5
6 Morfológiai szerkezetvizsgálat módszerei 8. Atomerő mikroszkópia (AFM) Üveg felülete Konyhasó kristály Tapintó: Si vagy Si-nitrid, hegye nanoméretű Tapintóra ható erők: mechanikai kontakterő, van der Waals erő, kémiai kötés, elektrosztatikus, mágneses, kapilláris erők Vezérlés: állandó tapintóerőre 11 Morfológiai szerkezetvizsgálat módszerei 9. Termoanalízis Termogravimetria (TG, DTG) TG: m(t) diagram; DTG: dm(t)/dt diagram felvétele Hőfoktartomány: (1500) o C; Atmoszféra: pl. N 2, levegő, O 2 (válthatók)
7 Morfológiai szerkezetvizsgálat módszerei 10. Termoanalízis differenciál termoanalízis (DTA) T T o T=T-T o T-T diagram felvétele Kristályosság (x%): H krist értékei Polietilén (PE): 293 J/g, Polipropilén (PP): 138 J/g, Poliamid 6 (PA6): 188 J/g, Poliészter (PET): 126 J/g 13 Morfológiai szerkezetvizsgálat módszerei 10a. Kristályosság jellemzők 14 7
8 Morfológiai szerkezetvizsgálat módszerei 11. Termoanalízis differenciál pásztázó kalorimetria (DSC) q T diagram felvétele q=d Q/dt PE-PP kopolimer 15 Morfológiai szerkezetvizsgálat módszerei 12. Termoanalízis differenciál pásztázó kalorimetria (DSC) Nem kristályosodó amorf polimer (ABS) DCS görbéje Butadién fázis: T g1 =-84 o C, sztirol-akrilnitril fázis: T g2 =110 o C. Az átmenetek magassága a két fázis részarányát tükrözi. Cowie J.M.G.: Polymers Chemistry and physics of modern materials. Chapmen & Hall, New York,
9 Morfológiai szerkezetvizsgálat módszerei 13. Termoanalízis differenciál pásztázó kalorimetria (DSC) Amorf PET hideg kristályosodása a DSC vizsgálat felfűtési szakaszában Amorf PET Részbenkristályos PET (újra felfűtés) A: üvegátmenet, B: hideg kristályosodás, C: kristályolvadás Cowie J.M.G.: Polymers Chemistry and physics of modern materials. Chapmen & Hall, New York, Morfológiai szerkezetvizsgálat módszerei 18. Röntgensugár: Röntgencsőben nagyfeszültség hatására a katódból kilépő és fém antikatódba (pl. réz: λ=0.154 nm) ütköző nagy energiájú elektronok gerjesztik. Röntgencső Röntgendiffrakciós készülék elve A röntgenfény két közeli hullámhosszúságú komponensből áll: Az ún. β-komponens leszűrésére 8,5 µm vastag Ni monokromátort használnak. A_rontgen_a_gamma_es_a_kozmikus_sugarzas
10 Morfológiai szerkezetvizsgálat módszerei 18. Röntgendiffrakció (WAXS Nagyszögű (5 40 o ), SAXS kisszögű (0 5 o )) Fénydiffrakciós modell Miller indexek értelmezése Bragg egyenlet: Huygens-Fresnel elv: d~λ (résméret~hullámhossz) Diffrakciós foltok helyét: a rácssíkok távolsága (d), intenzitását: a rácssíkok elektronsűrűsége határozza meg. 19 Morfológiai szerkezetvizsgálat módszerei 19. Röntgendiffrakció Reciprok rács és az Ewald gömb Reciprok rácspont: egy síksorozat képe az origótól λ/d távolságra, az origón átmenő, a síkokra merőleges egyenesen Monoklin rács és reciprok rácsa a, b, c = rácsvektorok Interferencia feltétele: az N reciprok rácspont essen az Ewald-féle egységsugarú gömbre Reciprok rácssík torzítatlan képe az ε-kapronsav (Buerger kamrával) 20 10
11 Morfológiai szerkezetvizsgálat módszerei 20. Röntgendiffrakció Szórási kúpok Sugárzás szóródása 1D rácson Szórási kúpok jelentkezése síkfilmen (a), hengerfilmen (b) 3D-s kristályrács 1D-s szórási kúpjainak szuperponálódása Interferencia feltétele: a 3 kúp egy pontban messe egymást 21 Morfológiai szerkezetvizsgálat módszerei 21. Röntgendiffrakció Forgatott egykristály és szálfelvétel 22 11
12 Morfológiai szerkezetvizsgálat módszerei 22. Röntgendiffrakció - Porfelvétel A különböző helyzetű krisztallitok miatt, az adott kristálysík-sorozat reciprok rácspont képei egy körbe olvadnak össze. 23 Morfológiai szerkezetvizsgálat módszerei 23. Morfológiai szerkezet jellemzői Kristályosság Mérése: DSC, WAXS, Sűrűségmérés Kristályos részecskenagyság Mérése: WAXS, DSC Orientáció láncszegmensekkel jellemezve Kristályos Mérése: WAXS Amorf Mérése: WAXS, számítással Átlagos Mérése: Kettőstörés, ultrahang terjedési sebesség 24 12
13 Morfológiai szerkezetvizsgálat módszerei 24. Röntgendiffrakció - Kiértékelés Gyimesi J.: Textilanyagok fizikai vizsgálata. MK Morfológiai szerkezetvizsgálat módszerei 25. Identitási távolság/periódus (I) mérése röntgendiffrakcióval A polimer láncnak megfelelő 1D rácson való szóródás kúpszöge (ϕ n ) alapján: Forgatott kapronsav kristály röntgenfelvétele PVC PVAL PVDC n=1: I=0,609 nm n=2: I=0,593 nm n=3: I=0,598 nm 26 13
14 Morfológiai szerkezetvizsgálat módszerei 26. Oldalirányú rendezettség (d) mérése röntgendiffrakcióval Számítása, a láncokra illeszkedő síkok távolságaként, a Bragg egyenlettel: ipp kristálymódosulatai Monoklin Trigonális Ortorombos Diaminok duzzasztó hatása a cellulóz [101] kristálysík távolságára Natív cellulóz 0.61 nm + Hidrazin 1.03 nm +Etilén-diamin +Tetrametilén-diamin 1.23 nm 1.46 nm 27 Morfológiai szerkezetvizsgálat módszerei 27. Láncorientáció és jelentősége Orientáció értelmezése: Láncelemekhez rendelt egység-irányvektorokkal (a i e i ) és azok végpontjaival az egységgömbön Izotróp Uniaxiális Biaxiális Hideg nyújtás és nyakképződés ( o C) Cellulóz szálak nyújtása Orientálódás nyakképződésnél 28 14
15 Morfológiai szerkezetvizsgálat módszerei 28. Orientáció mérése röntgendiffrakcióval Orientálatlan és orientált PP minták röntgenképei és értelmezésük Reciprok rácspont szóródás 29 Morfológiai szerkezetvizsgálat módszerei 29. Kristályos orientáció mérése röntgendiffrakcióval Orientációs szög eloszlása A A = félérték szélesség PA szál röntgenképének változása nyújtás hatására Orientációs faktorok értelmezése f Hermanns-féle orientációs faktor (adott tengelyre vonatkoztatott : pl. x, y, z tengelyekre) α = láncelem hajlásszöge az adott tengelyhez 30 15
16 Morfológiai szerkezetvizsgálat módszerei 30. Átlagos orientáció közvetett meghatározása Átlagos orientáció (x=kristályosság): Orientációfüggő, mért jellemző (Y): g(.)= folytonos, invertálható függvény Optikai kettőstörés ( n) mérése Szónikus modulus: Ultrahang terjedési sebesség (c) mérése 31 Morfológiai szerkezetvizsgálat módszerei 31. Kristályos részecskenagyság (D) mérése röntgendiffrakcióval Számítás a sugárirányú vonalszélesedésből: β m r Vonalszélesedés eloszlás Vonalszélesedés: (Krisztallitok (hkl) síkokra merőleges mérete) 32 16
17 Morfológiai szerkezetvizsgálat módszerei 32. Kristályosság (x%) mérése sűrűséggradiens csővel A minta és a legközelebbi, közrezáró üveggömbök mért helyzete és ismert sűrűsége alapján lineáris interpolációval számítjuk a minta sűrűségét (ρ). Két, különböző sűrűségű, keveredő folyadék A csőben lineárisan változó sűrűségű keverék 33 Morfológiai szerkezetvizsgálat módszerei 32a. Kristályos és amorf sűrűségjellemzők Az adott polimereknél: Az amorf sűrűség nő a kristályos sűrűséggel (lineáris trend) Az amorf sűrűség átlagosan 0,16 g/cm3-el, illetve 5-15%-al kisebb 34 17
18 Morfológiai szerkezetvizsgálat módszerei 33. Kristályosság mérése röntgendiffrakcióval A diffraktogram dekompozíciója és a PE kristályosságának (x%) számítása a komponens-görbék alatti területekből (T i ): Korrekciós tényezők (f i ) (pl. helyzettorzulás, polarizáció korrekciója): PE A mért PE kristályossága: 35 Morfológiai szerkezetvizsgálat módszerei 35. Infravörös spektroszkópia FTIR Az anyag atomjai rezgései és az IR-fény kölcsönhatásán alapul Különösen a kovalens kötésekkel összekapcsolt atomokból álló anyagok IR-fénnyel való gerjesztésekor jól definiált frekvenciájú rezgések alakulnak ki, anyagra jellemző spektrumot kapunk Az anyagra bocsátott egységnyi intenzitású (v o =frekvencia) IR-fény egyik hányada visszaverődik (r=reflektancia), más része elnyelődik (a=abszorbtancia) vagy áteresztődik (t=transzmittancia), amelyek nagyságrendje jellemző az anyagfajtára : Például Infravörös > Tükrös fémfelület: r=1; a=t=0 Látható > Kvarc (látható fény), KBr kristály (IR): r a=0; t 1 > Matt fekete festék: r t 0; a 1 Az IR tartományban tapasztalható fényelnyelés az anyag hőmozgásával, azaz az atomok egymáshoz viszonyított rezgéseivel kapcsolatos Anyagra jellemző elnyelési sávok (atomtól és kötéseitől függ) r(v o ), a(v o ), és t(v o ) az adott anyag reflexiós, abszorpciós és transzmissziós spektruma Mérési módszerek: Reflexió reflexiós spektroszkópia Elnyelés UV, IR, FTIR módszerek Rugalmas szórás (v r =v o ) Diffrakciós módszerek Rugalmatlan szórás (v r =v o ±v v ) Raman-spektroszkópia Elektromágneses sugárzás spektruma Általában vékony anyagréteg mintákon vizsgálják
19 Morfológiai szerkezetvizsgálat módszerei 36. Infravörös spektroszkópia IR, FTIR A rendszer belső lengései/rezgései: Szimmetrikus nyúlás/rövidülés (stretching) Aszimmetrikus nyúlás/rövidülés (stretching) Ollózás (scissoring ) Hintázás (rocking) Billegés (wagging ) Csavarodás (twisting) 37 Morfológiai szerkezetvizsgálat módszerei 39. FTIR spektroszkópia - polimerek Intenzitás - Hullámszám
20 Morfológiai szerkezetvizsgálat módszerei 40. RAMAN spektroszkópia - polimerek Intensity - Raman shift 39 Morfológiai szerkezetvizsgálat módszerei 41. Mágneses magrezonancia mérés (NMR) (Nuclear Magnetic Resonance) Az egyes molekulákat felépítő atomok magjának és a rádiófrekvenciás (1-10 m) tartományba eső elektromágneses sugárzásnak a kölcsönhatását vizsgálja. Nagyfelbontású NMR molekula szerkezetének vizsgálatához Szélessávú NMR szilárd fázisban létrejövő kölcsönhatások felderítéséhez Az anyag mágneses tér (indukció) impulzusra adott, időben lecsengő mágnesezettségi válaszrezgéssel reagál, amelynek Fourier transzformáltját számolják. A reális rész az abszorpcióval, a képzetes rész a diszperzióval kapcsolatos. A gyakorlatban használt spektrum általában csak a reális részt tartalmazza
III. POLIMEREK SZERKEZETVIZSGÁLATI MÓDSZEREI
Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG04, 3+0+1v, 5 krp III. POLIMEREK SZERKEZETVIZSGÁLATI MÓDSZEREI Vas László Mihály 1 Felhasznált források
Polimerek alkalmazástechnikája BMEGEPTAGA4
Polimerek alkalmazástechnikája BMEGEPTAGA4 2015. október 21. Dr. Mészáros László A gyártástechnológia hatása PA 6 esetén 2 Gyártástechnológia Szakítószilárdság [MPa] Extrudálás 50 65 Tömbpolimerizáció
II. POLIMEREK MORFOLÓGIAI SZERKEZETE
Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG04, 3+0+1v, 5 krp II. POLIMEREK MORFOLÓGIAI SZERKEZETE Vas László Mihály Felhasznált források Irodalom
Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez
1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet
Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)
Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) VIII. előadás: Polimerek anyagtudománya, alapfogalmak Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április 03.
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Mikroszerkezeti vizsgálatok
Mikroszerkezeti vizsgálatok Dr. Szabó Péter BME Anyagtudomány és Technológia Tanszék 463-2954 szpj@eik.bme.hu www.att.bme.hu Tematika Optikai mikroszkópos vizsgálatok, klasszikus metallográfia. Kristálytan,
Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november
Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció
Vázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok
Szilárdtestfizika Kondenzált Anyagok Fizikája Vázlatos tartalom Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok 2 Szerkezet
Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés
σ [MPa] Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) VIII. előadás: Polimerek anyagtudománya, alapfogalmak Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április
Polimerek fizikai, mechanikai, termikus tulajdonságai
SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES
Szerkezetvizsgálat ANYAGMÉRNÖK ALAPKÉPZÉS (BSc)
Szerkezetvizsgálat ANYAGMÉRNÖK ALAPKÉPZÉS (BSc) TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR ANYAGTUDOMÁNYI INTÉZET Miskolc, 2008. 1. Tantárgyleírás Szerkezetvizsgálat kommunikációs
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
Fizikai kémia Diffrakciós módszerek. Bevezetés. Történeti áttekintés
06.08.. Fizikai kémia. 6. Diffrakciós módszerek Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Bevezetés A kémiai szerkezet vizsgálatához használatos módszerek közül eddig a különöző
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
Diffrakciós szerkezetvizsgálati módszerek
Diffrakciós szerkezetvizsgálati módszerek Röntgendiffrakció Angler Gábor ELTE TTK Fizika BSc hallgató 2009. december 3. Kondenzált anyagok fizikája szeminárium Az előadás vázlata Bevezetés, motiváció,
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic
Abszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
Szerkezet és tulajdonságok
Szerkezet és tulajdonságok Bevezetés Molekulaszerkezet és tulajdonságok Kristályos polimerek a kristályosodás feltétele, szabályos lánc kristályos szerkezet kristályosodás, gócképződés kristályosodás,
Röntgenanalitika. Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD)
Röntgenanalitika Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD) A röntgensugárzás Felfedezése (1895, W. K. Röntgen, katódsugárcső,
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.
Termikus analízis alkalmazhatósága a polimerek anyagvizsgálatában és jellemzésében
Termikus analízis alkalmazhatósága a polimerek anyagvizsgálatában és jellemzésében Menyhárd Alfréd BME Fizikai Kémia és Anyagtudományi Tanszék PerkinElmer szeminárium Budapest, 2015. október 20. Vázlat
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze
Röntgendiffrakció Kardos Roland 2010.03.08. Előadás vázlata Röntgen sugárzás Interferencia Huygens teória Diffrakció Diffrakciós eljárások Alkalmazás Röntgen sugárzás 1895 röntgen sugárzás felfedezés (1901
A fény tulajdonságai
Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó
E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
Abszorpciós fotometria
abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok
Bevezetés a lézeres anyagmegmunkálásba
Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 13. A lézeres l anyagmegmunkálás szempontjából l fontos anyagi tulajdonságok Optikai tulajdonságok Mechanikai tulajdonságok
Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
Havancsák Károly Nagyfelbontású kétsugaras pásztázó elektronmikroszkóp az ELTÉ-n: lehetőségek, eddigi eredmények
Havancsák Károly Nagyfelbontású kétsugaras pásztázó elektronmikroszkóp az ELTÉ-n: lehetőségek, eddigi eredmények Nanoanyagok és nanotechnológiák Albizottság ELTE TTK 2013. Havancsák Károly Nagyfelbontású
Havancsák Károly Az ELTE TTK kétsugaras pásztázó elektronmikroszkópja. Archeometriai műhely ELTE TTK 2013.
Havancsák Károly Az ELTE TTK kétsugaras pásztázó elektronmikroszkópja Archeometriai műhely ELTE TTK 2013. Elektronmikroszkópok TEM SEM Transzmissziós elektronmikroszkóp Átvilágítós vékony minta < 100
Kvalitatív fázisanalízis
MISKOLCI EGYETEM ANYAG ÉS KOHÓMÉRNÖKI KAR FÉMTANI TANSZÉK GYAKORLATI ÚTMUTATÓ PHARE HU 9705000006 ÖSSZEÁLLÍTOTTA: NAGY ERZSÉBET LEKTORÁLTA: DR. MERTINGER VALÉRIA Kvalitatív fázisanalízis. A gyakorlat célja
Budapesti Műszaki és Gazdaságtudományi Egyetem Szerves Kémia és Technológia Tanszék. TDK dolgozat
Budapesti Műszaki és Gazdaságtudományi Egyetem Szerves Kémia és Technológia Tanszék TDK dolgozat Önerősített polipropilén kompozitok vizsgálata Raman spektroszkópiai módszerrel Szedmák Péter Környezetmérnök
Polimer anyagtudomány
Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPT5071, 3+0+1v, 5 krp V. POLIMEREK MECHANIKAI VISELKEDÉSÉNEK MODELLEZÉSE 1. Vas László Mihály 1 Felhasznált
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
Polimerek fizikai, mechanikai, termikus tulajdonságai
SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka Polimerek / Műanyagok monomer egységekből,
Spektroszkópiai módszerek és ezek más módszerrel kombinált változatainak alkalmazása a műanyagiparban
A MÛANYAGOK TULAJDONSÁGAI 1.3 Spektroszkópiai módszerek és ezek más módszerrel kombinált változatainak alkalmazása a műanyagiparban Tárgyszavak: műanyagok elemzése; IV spektroszkópia; termoanalízis; DSC;
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy
Finomszerkezetvizsgálat
Anyagszerkezettan és anyagvizsgálat 2015/16 Finomszerkezetvizsgálat Dr. Szabó Péter János szpj@eik.bme.hu Szerkezetvizsgálat szintjei Atomi elrendeződés vizsgálata (röntgendiffrakció, transzmissziós elektronmikroszkóp,
Szerkezetvizsgálat szintjei
Anyagszerkezettan és anyagvizsgálat 2015/16 Finomszerkezetvizsgálat Dr. Szabó Péter János szpj@eik.bme.hu Szerkezetvizsgálat szintjei Atomi elrendeződés vizsgálata (röntgendiffrakció, transzmissziós elektronmikroszkóp,
dinamikai tulajdonságai
Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak
Lézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok
Lézerek Lézerek A lézerműködés feltételei Lézerek osztályozása Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok Extrém energiák Alkalmazások A lézerműködés feltételei
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2017/18-es tanév
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2017/18-es tanév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül, valamint egy számolási feladatot az év közben
Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Ajánlott segédanyagok
Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) IX. előadás: Polimerek alakemlékező tulajdonsága Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2018. április 11. Ajánlott
VII. POLIMEREK MECHANIKAI VISELKEDÉSÉNEK MODELLEZÉSE
Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG04, +0+v, 5 krp VII. POLIMEREK MECHANIKAI VISELKEDÉSÉNEK MODELLEZÉSE. Szerkezeti-mechanikai modellezés
OPT TIKA. Hullámoptika. Dr. Seres István
OPT TIKA Dr. Seres István : A fény elektromágneses hullám r S S = r E r H Seres István 2 http://fft.szie.hu Elektromágneses spektrum c = λf Elnevezés Hullámhossz Frekvencia Váltóáram > 3000 km < 100 Hz
OPTIKA. Vozáry Eszter November
OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS
Kristályok optikai tulajdonságai. Debrecen, december 06.
Kristályok optikai tulajdonságai Debrecen, 2018. december 06. A kristályok fizikai tulajdonságai Anizotrópia - kristályos anyagokban az egyes irányokban az eltérő rácspontsűrűség miatt a fizikai tulajdonságaik
9. Fotoelektron-spektroszkópia
9/1 9. Fotoelektron-spektroszkópia 9.1. ábra. Fotoelektron-spektroszkópiai módszerek 9.2. ábra. UP-spektrométer vázlata 9/2 9.3. ábra. N 2 -fotoelektron-spektrum 9.4. ábra. 2:1 mólarányú CO-CO 2 gázelegy
Infravörös, spektroszkópia
Infravörös, Raman és CD spektroszkópia Spektroszkópia Az EM sugárzás abszorbcióján alapszik: látható (leggyakrabban kvantitatív) UV IR (inkább kvalitatív) RAMAN ESR (mikrohullám) NMR (rádióhullám) Fény
Optikai spektroszkópia az anyagtudományban 8. Raman spektroszkópia Anizotrópia IR és Raman spektrumokban
Optikai spektroszkópia az anyagtudományban 8. Raman spektroszkópia Anizotrópia IR és Raman spektrumokban Kamarás Katalin MTA Wigner FK kamaras.katalin@wigner.mta.hu Optkai spektroszkópia az anyagtudományban
KISFESZÜLTSÉGŰ KÁBELEK
BME Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Budapesti Műszaki és Gazdaságtudományi Egyetem KISFESZÜLTSÉGŰ KÁBELEK DIAGNOSZTIKÁJA TELJES FESZÜLTSÉGVÁLASZ MÓDSZERREL
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
Anyagtudomány. Polimerek morfológiai vizsgálata
Anyagtudomány Kiadva: 2017. március 6. BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK Polimerek morfológiai vizsgálata A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON
Hidrogénezett amorf Si és Ge rétegek hőkezelés okozta szerkezeti változásai
Hidrogénezett amorf Si és Ge rétegek hőkezelés okozta szerkezeti változásai Csík Attila MTA Atomki Debrecen Vizsgálataink célja Amorf Si és a-si alapú ötvözetek (pl. Si-X, X=Ge, B, Sb, Al) alkalmazása:!
A szubmikronos anyagtudomány néhány eszköze. Havancsák Károly ELTE TTK Központi Kutató és Műszer Centrum július.
1 A szubmikronos anyagtudomány néhány eszköze Havancsák Károly ELTE TTK Központi Kutató és Műszer Centrum 2012. július. Mikroszkópok 2 - Transzmissziós elektronmikroszkóp (TEM), - Pásztázó elektronmikroszkóp
Anyagok az energetikában
Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Bevezetés, alapfogalmak Dr. Tamás-Bényei Péter 2018. szeptember 5. Oktatók 2 / 36 Dr. habil. Orbulov Imre Norbert (fémes rész) egyetemi docens, tárgyfelelős
Bevezetés az anyagtudományba III. előadás
Bevezetés az anyagtudományba III. előadás 2010. február 18. Kristályos és s nem-krist kristályos anyagok A kristályos anyag atomjainak elrendeződése sok atomnyi távolságig, a tér mindhárom irányában periodikusan
Abszorpciós fotometria
abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor
Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)
Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) IX. előadás: Polimerek alakemlékező tulajdonsága Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április 10. Tematika
Abszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
Egzotikus elektromágneses jelenségek alacsony hőmérsékleten Mihály György BME Fizikai Intézet Hall effektus Edwin Hall és az összenyomhatatlan elektromosság Kvantum Hall effektus Mágneses áram anomális
Műanyagok Pukánszky Béla - Tel.: Műanyag- és Gumiipari Tanszék, H ép. 1. em.
Műanyagok Pukánszky Béla - Tel.: 20-15 Műanyag- és Gumiipari Tanszék, H ép. 1. em. Tudnivalók: előadás írott anyag kérdések, konzultáció vizsga Vizsgajegyek 2003/2004 őszi félév 50 Jegyek száma 40 30 20
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
Anyagtudomány: hagyományos szerkezeti anyagok és polimerek
Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Alapfogalmak Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép. I. emelet Vázlat Kötések Ionos, kovalens és
Tematika. Az atomok elrendeződése Kristályok, rácshibák
Anyagtudomány 2013/14 Kristályok, rácshibák Dr. Szabó Péter János szpj@eik.bme.hu Tematika 1. hét: Bevezetés. 2. hét: Kristályok, rácshibák. 3. hét: Ötvözetek. 4. hét: Mágneses és elektromos anyagok. 5.
Az infravörös (IR) sugárzás. (Wikipédia)
FT-IR spektroszkópia Az infravörös (IR) sugárzás (Wikipédia) Termografikus kamera (Wikipédia) Termografikus fényképek (Wikipédia) Termografikus fényképek (Wikipédia) IR spektroszkópia Tartomány: 10-12800
Vázlat a transzmissziós elektronmikroszkópiához (TEM) dr. Dódony István
Dódony István: TEM, vázlat vegyészeknek, 1996 1 Vázlat a transzmissziós elektronmikroszkópiához (TEM) dr. Dódony István A TEM a szilárd anyagok kémiai és szerkezeti jellemzésére alkalmas vizsgálati módszer.
Mikrohullámú abszorbensek vizsgálata 4. félév
Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Mikrohullámú abszorbensek vizsgálata 4. félév Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán MTA Természettudományi Kutatóközpont
10. előadás Kőzettani bevezetés
10. előadás Kőzettani bevezetés Mi a kőzet? Döntően nagy földtani folyamatok során képződik. Elsősorban ásványok keveréke. Kőzetalkotó ásványok építik fel. A kőzetalkotó komponensek azonban nemcsak ásványok,
Koherens lézerspektroszkópia adalékolt optikai egykristályokban
Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes
VI. POLIMEREK TÖRÉSI VISELKEDÉSE
Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG04, 3+0+1v, 5 krp VI. POLIMEREK TÖRÉSI VISELKEDÉSE Vas László Mihály 1 Felhasznált források Irodalom
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Polimorfia Egy bizonyos szilárd anyag a külső körülmények függvényében különböző belső szerkezettel rendelkezhet. A grafit kristályrácsa A gyémánt kri
Ásványtani alapismeretek 3. előadás Polimorfia Egy bizonyos szilárd anyag a külső körülmények függvényében különböző belső szerkezettel rendelkezhet. A grafit kristályrácsa A gyémánt kristályrácsa Polimorf
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
Anyagok az energetikában
Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Környezeti tényezők hatása, időfüggő mechanikai tulajdonságok Dr. Tamás-Bényei Péter 2018. szeptember 19. Ütemterv 2 / 20 Dátum 2018.09.05 2018.09.19
Szilárd anyagok. Műszaki kémia, Anyagtan I. 7. előadás. Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék
Szilárd anyagok Műszaki kémia, Anyagtan I. 7. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Szilárd anyagok felosztása Szilárd anyagok Kristályos szerkezetűek Üvegszerű anyagok
Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium
Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált
Bevezetés a lézeres anyagmegmunkálásba
Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 6. Anyagcsaládok Fémek Kerámiák, üvegek Műanyagok Kompozitok A családok közti különbségek tárgyalhatóak: atomi szinten
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Optika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél
Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél Fémgőz és plazma Buza Gábor, Bauer Attila Messer Innovation Forum 2016. december
Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Tematika. Ajánlott segédanyagok
Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) IX. előadás: Polimerek alakemlékező tulajdonsága Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április 10. Tematika
Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia
Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek 1 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474, 168 169. / határfelületi jelenségek
Modern Fizika Labor. 17. Folyadékkristályok
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
MATEMATIKA HETI 5 ÓRA
EURÓPAI ÉRETTSÉGI 2008 MATEMATIKA HETI 5 ÓRA IDŐPONT : 2008. június 5 (reggel) A VIZSGA IDŐTARTAMA: 4 óra (240 perc) MEGENGEDETT ESZKÖZÖK: Európai képletgyűjtemény Nem programozható, nem grafikus számológép
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
Ejtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria
Az elektromágneses sugárzás kölcsönhatása az anyaggal
Az elektromágneses sugárzás kölcsönhatása az anyaggal Radiometriai alapfogalmak Kisugárzott felületi teljesítmény Besugárzott felületi teljesítmény A fény kölcsönhatása az anyaggal 1. M ΔP W ΔA m 2 E be
A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása
A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás
Talián Csaba Gábor Biofizikai Intézet 2012. április 17.
SUGÁRZÁSOK. ELEKTROMÁGNESES HULLÁMOK. Talián Csaba Gábor Biofizikai Intézet 2012. április 17. MI A SUGÁRZÁS? ENERGIA TERJEDÉSE A TÉRBEN RÉSZECSKÉK VAGY HULLÁMOK HALADÓ MOZGÁSA RÉVÉN Részecske: α-, β-sugárzás