A BOKAÍZÜLET BIOMECHANIKÁJA
|
|
- Hanna Fazekas
- 9 évvel ezelőtt
- Látták:
Átírás
1 A BOKAÍZÜLET BIOMECHANIKÁJA I. A bokaízület felépítése A bokaízület elsősorban a sípcsont és az ugrócsont (talocrural), valamint az ugrócsont és szárkapocscsont ízesülését jelenti (ábra). A boka porcos csapízület, amely mozgás szabadságfoka egy. Tágabb értelemben a boka ízülethez tartozik a sípcsont és s szárkapocs proximalis és distalis ízesülése is. szárkapocs sípcsont ugrócsont 1. A bokaízület ízületi felszínei Sípcsont - ugrócsont (felső és oldalsó) Szárkapocs - ugrócsont Szárkapocs - sípcsont 2. Sípcsont - ugrócsont - szárkapocs ízesülés A sípcsont-ugrócsonti ízesülés csap ízület, ezért csak egy a mozgás szabadságfoka vagyis csak a boka ízület kereszttengelye körül lehetséges elfordulás. A mozgás elsősorban az oldalsíkban játszódik le. Az ugrócsont sípcsonti- ugrócsonti ízületi felszínének alakja és helyzete miatt azonban a forgás mind a három síkban történik. A sípcsonti - ugrócsonti ízesülésben hajlítás (dorsal flexio) és feszítés (plantar flexio) lehetséges. Az ugrócsont fején három ízesülési felszín található a külső, a belső és a felső. Az utóbbi a talocrularis ízület. A felső ízületi felszín két oldala magasabban helyezkedik el, mint a középső, amely így vájatot képez, amelybe a sípcsont distalis 1
2 végén található ízületi felszín beleillik. Ez az ízületi kiképzés is azt szolgálja, hogy oldalirányú mozgás ne jöhessen létre az ízületben. A ízületi felszínt felülről tekintve az elülső része szélesebb, mint a hátsó. Az elülső és a hátulsó rész szélessége közötti különbség változó. Előfordulhat, hogy nincs különbség a közöttük, de hátsó lehet akár 25 %-kal rövidebb is (ábra). Átlagosan a különbség 5-8 mm. Az ízületi felszín külső fele íveltebb, mint a belső. Ezért a sípcsont mozgása az ugrócsonton nem egyenes mentén történik, hanem íves pályán, amely azt eredményezi, hogy a hajlítás és feszítés során a mozgás frontális síkban is folyik. Másrészről a felszín ilyen formája miatt a sípcsont mind a három síkban végez elmozdulást. Ha felülnézetből tekintünk az ugrócsont testének felső ízületi felszínére, akkor jól látható, hogy az ízületi tengely nem merőleges a lábfej hosszúsági tengelyére, amely azt eredményezi, hogy a boka forgási síkja - semleges állásban - az oldal és frontális sík (ábra) old
3 A forgási sík állandóan változik az ízületi szög függvényében. Teljes dorsal flexióban a forgás csak oldalsíkban megy végbe. Elölnézetből tekintve az ízületre észrevehető, hogy a forgástengely nem merőleges az oldalsíkra, kifelé lejt. Vagyis a forgás síkja nem csak horizontális. Ennek következtében rögzített láb esetén a sípcsont dőlésszöge a vízszintes síkhoz viszonyítva kisebb, mint 90 fok és az ízületi szögtől függően változik (ábra) old Ha oldalról tekintünk az ugrócsontra, akkor azt láthatjuk, hogy a külső ízületi felszín (ugrócsont - szárkapocs) kiterjedtebb, mint a belső (ugrócsont - sípcsont) felszín (ábra). Az ugrócsont fejének két oldalsó ízületi felszínéhez kapcsolódó sípcsonti bütyök (belső boka) és a szárkapocs (külső boka) villaszerűen fogja közre az ízületi fejet és biztosítja a boka oldalirányú stabilitását. 382 old b, 384. Old.12-4 b 3
4 3. Szárkapocs - sípcsonti ízület A szárkapocs - sípcsonti ízület a bokaízülettől anatómiailag elkülönülő ízület, funkcionálisan azonban csak nem kizárólagosan a boka a boka mozgását szolgálja ki. Bár - a singcsont és orsócsonti ízesüléssel ellentétben - nem növeli az ízület mozgási szabadságfokát. 4. Proximalis ízület Lapos, porcos ízület, amelyben az ízületi fej a szárkapocs distalis végén található, amely a sípcsont hátulsó-oldalsó bütykének árkába illik. Az ízületi felszín dőlésszöge egyénektől függően változik a függőleges és a vízszintes között. A mozgás az ízületben változó, de mindenképpen kis kiterjedésű. Bizonyos esetekben felfelé és lefelé csúszás, valamint rotáció figyelhető meg, amely mozgások minden esetben a bokaízület mozgásával van összefüggésben. 5. Distalis ízület Fibrózus egység a domború felszínű sípcsonti és a homorú felszínű szárkapocsi felület között. Valójában a két ízületi felszín nem kerül közvetlen kapcsolatba egymással, mert rostos zsírszövet helyezkedik el a két felszín között. Ennek az ízületnek nincs tokja, de szalagok erősítik össze a két ízületi felszínt. A szárkapocs és a sípcsont között végig hártya feszül. Ez a felépítés teszi lehetővé, hogy s bokavilla külső ágaként biztosítsa a boka stabilitását, azaz megakadályozza az oldalirányi csúszást, valamint a közelítést a bokaízületben. A súlyterhelés viszonylag kicsi a szárkapcson és szárkapocs - sípcsonti ízületekben. A testtömeg nehézségi erejének mintegy tíz százaléka terheli csak azokat. Az ízületi felszíneken elsősorban nyíró erők működnek. II. A bokaízület kinematikája 4
5 1. Mozgáshatárok A bokaízület semleges helyzetét egyenes állásban határozzuk meg. Ebben az esetben a sípcsont merőleges a talajra vagy másképpen meghatározva, a talp síkjára. Ebben a helyzetben a boka szöge nulla. Ehhez viszonyítjuk az ízületben létrejövő elmozdulások kiterjedését. Következésképpen a hajlítás és feszítés során mérhető maximális szögértékek nagysága egyenlő lesz a mozgáshatárokkal. A bokaszög meghatározására más megközelítés is alkalmazható. Oldalsíkban, ha a belső bokát, amely megközelítően az ugrócsont testének felső ízületi középpontjával azonos magasságban van, összekötjük az első lábközépcsont distalis ízületi felszínének középpontjával, akkor a 90 foknál nagyobb szögértéket kapunk. Ez a szög egyénektől függően változik. Átlagosan fok. 2. Mozgásterjedelem A bokaízületben, minthogy a mozgás szabadságfoka egy, szögelfordulás csak az ízület szélességi tengelye körül jöhet létre, vagyis Hajlítás (dorsal flexio): fok Feszítés (plantar flexio): fok A mozgásterjedelem plantarflexióban nagyobb egyéni variabilitást mutat, mint dorsalflexioban (ábra). A mozgásterjedelem nagyságát és a mozgáshatárok szögértékét az ízesülő csontok, de mindenek előtt az ugrócsont alakja határozza meg. Amennyiben az ugrócsont testén található felső ízületi felszíne magas és hátsó ízületi felszínének sugara kicsi, akkor a plantar flexio mozgásterjedelme növekszik. A mozgáskiterjedés nagyságát a bokaízületet összetartó ízületi szalagok merevsége vagy nyúlékonysága is jelentősen befolyásolja. 5
6 semleges dorsalflexio plantarflexio 90 fok fok fok Amennyiben a bokaízületi szöget nem a sípcsont hosszúsági tengelye és a talp síkja viszonylatában határozzuk meg, hanem a sípcsont hosszúsági tengelye és belső bokát az első középcsont distalis ízületét összekötő egyenes viszonyában, akkor dorsiflexioról beszélünk, ha a bokaszög csökkenő értéket mutat. Plantarflexio történik, ha a bokaszög növekszik. A hajlítás és a feszítés során a pillanatnyi forgási középpont helye minden esetben az ugrócsonton belül helyezkedik el, de annak helye állandóan változik (ábra). Átlagos felépítésű boka esetében az érintkezési pont elmozdulásának iránya disztrakciót mutat kezdetben ( 1 és 2 forgási középpontok között), majd az 6
7 elmozdulás az ízületi felszínek egymáson történő elcsúszásával folytatódik (3 és 4 forgási középpontok között) old 8-5 Bár kétségtelen a bokaízület egy tengelyű ízület, mégis több kutató azt találta in vivo és in vitro kísérletei során, hogy az ízületben létrejöhet rotáció is az ugrócsont horony részében. A forgás terjedelme 7 fokos medialisan és 10 fokos laterálisan. 3. A bokaízület kinematikája Statika A test nehézségi erejének vonala állásban a két belső boka között és kissé a szélességi forgástengely előtt halad el. Ezért dorsalflexios forgatónyomatékot hoz létre, amely értéke 3-24 Nm. Ennek következtében állásban a plantar flexorok aktív állapotban vannak, az általuk létrehozott forgatónyomaték tart egyensúlyt a nehézségi erő forgatónyomatékával. Az egyes bokaízületi felszínekre fél-fél testsúlynyi nyomóerő hárul. Mivel az egyensúly megtartása mindig igényel izomerő-kifejtést, így az ízületre ható erők, mindig nagyobbak 1/2 testsúlynál. A sípcsont - ugrócsonti ízületre ható erőt az alábbiak szerint számítjuk ki. Az ízületre alapvetően két erő hat, amely létrehozza az ízületi felszíneken a nyomóerőt: a test nehézségi ereje (G), amelynek irányát ismerjük (függőleges) és nagyságát megmérhetjük erőplató (mérleg) segítségével; 7
8 a plantar flexorok húzóereje (F pf ), amelynek irányát meghatározhatjuk ( az eredési és tapadási hely pontját összekötő egyenes iránya) és nagyságát kiszámolhatjuk az alábbi módon: G k G = F pf k pf -1 F pf = G k G k pf ahol a k G a nehézségi erő, k pf a plantar flexorok erőkarja. Mint ahogy látható, a test nehézségi erejének forgatónyomatéka egyenlő a plantar flexorok forgatónyomatékával. Ezek ismeretében kiszámítható a plantar flexorok húzóerejének nagysága. Ha a G és a F pf hatásvonalát meghosszabbítjuk, akkor az egyenesek metszeni fogják egymást. Metszéspontból egyenest húzunk az ízületi forgásközéppontba. Ezzel megkapjuk a nyomóerő irányát. Ezután grafikus módszerrel meghatározzuk az egyenesek egymáshoz viszonyított szögállást, majd így kiszámíthatóvá válik a nyomóerő nagysága (ábra). F pf Fm= 1.2 F Gr Fi k G k pf Fi= 2.1 F Gr F Gr F G Ha a plantar flexorok erőkifejtése 1.2-szeres testsúly, akkor az ízületi felszínre ható erő 2.1-szeres testsúly. A testre ható erőknek százaléka a szárkapcson keresztül tevődik át a bokaízületre. A szárkapocsra ható nyomóerőkkel szemben a sípcsont - szárkapocs komplexum két ízületét összetartó szalagok fejtenek ki erőt és ezen keresztül tevődik át az erő a bokaízületre. Az erők ismeretében megérthető, hogy bokaszalag sérülés esetén, különösen, ha az a külső bokaszalagokat érinti, 8
9 miért okoz akkora fájdalmat még az állás is. Mozgás közben az erőhatások megnövekednek és a fájdalmak hatványozódhatnak. Dinamika A dinamikus erőhatások kiszámítás jelentősége abban rejlik, hogy összehasonlítást nyerjen a keletkező erők nagysága és a bokaízület teherbíró képessége normál ízületi viszonyok, de nagy terhelés mellett, sérült vagy protézis beültetéses boka és normál helyváltoztató mozgás (járás) alatt. Erőplató, filmfelvétel, Röntgenfelvételek (vagy MRI, CT) alkalmazásával és szabadtest diagramos számításokkal határozhatók meg az erők a bokaízületre. Normál járás során a nyomóerő az ízületi felszínen 5-szörös testsúly, amely legnagyobb részt a plantar flexorok erőkifejtéséből származik mégpedig abban a fázisban, amikor megkezdődik a lábujjhegyre emelkedés vagyis az ellökődést eredményező plantar flexio. A nyíróerők az ízületi felszínen sokkal kisebbek és a legkifejezettebb, amikor a nyomóerő is eléri a maximumot. Normál sebességű járás esetén a nyíróerő maximuma 0.8-szoros testsúly. A járás talajfázisának elején létrejövő dorsal flexio következtében fellépő nyomóerő, amelyet az anterior tibialis izom hoz létre elsősorban jóval kisebb terhelést ró a bokaízületre (0.2 -szeres testsúly). A számítások szerint az erőeloszlási felszín a bokaízületben cm 2. Ez azt jelenti, hogy egy 80 kg súlyú ember esetében 4000 N reakcióerő hat az egész ízületi felszínre, amely 1 cm 2 számítva N nyomóerőt jelent, amely jelentősen kisebb, mint a térdízület 1 cm 2 -rére eső nyomóerő. Az ízületi felszíneken a nyomás azonban nem egyenletesen oszlik meg. Nem megfelelő cipőt hordva, vagy a kinematikai lánc valamelyik láncszemében bekövetkező változás (pl. sérülés) megváltoztatja a mozgás (pl. járás) normál kivitelezését, amely lecsökkentheti a terhelést megosztó ízületi felszín nagyságát illetve helyét. Ennek következtében megnövekszik az 1 cm 2 -re eső terhelés, amely degeneratív változásokat indíthat meg a túlterhelt ízületi felszínen. Az ilyen változások különösen veszélyesek a bokára, mert a test teljes tömegének nehézségi ereje hat a bokára. 9
Csontjai, ízületei, izmai
Csontjai, ízületei, izmai A láb részei: lábtő (tarsus) lábközép (metatarsus) lábujjak (digiti pedis) A lábtő csontjai: 1. ugrócsont (talus) B a lábtőcsontok közül az egyetlen, melynek közvetlen kapcsolata
A KÖNYÖKÍZÜLET BIOMECHANIKÁJA
I. Az ízület felépítése A KÖNYÖKÍZÜLET BIOMECHANIKÁJA A könyök ízületi komplexumát három csont ízesülése hozza létre: a karcsont (humerus), az orsócsont (radius) és a singcsont. A könyökízület a felsővégtag
A CSÍPŐZIZÜLET BIOMECHANIKÁJA
A CSÍPŐZIZÜLET BIOMECHANIKÁJA I. Az izület felépítése A csípő izület a combcsont és a medence csont un. stabil, mozgékony ízesülését jelenti. A csípőizület un. gömbizület. A combcsont proximális végén
NS 1 Normális lábfej. Természetes méretű, SOMSO-műanyagból. Bemutatja az anatómiai szerkezetet és a sípcsont alatti részt. Egy darabból áll.
NS 1 Normális lábfej Bemutatja az anatómiai szerkezetet és a sípcsont alatti részt. Egy darabból áll. Hossz: (Pternion-Akropodion): 24 cm. Magasság: 13 cm., Szélesség: 26 cm., Mélység: 10 cm., Súly: 450
DINAMIKA ALAPJAI. Tömeg és az erő
DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
Jóga anatómia és élettan
Jóga anatómia és élettan Csont és ízülettan II. (alsó végtag) Fábián Eszter (eszter.fabian@aok.pte.hu) 2016.11.5-6. Medenceöv Keresztcsont az öt keresztcsonti csigolya össznövése Medencecsont csípőcsont,
Ízületi mozgások. összehasonlító biomechanikai vizsgálat
II. rész Ízületi mozgások összehasonlító biomechanikai vizsgálat Dr. Rácz Levente Phd., Prof. Dr. Bretz Károly, Dr. Lukas Trzaskoma Phd., Sáfár Sándor, Gál Renátó, Gréger Zsolt Semmelweis Egyetem Testnevelési
3. FEJEZET - MANUÁLTERÁPIA 3/1. EGYSZERŰ FELELETVÁLASZTÁS
3. FEJEZET - MANUÁLTERÁPIA 3/1. EGYSZERŰ FELELETVÁLASZTÁS 1. A csúszó mozgás: A) forgó haladó mozgás, amikor az ízület egyik oldalán tractio, a másik oldalon compressio jön létre B) egyenes vonalú haladó
Mechanika. Kinematika
Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például
Munka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő
Az alkar csontjai: singcsont (ulna): medialisan, a kisujj oldalán orsócsont (radius): lateralisan, a hüvelykujj oldalán.
KÖNYÖKÍZÜLET Az alkar csontjai: singcsont (ulna): medialisan, a kisujj oldalán orsócsont (radius): lateralisan, a hüvelykujj oldalán Singcsont (ulna): pörgő bevágása (incisura trochlearis) koronanyúlvány
EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.
EGYSZERŰ GÉPEK Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. Az egyszerű gépekkel munkát nem takaríthatunk meg, de ugyanazt a munkát kisebb
Mechanika - Versenyfeladatok
Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az
Hidrosztatika. Folyadékok fizikai tulajdonságai
Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
Mérések állítható hajlásszögű lejtőn
A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk
TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor
gészítsd ki a mondatot! egyenes vonalú egyensúlyban erő hatások mozgást 1. 2:57 Normál Ha a testet érő... kiegyenlítik egymást, azt mondjuk, hogy a test... van. z egyensúlyban lévő test vagy nyugalomban
TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor
gészítsd ki a mondatokat Válasz lehetőségek: (1) a föld középpontja felé mutató erőhatást 1. fejt ki., (2) az alátámasztásra vagy a felfüggesztésre hat., (3) két 4:15 Normál különböző erő., (4) nyomja
1.2. A mozgató szervrendszer
1.2. A mozgató szervrendszer Osváth P. (2010) Sportélettan, sportegészségtan, Budapest. (26-64. old.) Passzív mozgatórendszer: test csontjai, csontokat összekötő ízületek és ízületi szalagok. Aktív mozgatórendszer:
Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Biofizika I 2013-2014 2014.12.03.
Biofizika I. -2014. 12. 02. 03. Dr. Bugyi Beáta PTE ÁOK Biofizikai Intézet A KERESZTHÍD CIKLUSHOZ KAPCSOLÓDÓ ERŐKIEJTÉS egy kereszthíd ciklus során a miozin II fej elmozdulása: í ~10 nm 10 10 egy kereszthíd
Digitális tananyag a fizika tanításához
Digitális tananyag a fizika tanításához Ismétlés Erőhatás a testek mechanikai kölcsönhatásának mértékét és irányát megadó vektormennyiség. jele: mértékegysége: 1 newton: erőhatás következménye: 1N 1kg
6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)
SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy
A nyomás. IV. fejezet Összefoglalás
A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező
A térdízület (art. genus) elölnézet
A térdízület (art. genus) 3 csont alkotja: combcsont (femur) sípcsont (tibia) térdkalács (patella) combcsont (femur) térdkalács (patella) sípcsont (tibia) szárkapocs csont (fibula) elölnézet hátulnézet
Az úszás biomechanikája
Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható
Az MBT mint terápiás eszköz a bokainstabilitás kezelésére
Az MBT mint terápiás eszköz a bokainstabilitás kezelésére Dr. Szabó-Kocsis Krisztina Reumatológus Praxisklinik Rennbahn for Orthopeadics und Sports Medizin (X. Kälin, L. Weisskopf, A. Rist, U. Martin,
Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?
Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye
VII./2. Veleszületett fejlődési rendellenességek
VII./2. Veleszületett fejlődési rendellenességek A térd veleszületett rendellenességei összességében ritka kórképek, előfordulhatnak önálló elváltozásként, de időnként komplex fejlődési rendellenességek
Ábragyűjtemény levelező hallgatók számára
Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított
Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Tervezés katalógusokkal kisfeladat
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Számítógépes tervezés, méretezés és gyártás (BME KOJHM401) Tervezés katalógusokkal kisfeladat Járműelemek és Járműszerkezetanalízis Tanszék Ssz.:...... Név:.........................................
A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata.
A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata. Eszközszükséglet: Mechanika I. készletből: kiskocsi, erőmérő, súlyok A/4-es írólap, smirgli papír gyurma
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18
A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
1.Háromszög szerkesztése három oldalból
1 Szerkessz háromszöget, ha három oldala: a=3 cm b=4 cm c=5 cm 1.Háromszög szerkesztése három oldalból (Ugye tudod, hogy az a oldallal szemben A csúcs, b oldallal szemben B stb. van!) (homorú, hegyes,
AZ EMBER MŰVÉSZETI SZUNYOGHY ANDRÁS DR. FEHÉR GYÖRGY RAJZOLTA ÍRTA ANATÓMIÁJA
AZ EMBER MŰVÉSZETI ANATÓMIÁJA RAJZOLTA SZUNYOGHY ANDRÁS ÍRTA DR. FEHÉR GYÖRGY Anatomy of the Human Body András Szunyoghy Anatomy of the Human Body is an indispensable handbook of drawing technique and
Mérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Az utóbbi állításnál a képlettel bizonyítható az állítás helyessége, mivel erő szorozva erőkarral
Bevezetés, alapfogalmak A csörlődobon a kötél rétegekből épül fel, ahogy a képen látható, ebből következik, hogy felcsévélés közben a kötéldobon található kötélrétegnek a kerülete folyamatosan növekszik,
FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje.
Jelenség: A folyadék szabad felszíne másképp iselkedik, mint a folyadék belseje. A felületen leő molekulákra a saját részecskéik onzása csak alulról hat, a felülettel érintkező leegő molekulái által kifejtett
Salming Running Technológiák
Salming Running Technológiák A sarok csészét úgy terveztük, hogy a lehető legkisebb mértékben növelje a cipő tömegét, és alkalmazkodjon a futó lábához A felsőrész kétrétegű szendvics szerkezettel és ExoSkeleton
HELYI TANTERV. Mechanika
HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ 2014. április 26. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár
Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén.
Alkalmazott előjelszabályok Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. A kényszererők számításánál a következő a szabály: Az erők iránya a pozitív
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
A II. kategória Fizika OKTV mérési feladatainak megoldása
Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett
Előregyártott fal számítás Adatbev.
Soil Boring co. Előregyártott fal számítás Adatbev. Projekt Dátum : 8.0.0 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : CSN 0 R Fal számítás Aktív földnyomás számítás
28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály
1. feladat a) A négyzet alakú vetítővászon egy oldalának hossza 1,2 m. Ahhoz, hogy a legnagyobb nagyításban is ráférjen a diafilm-kocka képe a vászonra, és teljes egészében látható legyen, ahhoz a 36 milliméteres
Molnár József Losantasag.hu
Molnár József Losantasag.hu Miről lesz szó? - Egyensúly Statikus Dinamikus - hoof mapping - radiológia - körmölési metódusok Egyensúly - Balance A ló végtagja, patája és a patkó közötti kapcsolatot hivatott
Newton törvények, erők
Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső
Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.
Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Komplex természettudomány 3.
Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Irodaergonómia. Az emberközpontú környezetért. Urbánné Biró Brigitta BME Ergonómia és Pszichológia Tanszék
Irodaergonómia Az emberközpontú környezetért Urbánné Biró Brigitta BME Ergonómia és Pszichológia Tanszék Az irodaergonómia területei Mitől lesz hatékony és egészséges a munkahely? Megfelelő környezet Megfelelő
Egy nyíllövéses feladat
1 Egy nyíllövéses feladat Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. 1. ábra forrása: [ 1 / 1 ] Igencsak tanulságos, ezért részletesen bemutatjuk a megoldását. A feladat Egy sportíjjal nyilat
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
Debreceni Egyetem Orvos- és Egészségtudományi Centrum Traumatológiai és Kézsebészeti Tanszék A LÁB SÉRÜLÉSEI. Prof. Dr.
Debreceni Egyetem Orvos- és Egészségtudományi Centrum Traumatológiai és Kézsebészeti Tanszék A LÁB SÉRÜLÉSEI Prof. Dr. Záborszky Zoltán A lábszár distalis metaphysisének törései (Pilon-törés) Ok: magasból
Biomechanikai vizsgálatok lehetősége a TF-en: Témavezető: Rácz Levente tudományos kutató TF Biomechanika Tanszék Új épület III. em. Tel: 487-92 92-62 MUSCLE LAB MOBIL LABOR Az emberi felső végtag mozgásmintáinak
Az alsó végtag csontjai és ízületei
Az alsó végtag csontjai és ízületei Alsó függesztőöv vagy medenceöv medencecsont keresztcsont Comb combcsont Lábszár sípcsont szárkapocscsont Láb lábtő (7 csont) lábközép lábujjak Alsó függesztőöv vagy
Navier-formula. Frissítve: Egyenes hajlítás
Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a
3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél
3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél A cikk két olyan eljárást mutat be, amely a függõleges napórák elkészítésében nyújt segítséget. A fal tájolásának
Járműelemek. Rugók. 1 / 27 Fólia
Rugók 1 / 27 Fólia 1. Rugók funkciója A rugók a gépeknek és szerkezeteknek olyan különleges elemei, amelyek nagy (ill. korlátozott) alakváltozás létrehozására alkalmasak. Az alakváltozás, szemben más szerkezeti
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
CSAVAROK. Oldal 685 Univerzális csavar hosszú. Oldal 684 Gyorsrögzítős csavar hosszú. Oldal 684 Gyorsrögzítős csavar rövid
680 CSAVAROK Oldal 684 Gyorsrögzítős csavar rövid Oldal 684 Gyorsrögzítős csavar hosszú Oldal 685 Univerzális csavar rövid Oldal 685 Univerzális csavar hosszú Oldal 686 Gyors szorítócsavar rövid rövid
6. FEJEZET - PNF 6/1. EGYSZERŰ FELELETVÁLASZTÁS
6. FEJEZET - PNF 6/1. EGYSZERŰ FELELETVÁLASZTÁS 1. Mivel tudunk a proprioceptorokra hatni? A) ellenállás adásával B) megfelelő fogástechnikával C) azzal, hogy diagonálban dolgozunk D) verbális utasítással
Fizika alapok. Az előadás témája
Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.
statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek
MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:
IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N
IPULZUS OENTU Impulzusnyomaték, perdület, jele: N Definíció: Az (I) impulzussal rendelkező test impulzusmomentuma egy tetszőleges O pontra vonatkoztatva: O I r m Az impulzus momentum vektormennyiség: két
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
DEME FERENC okl. építőmérnök, mérnöktanár TARTÓK
web-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 19. TARTÓK FOGALMA: TARTÓK A tartók terhek biztonságos hordására és azoknak a támaszokra történő
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
CS 1 Szemgolyó. Magasság: 21 cm., Szélesség: 18 cm., Mélység: 18 cm., Súly: 1.2 kg. CS 2 Szemgolyó a szemgödör egy részével
CS 1 Szemgolyó Kb. 5-szörösére nagyított, Somso műanyagból. Az alsó szemgödör csontokon fekszik, vízszintes metszetű és 7 darabra szedhető szét: szemínhártya (2), érhártya (2), retina üvegtesttel, lencsék,
FIZIKA ZÁRÓVIZSGA 2015
FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni
CSAVAROK. Oldal 246 Gyorsrögzítős csavar rövid. Oldal 246 Gyorsrögzítős csavar hosszú. Oldal 247 Univerzális csavar rövid
Oldal 246 Gyorsrögzítős csavar rövid Oldal 246 Gyorsrögzítős csavar hosszú Oldal 247 Univerzális csavar rövid Oldal 247 Univerzális csavar hosszú Oldal 248 Univerzális csavar Basic rövid Oldal 248 Univerzális
Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.
Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő
MECHANIKA I. rész: Szilárd testek mechanikája
Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre
Fizika feladatok - 2. gyakorlat
Fizika feladatok - 2. gyakorlat 2014. szeptember 18. 0.1. Feladat: Órai kidolgozásra: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel s 1 utat, második szakaszában
Testméretek, mozgástartományok. Szabó Gyula
Testméretek, mozgástartományok Szabó Gyula Az antropometria helye TERMÉKFEJLESZTÉS / TERV ERGONÓMIAI FELADATOK ÉS TEVÉKENYSÉGEK ANTROPOMETRIAI ADATOK Az antropometria alkalmazásának célja a hatékony, biztonságos
29. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika 2014. február 27 28. 9. osztály
9. Nagy László Fizikaverseny 014. február 7 8. 1. feladat Adatok: H = 5 m, h = 0 m. A H magasságban elejtett test esési idejének (T 13 ) és a részidők (T 1, T 3 ) meghatározása: H g 13 13 = = =,36 s H
Egy érdekes statikai - geometriai feladat
1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani
Szádfal szerkezet tervezés Adatbev.
Szádfal szerkezet tervezés Adatbev. Projekt Dátum : 0..005 Beállítások (bevitel az aktuális feladathoz) Nyomás számítás Aktív földnyomás számítás : Passzív földnyomás számítás : Földrengés számítás : Ellenőrzési
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop