Mi a szerepe az informatikai projekt ellenőrnek?
|
|
- Máté Bognár
- 6 évvel ezelőtt
- Látták:
Átírás
1 0
2 Mi a szerepe az informatikai projekt ellenőrnek? A projekt előrehaladásának támogatása Biztonság ellenőrzés A jogszabályi és szervezeti biztonsági előírások betartásának biztosítása a projektben Az információbiztonság megvalósulásának ellenőrzése a projektben Előrehaladás Minőségbiztosítás Projekt dokumentáció véleményezése Termék dokumentáció véleményezése Elkészült rendszer ellenőrzése 1
3 Mik az informatikai projektellenőr feladatai? Projekt Projekt előrehaladás támogatása Részvétel a projekt megbeszéléseken, felmerülő kérdések esetén tanácsadás Tanácsadás és támogatás a projekt döntéseiben Projektvezető(k) szakmai támogatása, a projektben felmerülő bármilyen informatikai jellegű kérdés megválaszolásában Az elkészült projektterv véleményezése Projektmegbeszélések jegyzőkönyveinek/emlékeztetőinek véleményezése Dokumentáció Követelményspecifikáció véleményezése, jogszabályi megfelelőség vizsgálata, eltérések jelzése, megoldási javaslatok megfogalmazása Logikai és fizikai rendszertervek véleményezése, szakmai kiegészítési javaslatok megtétele, előírt követelményektől való eltérések jelzése és korrekciós javaslatok megfogalmazása Tesztelési tervek véleményezése, az elkészített tesztelési tervek megfelelőek-e a rendszer átadás-átvételéhez, a követelményeknek teljesülésének igazolásához (funkcionális, integrációs, biztonsági és teljesítmény tesztelés) Dokumentumok véleményezése, az elkészített műszaki dokumentációk (felhasználói leírás, üzemeltetői leírás) véleményezése, annak vizsgálata, hogy megfelelő minőségű és terjedelmű-e az átvételhez (munkafolyamat orientált, részletezettsége megfelelő) 2
4 Mik az informatikai projektellenőr feladatai? Szakértői támogatás Iparági gyakorlat és szabványok szerinti megvalósulás vizsgálata: a tervezett és megvalósított rendszer összevetése a műszaki dokumentációban hivatkozott IT iparági gyakorlat szerinti megoldásokkal Gyártói előírások betartásának vizsgálata: a telepített eszközök megfelelő üzemeléshez előírt telepítési feltételek alkalmazásának vizsgálata, eltérések jelzése Az előírt számszerűsített követelmények teljesítésének ellenőrzése a műszaki dokumentációban előírt követelményeknek a tesztek során Műszaki szakértői feladatok ellátása a teszteknél és átvételi eljárásoknál, tervektől való eltérések dokumentálása A tesztforgatókönyv végrehajtásának ellenőrzése, az egyes lépések eredményének hitelesítése, hibák és eltérések esetén azok dokumentálása 3
5 Tartalom Elemző Adatbázisok Az adattárházak komponensei Adatmodell Adatbázis-kezelő ETL Front-end : BI eszköz Operatív döntéstámogatás: kimenő interfészek Adatbányász eszköz Meta-adat kezelés és data governance Jogosultság-kezelés, adat biztonság Egy kis kitekintés: Klasszikus adattárházak és Big Data Architektúrák Az adattárház projekt főbb elemei Agilis módszerek alkalmazása az adattárház projektekben Az adattárház projektek sikerességének alapjai MMK-Informatikai projekt ellenőr képzés 4
6 Informatika Elemző adatbázisok OLTP vs Elemző adatbázisok A tranzakciós rendszerek működésének melléktermékei az adatok. Ez a vállalat az adatvagyona. Az tranzakciós adatok felhasználása : VIR, MI és egyéb elemzések Más funkció Más típusú adatbáziskezelés Más adatmodell Más hardver környezet MMK-Informatikai projekt ellenőr képzés 5
7 A vállalati adatvagyon részei Exabytes User Generated Content Social Network BIG DATA User Click Stream Mobile Web Sentiment Petabytes Web Logs Offer History Dynamic Pricing A/B Testing WEB External Demographics Business Data Feeds Terabytes Offer Details Segmentation CRM Affiliate Networks Search Marketing HD Video Speech to Text Gigabytes Purchase Detail ERP Customer Touches Behavioral Targeting Product/ Service Logs Purchase Record Payment Record Support Contacts Dynamic Funnels SMS/MMS INCREASING Data Variety and Complexity DECREASING Value Density in the Data MMK-Informatikai projekt ellenőr képzés 6
8 Az adattárházak komponensei MMK-Informatikai projekt ellenőr képzés 7
9 Az adattárházak adatarchitektúrája Stage System of Records/ DW Aggregációk Adatpiacok Források MMK-Informatikai projekt ellenőr képzés 8
10 Az adattárházak adatarchitektúrája STAGE forrásrendszerrel megegyező tárolási struktúra forrásadatok többnyire napi táblapartíciókban adatfogadás vagy beszerzés forrásadatok változtatásmentes archiválása Teljes újratöltés lehetősége DW egységes üzleti adatmodell helyettesítő kulcs képzése forrás természetes kulcsainak tárolása történeti adattárolás elsődleges, egyedi és idegen kulcsok beállítása forrásrendszeri fix értékkészletek egységes tárolása forrásoldali fizikai törlés kezelése szótár-, törzs-, kapcsoló- és esemény típusú táblák technikai mezők: OBJ_TIPUS, FORRAS_AZON_1 5 DM helyettesítő kulcs megtartása különböző aggregáltsági szint több rétegen keresztül újrafuttathatóság a folyamatos bővítések miatt aggregátumok üzleti paraméterezés alapján helygazdálkodás kérdése, visszamenőleges adattárolás MMK-Informatikai projekt ellenőr képzés 9
11 Adatpiac és adattárház: Adatarchitektúrák Informatika MMK-Informatikai projekt ellenőr képzés 10
12 Adatpiac és adattárház: Adatarchitektúrák Informatika MMK-Informatikai projekt ellenőr képzés 11
13 Informatika Adatpiac és adattárház : adatarchitektúrák tervezési szempontok Elemzési célok sokrétűsége Az elemzési adatbázis szerepe a vállalati architektúrában A felhasználók széleskörűsége, típusai, száma Az elemzendő adatok (forrásrendszerek ) száma Adatbázis méret, history..stb MMK-Informatikai projekt ellenőr képzés 12
14 Az adattárházak komponensei: adatmodell Relációs vs. dimenzionális Kész adatmodellek vs. custom developed Az adatmodell karbantartása házon belülre vs. szállítónál Adatmodellező team : rend vs. szűk keresztmetszet CASE eszköz használata metaadat kezelés MMK-Informatikai projekt ellenőr képzés 13
15 Az adattárházak komponensei: adatbázis kezelés Egyszeri bulk insert No update Select Időkezelés Particionálás Párhuzamos felhasználás Real-time igény Index kezelés Index vs full table scan Jogosultság kezelés Tuningolás, adminisztráció Shared everything vs shared nothing vs in memory Appliance megközelítés MMK-Informatikai projekt ellenőr képzés 14
16 Az adattárházak komponensei: ETL ETL eszközök vs kézzel írt kódok - ODI - Informatica - IBM DataStage - SAS - Talend stb - Custom developed Tervezési szempontok meta-adat kezelés CASE eszközök használata: Enterprise Architect, Powerdesigner Ütemező modul ETL eszköz kiválasztás szempontjai: - funkcionalitás - ár - szakemberek elérhetősége MMK-Informatikai projekt ellenőr képzés 15
17 Az adattárházak komponensei: ETL - ETL folyamat minősége függ Épített adatmodell minőségétől Mappelés minőségétől Betöltési folyamatvezérlés és naplózás teljességétől MMK-Informatikai projekt ellenőr képzés 16
18 Az adattárházak komponensei: ETL Fejlesztő eszköz független formalizált tervezés Egységes meta adatok képzése Egységes adatmodellre és kulcsolási mechanizmusra épülő mappelés Futtatható kód generálás az adatbázisban ill. interface-en keresztül A generálási folyamat hátterét egy adatbázis objektumokból álló alkalmazás adja, ami a paraméterezésnek megfelelő mappingeket állít elő. History képzése : egyedi kulcs alapú history képzés standard mezők felhasználásával history kezelt mezők meghatározása automatikusan - dictionary alapján céltáblával azonos szerkezetű munkatáblák használata Fizikai mapping a logikai mapping alapján könnyen elkészíthető DW töltése egyszerűbb DM töltése aggregáltsági szinttől függően több lépésben valósítható meg Mapping logikák egymásba ágyazhatók Bonyolultabb forráslekérdezések nézetbe rendezhetők Generált kód kézi továbbfejlesztése kizárja a központi meta adattár további használatát Újraindítható kódok MMK-Informatikai projekt ellenőr képzés 17
19 Az adattárházak komponensei: ETL A tervezés előtt a fizikai modell ismeretén kívül szükséges a betöltés szabványainak és névkonvencióinak definiálása. Adatbázis objektumokból álló generálási folyamat háttér, háromszintű paraméterezés: -Alapadatok definiálása 1.Map neve, csoportja 2.Céltábla és tulajdonosa, alias 3.Töltés típusa: DELTA/FULL History képzés típusa 4.SQL paraméterezés/hintek -Forrástáblák és kapcsolatok definiálása 1.Forrás táblák, tulajdonosok, aliasok 2.Forrásként használt táblák kapcsolási feltételei: JOIN Halmazműveletek DISTINCT Analitikus függvények használata 3.Filterek megadása 4.SQL paraméterezés (hintek) 5.Automatikus forrás struktúra forgatások tipikusan DM töltéskor aktuális és history adatok együttes használata (ACT_HIST_FL = I ) -Mezőszintű mappelés 1.Forrás-cél mezőpárok 2.History képzés egyedi kulcs alapján 3.Helyettesítő kulcs képzése szekvenciából egységes rövidnevek alapján 4.Lookup kapcsolatok egyszerű paraméterezése forrás objektumok és idegen kulcsok alapján MMK-Informatikai projekt ellenőr képzés 18
20 Az adattárházak komponensei: Operatív döntéstámogatás kimenő interfészek i) Bejövő interfészek : file, db-link, connectors, SOA megközelítés szerepe. Szabványok kialakítása ii) Kimenő interfészek : illeszkedés a SOA architektúrába Adattárház funkciók vs. Core rendszer funkciók: A DWH túlnő az eredeti terjedelmén Rugalmasabban lehet fejleszteni mint a Core rendszereket Integrált adatok szükségesek Historikus adatok szükségeke Integrált és historikus adatok szükségesek Vállalati szintű adat architektúra Rövid távú határidők vs. rend MMK-Informatikai projekt ellenőr képzés 19
21 Az adattárházak komponensei: BI -eszköz MMK-Informatikai projekt ellenőr képzés 20
22 Az adattárházak komponensei: adatbányászat MMK-Informatikai projekt ellenőr képzés 21
23 Az adattárházak komponensei: meta-adat kezelés, adatminőség, data governance i) Átláthatóság üzleti meta-adatok ii) Értékkészletek és hierarchiák karbantartása iii) Auditálhatóság technikai meta-adatok iv) Adatminőség automatikus ellenőrzések / hibák javítása v) Meta-adat kezelési architektúra -- rajz vi) Data governance az adattárházakat menedzselő szervezet és folyamatok szerepe MMK-Informatikai projekt ellenőr képzés 22
24 Target Adatmodell Mapping szabályok Üzleti definíciók Ütemezési meta-adatok Forrás adatmodell Info portál Adatminőség ellenőrzés Meta-adat repository Adatminőségi szabályok Ütemező eszköz ETL eszköz ETL program MMK-Informatikai projekt ellenőr képzés 23
25 SalesLT.Dim_Geography Geography_Key City StateProvince CountryRegion PostalCode meta_validfrom_date meta_validto_date meta_status_flag... numeric(10) nvarchar(30) nvarchar(50) nvarchar(50) nvarchar(15) datetime datetime tinyint SalesLT.Dim_Date DateKey FullDateAlternateKey DayNumberOfWeek EnglishDayNameOfWeek HungarianDayNameOfWeek DayNumberOfMonth DayNumberOfYear WeekNumberOfYear EnglishMonthName HungarianMonthName MonthNumberOfYear CalendarQuarter CalendarYear CalendarSemester FiscalQuarter FiscalYear FiscalSemester meta_validfrom_date meta_validto_date meta_status_flag... Geography_Key = Geography_Key numeric(8) date tinyint nvarchar(10) nvarchar(10) tinyint smallint tinyint nvarchar(10) nvarchar(10) tinyint tinyint smallint tinyint tinyint smallint tinyint datetime datetime tinyint <pk> <pk> <ak> Geography_Key = ShipTo_Address_Key Geography_Key = BillTo_Address_Key DateKey = OrderDate_Key DateKey = DueDate_Key DateKey = ShipDate_Key Customer_Key CustomerID Geography_Key NameStyle Title FirstName MiddleName LastName Suffix CompanyName SalesPerson Address Phone PasswordHash PasswordSalt AddressLine1 AddressLine2 meta_validfrom_date meta_validto_date meta_status_flag... SalesLT.Dim Customer numeric(10) int numeric(10) bit nvarchar(8) nvarchar(50) nvarchar(50) nvarchar(50) nvarchar(10) nvarchar(128) nvarchar(256) nvarchar(50) nvarchar(25) varchar(128) varchar(10) nvarchar(60) nvarchar(60) datetime datetime tinyint Customer_Key = Customer_Key SalesLT.Fact SalesOrder SalesOrder_Key SalesOrderID SalesOrderDetailID Product Key Customer_Key ShipTo_Address_Key BillTo_Address_Key OrderDate_Key DueDate_Key ShipDate_Key OrderQty UnitPrice UnitPriceDiscount LineTotal RevisionNumber Status OnlineOrderFlag SalesOrderNumber PurchaseOrderNumber AccountNumber ShipMethod CreditCardApprovalCode SubTotal TaxAmt Freight TotalDue Comment meta_lastmodification_date meta_status_flag... numeric(10) int int numeric(10) numeric(10) numeric(10) numeric(10) numeric(8) numeric(8) numeric(8) smallint money money money tinyint tinyint bit nvarchar(25) nvarchar(25) nvarchar(15) nvarchar(50) varchar(15) money money money money nvarchar(max) datetime tinyint <pk> <fk> <pk> <fk4> <fk1> <fk2> <fk3> <fk5> <fk6> <fk7> Product Key = Product Key SalesLT.Fact ProductModel Description ProductDescription Key Product Key Culture Description... Product Key = Product Key Product Key ProductID Name ProductNumber Color StandardCost ListPrice Size Weight ProductSubCategory_Key SellStartDate SellEndDate DiscontinuedDate ThumbNailPhoto ThumbnailPhotoFileName Product Model Name CatalogDescription meta_validfrom_date meta_validto_date meta_status_flag... ProductSubCategory_Key = ProductSubCategory_Key SalesLT.Dim ProductCategory ProductSubCategory_Key ProductSubCategoryID ProductSubCategory_Name ProductCategory_Name meta_validfrom_date meta_validto_date meta_status_flag... numeric(10) numeric(10) nchar(6) nvarchar(400) SalesLT.Dim Product numeric(10) int nvarchar(50) nvarchar(25) nvarchar(15) money money nvarchar(5) decimal(8, 2) numeric(10) datetime datetime datetime varbinary(max) nvarchar(50) nvarchar(50) XML datetime datetime tinyint numeric(10) int nvarchar(50) nvarchar(50) datetime datetime tinyint <pk> <fk> <pk> <fk> <pk> <ak> MMK-Informatikai projekt ellenőr képzés 24
26 Stage Adatminőség biztosítás egy lehetséges módja - Hibás adatok kezelése - Hogyan töltsük? - Mit ne töltsünk? - Speciális esetek pl: - Banki környezetben kötelező jelentések Adatminőségi riportok DWH Javítások a DWH-ban (adattárház hibák) Adatminőségi riportok Adattisztító alkalmazás Javítások a forrásrendszerekben MMK-Informatikai projekt ellenőr képzés 25
27 Az adattárházak komponensei: jogosultság kezelés és adatbiztonság i) Jogosultsági szintek ii) Érzékeny adatok iii) Üzemeltetés fejlesztés környezetek MMK-Informatikai projekt ellenőr képzés 26
28 Az adattárházak komponensei: Klasszikus adattárház és Big Data MMK-Informatikai projekt ellenőr képzés 27
29 Az adattárházak komponensei: Klasszikus adattárház és Big Data MMK-Informatikai projekt ellenőr képzés 28
30 Az adattárház projektek főbb elemei Üzleti követelmény felmérés IT követelmény felmérés Jogosultság kezelés Tesztelés tervezés Meta-adat tervezés Adatmodellezés ETL tervezés Logikai mapping - BA Fizikai mapping - fejlesztés Adatbázis fizikai terv Üzemeltetés tervezés Tesztelés Adatpiac tervezés (adatmodellezés, riport tervezés, logikai, fizikai map, riport fejlesztés tesztelés) Szervezet kiépítés Oktatás MMK-Informatikai projekt ellenőr képzés 29
31 Tesztelés SAP BW KOFER Konszolidált készletek Konszolidáció (BCS) Konszolidált fedezet Outputok tesztje Konszolidált önköltség Feldolgozások tesztje Anyagmozgások Zárókészletek Konszolidált cikkszámok Pénzügyi adatok (pl. vám, bérmunka) Önköltségi beépülési adatok Szolgáltatások értékesítési költség korrekciója (WEU) DWH alapadatok tesztje Töltések tesztje COPA Anyavállalat Árbevétel COPA RGPH/MEDI/GRIT RGPL RGRO RGRU Árbevétel... További leányvállalatok Árbevétel Önköltség WEU-s adattárház Szolgáltatások értékesítési költség korrekciója Anyaggazdálkodás Gyártás Anyaggazdálkodás Gyártás 30
32 Tipikus adattárház projekt szervezet Projekt Irányító Bizottság Projekt Szponzor Kulcs Stakeholderek PM DW Architect / Technikai vezető Üzleti elemző Team Adatmodellező(k) ETL Team BI Team Üzemeltetés Team Üzleti elemzők/ Tesztelők ETL Fejlesztők/ Tesztelők BI Fejlesztők/ Tesztelők MMK-Informatikai projekt ellenőr képzés 31 DBA Release Manager ETL Üzemeltetés Rendszer Admin
33 Agilitás az adattárház építésben Back-end: töltési megközelítés: vigyünk mindent, modellezzük ami kell Front-end : klasszikus agilis módszerek: SCRUM, prototípus - Megfelelő BI eszközök Klasszikus Bi eszközök vs önkiszolgáló BI - Sand-box az éles környezetben MMK-Informatikai projekt ellenőr képzés 32
34 Mitől sikeres egy adattárház projekt - Terjedelem : ne lőjünk nagyra de legyen hosszú távú víziónk rugalmasság, időtállóság a legfőbb tervezési szempont - Megfelelő szervezet / data governance - Az üzlet és az IT szoros együttműködése : nem kínai fal, üzleti célok vs IT költségek - Agilitás - Szponzor - Több beszállító vs. Egységes adattárház építési módszertan (monopólium vs verseny) - Ügyfél beszállítók partnersége (Saját szervezet vs beszállítók) - Kulcs ügyfél oldali pozíciók: - PM - Adatmodellező - Data steward - BI helpdesk - Üzemeltetés - Adatminőség biztosítása - Tesztelés tervezése időben MMK-Informatikai projekt ellenőr képzés 33
35 Köszönöm a figyelmet! 34
INFORMATIKAI PROJEKTELLENŐR 30 MB. Dr. Horváth Gábor KLASSZIKUS ADATTÁRHÁZAK MMK- Informatikai projektellenőr képzés
INFORMATIKAI PROJEKTELLENŐR 30 MB Dr. Horváth Gábor KLASSZIKUS ADATTÁRHÁZAK 2016. 12. 31. MMK- Informatikai projektellenőr képzés Tartalom Elemző Adatbázisok Az adattárházak komponensei Adatmodell Adatbázis-kezelő
INFORMATIKAI PROJEKTELLENŐR 30 MB. Dr. Horváth Gábor KLASSZIKUS ADATTÁRHÁZAK MMK- Informatikai projektellenőr képzés
INFORMATIKAI PROJEKTELLENŐR 30 MB Dr. Horváth Gábor KLASSZIKUS ADATTÁRHÁZAK 2017.03.23. MMK- Informatikai projektellenőr képzés Tartalom Elemző Adatbázisok Az adattárházak komponensei Adatmodell Adatbázis-kezelő
Informatikai projektellenőr szerepe/feladatai Informatika / Az informatika térhódítása Függőség az információtól / informatikától Információs
Bevezetés Projektellenőr szerepe és feladatai Informatika Informatikai függőség Informatikai projektek Mérnöki és informatikai feladatok találkozása technológiák 1 Tartalom Informatikai projektellenőr
Adattárház kialakítása a Szövetkezet Integrációban, UML eszközökkel. Németh Rajmund Vezető BI Szakértő március 28.
Adattárház kialakítása a Szövetkezet Integrációban, UML eszközökkel Németh Rajmund Vezető BI Szakértő 2017. március 28. Szövetkezeti Integráció Központi Bank Takarékbank Zrt. Kereskedelmi Bank FHB Nyrt.
BEVEZETÉS AZ ADATTÁRHÁZ AUTOMATIZÁLÁSBA
BEVEZETÉS AZ ADATTÁRHÁZ AUTOMATIZÁLÁSBA Gollnhofer Gábor JET-SOL Kft. Nyilvántartási szám: 503/1256-1177 JET-SOL KFT. Alapadatok 2003-ban alakultunk Több mint 120 magasan képzett munkatárs Ügyfélkör Nagyvállalati
Adattárház tiszta alapokon Oracle Day, Budapest, november 8.
Adattárház tiszta alapokon Oracle Day, Budapest, 2011. november 8. WIT-SYS Consulting Zrt. Lévai Gábor gabor.levai@wit-sys.hu Tematika Az adattárházról általánosan Az adattárház definíciója Fő jellemzők
Döbrönte Zoltán. Data Vault alapú adattárház - Fél óra alatt. DMS Consulting Kft.
Data Vault alapú adattárház - Fél óra alatt Döbrönte Zoltán DMS Consulting Kft. 1 Miről lesz szó Adattárház automatizálás Hol alkalmazható a leghatékonyabban Célok, funkcionalitás, előnyök Data Vault modellezés
Sikerünk kulcsa: az információ De honnan lesz adatunk? Palaczk Péter
Sikerünk kulcsa: az információ De honnan lesz adatunk? Palaczk Péter Bevezető az Oracle9i adattárházas újdonságaihoz Elemzési és vezetői információs igények 80:20 az adatgyűjtés javára! Adattárházak kínálta
Szemléletmód váltás a banki BI projekteken
Szemléletmód váltás a banki BI projekteken Data Governance módszertan Komáromi Gábor 2017.07.14. Fókuszpontok áthelyezése - Elérendő célok, elvárt eredmény 2 - Egységes adatforrásra épülő, szervezeti egységektől
Teljeskörű BI megoldás a gyakorlatban IBM eszközök használatával, Magyarországon
Teljeskörű BI megoldás a gyakorlatban IBM eszközök használatával, Magyarországon esettanulmány csokor, mely megpróbálja összefoglalni az elmúlt 10 év tapasztalatait,tanulságait és bemutat egy élő, hazai
Data Vault 2.0 és az Oracle DW/BD referencia architektúra. Gollnhofer Gábor Meta Consulting Kft.
Data Vault 2.0 és az Oracle DW/BD referencia architektúra Gollnhofer Gábor Meta Consulting Kft. Az Oracle referencia architektúrák Rövid bevezető Az IT Strategies from Oracle (ITSO) része Átgondolt, bevált,
DW 9. előadás DW tervezése, DW-projekt
DW 9. előadás DW tervezése, DW-projekt Követelmény felmérés DW séma tervezése Betöltési modul tervezése Fizikai DW tervezése OLAP felület tervezése Hardver kiépítése Implementáció Tesztelés, bevezetés
ETL keretrendszer tervezése és implementálása. Gollnhofer Gábor Meta4Consulting Europe Kft.
ETL keretrendszer tervezése és implementálása Gollnhofer Gábor Meta4Consulting Europe Kft. Tartalom Bevezetés ETL keretrendszer: elvárások és hogyan készítsük A mi keretrendszerünk Bevezetési tanulságok
Infor PM10 Üzleti intelligencia megoldás
Infor PM10 Üzleti intelligencia megoldás Infor Üzleti intelligencia (Teljesítmény menedzsment) Web Scorecard & Műszerfal Excel Email riasztás Riportok Irányít Összehangol Ellenőriz Stratégia Stratégia
ELMÉLET ÉS GYAKORLAT
Mylogo is member of Erste Group (this is optional: please cancel completely from the Master, if not needed or just cancel this info) Bob és Bobek - együttműködési modell az IT és az Üzlet között egységes
KKV Adattárház. Presented to: Adattárház Fórum 2014 Date: Június 5, Presented by: Csippán János IT Director
KKV Adattárház Presented to: Adattárház Fórum 2014 Date: Június 5, 2014. Presented by: Csippán János IT Director 1 Tartalom Bemutatkozás KKV Adattárház Nézzük meg közelebbről Megvalósítás és üzemeltetés
Valós idejű megoldások: Realtime ODS és Database In-Memory tapasztalatok
Valós idejű megoldások: Realtime ODS és Database In-Memory tapasztalatok Pusztai Péter IT fejlesztési senior menedzser Magyar Telekom Sef Dániel Szenior IT tanácsadó T-Systems Magyarország 2016. április
Vezetői információs rendszerek
Vezetői információs rendszerek Kiadott anyag: Vállalat és információk Elekes Edit, 2015. E-mail: elekes.edit@eng.unideb.hu Anyagok: eng.unideb.hu/userdir/vezetoi_inf_rd 1 A vállalat, mint információs rendszer
ADATTÁRHÁZ MENEDZSMENT ÉS METAADAT KEZELÉS
ADATTÁRHÁZ MENEDZSMENT ÉS METAADAT KEZELÉS Gollnhofer Gábor JET-SOL Kft. Nyilvántartási szám: 503/1256-1177 TARTALOM Bemutatkozás Adattárház menedzsment szemszögből Mi kell a sikeres adattárházhoz? Kérdések
Fogalomtár bevezetése a Magyar Telekomnál
Fogalomtár bevezetése a Magyar Telekomnál Koncz Béla (MT) Tóth Rózsa (IQSYS) IQSYMPOSIUM, 2012. április 26 Tartalom 1. A projekt: Dilemmák és megoldások a Fogalomtár körül 2. Az eszköz: Funkciók és a működési
30 MB INFORMATIKAI PROJEKTELLENŐR
INFORMATIKAI PROJEKTELLENŐR 30 MB DOMBORA SÁNDOR BEVEZETÉS (INFORMATIKA, INFORMATIAKI FÜGGŐSÉG, INFORMATIKAI PROJEKTEK, MÉRNÖKI ÉS INFORMATIKAI FELADATOK TALÁKOZÁSA, TECHNOLÓGIÁK) 2016. 09. 17. MMK- Informatikai
VÁLLALATI INFORMÁCIÓS RENDSZEREK. Debrenti Attila Sándor
VÁLLALATI INFORMÁCIÓS RENDSZEREK Debrenti Attila Sándor Információs rendszer 2 Információs rendszer: az adatok megszerzésére, tárolására és a tárolt adatok különböző szempontok szerinti feldolgozására,
Adattárház automatizálási tapasztalatok a Generali Biztosítóban
Adattárház automatizálási tapasztalatok a Generali Biztosítóban Csonka Zoltán Adattárház architekt csonka.zoltan@generali.com DW Fórum 2014 Cégismertető A Generali Biztosító hazánk egyik vezető biztosítótársasága,
DW/BI rendszerek kialakítása bevezetői szemszögből. Gollnhofer Gábor - Meta Consulting Kft.
DW/BI rendszerek kialakítása bevezetői szemszögből Gollnhofer Gábor - Meta Consulting Kft. Bemutatkozás Meta Consulting Kft. BI, DW és CRM rendszerek tervezése és kialakítása rendszerintegráció, egyedi
Önkiszolgáló BI Az üzleti proaktivítás eszköze. Budapest,
Önkiszolgáló BI Az üzleti proaktivítás eszköze Budapest, 2016.10.27 Tartalom 1. Kihívások Való Világ 2. Hogyan segít az Önkiszolgáló BI? confidential 10/26/2016 2 Riportokkal szembeni igények alakulása
BI megoldás a biztosítói szektorban
Dobos Zoltán 2009 szeptember 10 BI megoldás a biztosítói szektorban Tartalom Üzleti felhasználási területek a biztosítói szektorban Cognos megoldások a biztosítói szektor részére 2 Fókusz területek Értékesítési
Szolgáltatás Orientált Architektúra a MAVIR-nál
Szolgáltatás Orientált Architektúra a MAVIR-nál Sajner Zsuzsanna Accenture Sztráda Gyula MAVIR ZRt. FIO 2009. szeptember 10. Tartalomjegyzék 2 Mi a Szolgáltatás Orientált Architektúra? A SOA bevezetés
TRL Hungary Kft. Cégismertető. TRL Hungary Kft. www.trl.hu
Cégismertető www.trl.hu Cégismertető A 2000. óta Magyarország, Szlovénia, Horvátország, Finnország és a balti államok regionális Maconomy disztribútora. A ezenkívül Európától Ázsiáig számos nemzetközi
Self Service szekció. XXVIII. Budapesti Menedzsment és Controlling Fórum. Havas Levente. Budapest, május 26. IFUA Horváth & Partners
Self Service szekció XXVIII. Budapesti Menedzsment és Controlling Fórum Havas Levente Budapest, 2016. május 26. Self Service szekció XXVIII. Budapesti Menedzsment és Controlling Fórum Havas Levente Budapest,
Hatékony iteratív fejlesztési módszertan a gyakorlatban a RUP fejlesztési módszertanra építve
Hatékony iteratív fejlesztési módszertan a gyakorlatban a RUP fejlesztési módszertanra építve Kérdő Attila, ügyvezető, INSERO Kft. EOQ MNB, Informatikai Szakosztály, HTE, ISACA 2012. május 17. Módszertanok
Data Governance avagy adatvagyon kezelés Rövid bevezető. Gollnhofer Gábor DMS Consulting
Data Governance avagy adatvagyon kezelés Rövid bevezető Gollnhofer Gábor DMS Consulting 1 Bemutatkozás DMS Consulting Kft. 2004-ben alakult, magyar tulajdonosok Data, Management, Systems, Consulting Főleg
Data Governance avagy adatvagyon kezelés Rövid bevezető. Gollnhofer Gábor DMS Consulting
Data Governance avagy adatvagyon kezelés Rövid bevezető Gollnhofer Gábor DMS Consulting 1 Bemutatkozás DMS Consulting Kft. 2004-ben alakult, magyar tulajdonosok Data, Management, Systems, Consulting Főleg
BIRDIE. Business Information Reporter and Datalyser. Előadó: Schneidler József
BIRDIE Business Information Reporter and Datalyser Előadó: Schneidler József BIRDIE RIPORT RIPORT KÉSZÍTŐ ÉS ÉS TERJESZTŐ RENDSZER A Daten-Kontor Kft. saját fejlesztésű dobozos alkalmazása A BIRDIE célja:
Tartalom. Konfiguráció menedzsment bevezetési tapasztalatok. Bevezetés. Tipikus konfigurációs adatbázis kialakítási projekt. Adatbázis szerkezet
Konfiguráció menedzsment bevezetési tapasztalatok Vinczellér Gábor AAM Technologies Kft. Tartalom 2 Bevezetés Tipikus konfigurációs adatbázis kialakítási projekt Adatbázis szerkezet Adatbázis feltöltés
Oracle SQL Developer Data Modeler és a DW adatmodellezés. Gollnhofer Gábor Meta Consulting Kft.
Oracle SQL Developer Data Modeler és a DW adatmodellezés Gollnhofer Gábor Meta Consulting Kft. Oracle Information Management & Big Data Reference Architecture 2 Mi a NoSQL modellezés célja? Forrás: Insights
HATÉKONY ETL FOLYAMATOK WORKSHOP
HATÉKONY ETL FOLYAMATOK WORKSHOP Gollnhofer Gábor JET-SOL Kft. Nyilvántartási szám: 503/1256-1177 JET-SOL KFT. Alapadatok 2003-ban alakultunk Több mint 120 magasan képzett munkatárs Ügyfélkör Nagyvállalati
ADATBÁZIS-KEZELÉS - BEVEZETŐ - Tarcsi Ádám, ade@inf.elte.hu
ADATBÁZIS-KEZELÉS - BEVEZETŐ - Tarcsi Ádám, ade@inf.elte.hu Számonkérés 2 Papíros (90 perces) zh az utolsó gyakorlaton. Segédanyag nem használható Tematika 1. félév 3 Óra Dátum Gyakorlat 1. 2010.09.28.
Self service reporting fogások, technikák és megoldások controllereknek, nem csak Excel alapon
Self service reporting fogások, technikák és megoldások controllereknek, nem csak Excel alapon Reporting, dashboarding önkiszolgáló módon Anton Dávid Havas Levente Debrecen, 2017.10.26. Mobil fogyasztás
Data Integrátorok a gyakorlatban Oracle DI vs. Pentaho DI Fekszi Csaba Ügyvezető Vinnai Péter Adattárház fejlesztő 2013. február 20.
Data Integrátorok a gyakorlatban Oracle DI vs. Pentaho DI Fekszi Csaba Ügyvezető Vinnai Péter Adattárház fejlesztő 2013. február 20. 1 2 3 4 5 6 7 8 Pentaho eszköztára Data Integrator Spoon felület Spoon
BMEVIHIM134 Hálózati architektúrák NGN menedzsment vonatkozások: II. Üzemeltetés-támogatás és üzemeltetési folyamatok
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Mérnök informatikus szak, mesterképzés Hírközlő rendszerek biztonsága szakirány Villamosmérnöki szak, mesterképzés - Újgenerációs
Ügyfél- és címadatok feldolgozása Talenddel
Ügyfél- és címadatok feldolgozása Talenddel 2012.október 4. Dr. Miskolczi Mátyás, Kiss György A Stratisról röviden Jellemzők - Alapítva: 1998 - Tisztán magyar tulajdon - 50 tanácsadó - 140 ügyfél - 500+
Oracle adatkezelési megoldások helye az EA világában. Előadó: Tar Zoltán
Oracle adatkezelési megoldások helye az EA világában Előadó: Tar Zoltán Témák Bemutatkozás Enterprise Architecture bemutatása Mi az az EA? TOGAF bemutatása OEAF bemutatása Oracle megoldások Oracle termékek
Segítség, összementem!
Segítség, összementem! Előadók: Kránicz László Irimi János Budapest, 2013. április 10. ITFI - Adatintegrációs Kompetencia Központ ITFI - Adatintegrációs Kompetencia Központ Tartalomjegyzék 2 Az Adattárház
Rendszermodernizációs lehetőségek a HANA-val Poszeidon. Groma István PhD SDA DMS Zrt.
Rendszermodernizációs lehetőségek a HANA-val Poszeidon Groma István PhD SDA DMS Zrt. Poszeidon EKEIDR Tanúsított ügyviteli rendszer (3/2018. (II. 21.) BM rendelet). Munkafolyamat támogatás. Papírmentes
Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K. 4. A meghirdetés ideje (mintatanterv szerint vagy keresztfélében):
Követelményrendszer 1. Tantárgynév, kód, kredit, választhatóság: Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K 2. Felelős tanszék: Informatika Szakcsoport 3. Szak, szakirány, tagozat: Műszaki
A USER Kft - mint Open Text partner - bemutatása
A USER Kft - mint Open Text partner - bemutatása SAP konferencia 2008.szeptember 22. Tihany Copyright 2008 Open Text Inc. All rights reserved. Kárász Vilmos Sales Manager USER KFT vilmos.karasz@user.hu
Adatbázis-kezelés. Harmadik előadás
Adatbázis-kezelés Harmadik előadás 39 Műveletek csoportosítása DDL adat definiálás Objektum létrehozás CREATE Objektum törlés DROP Objektum módosítás ALTER DML adat módosítás Rekord felvitel INSERT Rekord
Üzleti folyamatok rugalmasabb IT támogatása. Nick Gábor András 2009. szeptember 10.
Üzleti folyamatok rugalmasabb IT támogatása Nick Gábor András 2009. szeptember 10. A Generali-Providencia Magyarországon 1831: A Generali Magyarország első biztosítója 1946: Vállalatok államosítása 1989:
Több mint BI (Adatból üzleti információ)
Több mint BI (Adatból üzleti információ) Vállalati műszaki adattárház építés és üzleti elemzések az ELMŰ-ÉMÁSZ Társaságcsoportnál Papp Imre Geometria Kft MEE, Mátraháza, 2013. szeptember 12. Visszatekintés
VvAaLlÓóSs IiıDdEeJjȷŰű OoDdSs goldengate alapokon a magyar telekomban
VvAaLlÓóSs IiıDdEeJjȷŰű OoDdSs goldengate alapokon a magyar telekomban Pusztai Péter IT fejlesztési senior menedzser Magyar Telekom Medveczki György szenior IT architekt T-Systems Magyarország 2014. március
Adatbányászat és Perszonalizáció architektúra
Adatbányászat és Perszonalizáció architektúra Oracle9i Teljes e-üzleti intelligencia infrastruktúra Oracle9i Database Integrált üzleti intelligencia szerver Data Warehouse ETL OLAP Data Mining M e t a
Data Vault adatmodellezés.
Data Vault adatmodellezés Nemeth.Zoltan@iqpp.hu Új adattárház adatmodellezési módszer Dan Linstedt nevéhez fűződik Ismérvei Részletes, tételes adatok Történetiség kezelése Data Vault Üzleti területek köré
Projekt menedzsment és kontrolling a kormányzati szektorban
Projekt és kontrolling a kormányzati szektorban Budavári Viktória Avander Kft. Való Attila Kormányzati Informatikai Fejlesztési Ügynökség KIFÜ bemutatkozás 442 Mrd 67 db projekt 88 fő 9 év KIFÜ létszám
VIR alapfogalmai. Előadásvázlat. dr. Kovács László
VIR alapfogalmai Előadásvázlat dr. Kovács László Információ szerepe Információ-éhes világban élünk Mi is az információ? - újszerű ismeret - jelentés Hogyan mérhető az információ? - statisztikai - szintaktikai
TSIMMIS egy lekérdezés centrikus megközelítés. TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek
TSIMMIS egy lekérdezés centrikus megközelítés TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek 1 Információk heterogén információs forrásokban érhetk el WWW Társalgás Jegyzet papírok
Egészségügyi ágazati kataszterek fejlesztése
Egészségügyi ágazati kataszterek fejlesztése Dr. Mayer Ákos Egészségügyi Minőségfejlesztési és Kórháztechnikai Intézet Egészségügyi Minőségfejlesztési és Kórháztechnikai Intézet - 1962: Orvosi Műszerügyi
Amit mindig is tudni akartál a Real Application Testing-ről. Földi Tamás Starschema Kft.
Amit mindig is tudni akartál a Real Application Testing-ről Földi Tamás Starschema Kft. Környezet Adattárház Oracle 9i, HPUX 13ezer tábla ~1400 betöltő folyamat ~8000 töltési lépés (mapping) Riportok BusinessObjects
Használati alapú és modell alapú tesztelés kombinálása szolgáltatásorientált architektúrák teszteléséhez az ipari gyakorlatban
Használati alapú és modell alapú tesztelés kombinálása szolgáltatásorientált architektúrák teszteléséhez az ipari gyakorlatban Nagy Attila Mátyás 2016.12.07. Áttekintés Bevezetés Megközelítés Pilot tanulmányok
GENERÁCIÓS ADATBÁZISOK A BIG DATA KÜLÖNBÖZŐ TERÜLETEIN
INFORMATIKAI PROJEKTELLENŐR 30 MB Szabó Csenger ÚJ GENERÁCIÓS ADATBÁZISOK A BIG DATA KÜLÖNBÖZŐ TERÜLETEIN 2016. 12. 31. MMK- Informatikai projektellenőr képzés Big Data definíció 2016. 12. 31. MMK-Informatikai
Fekete Csaba Csongor Üzleti intelligencia vezető Citibank ZRt.
Fekete Csaba Csongor Üzleti intelligencia vezető Citibank ZRt. Tartalom BI mérföld kövek Kezdeti architektúra és kontextus Lokális Adattárház Kialakítása CRM Evolúció Üzleti Intelligencia kiaknázó eszközök
Gazdasági informatika alapjai
PSZK Mesterképzési és Távoktatási Központ / H-1149 Budapest, Buzogány utca 10-12. / 1426 Budapest Pf.:35 II. évfolyam Név: Neptun kód: Kurzus: Tanár neve: HÁZI DOLGOZAT 2. Gazdasági informatika alapjai
AZ IKIR RENDSZER BEMUTATÁSA
AZ IKIR RENDSZER BEMUTATÁSA Gyenes József Projektvezető Humansoft Kft. A prezentáció tartalma A HUMANsoft Kft. feladatai a projektben A rendszer legfontosabb folyamatai Az IKIR adattárház szerepe Az IKIR
MMK-Informatikai projekt ellenőr képzés 4
Miről lesz szó Big Data definíció Mi a Hadoop Hadoop működése, elemei Köré épülő technológiák Disztribúciók, Big Data a felhőben Miért, hol és hogyan használják Big Data definíció Miért Big a Data? 2017.
Adattárház és BigData Szimbiózisa. Baranyi Szabolcs IM Technical Sales
Adattárház és BigData Szimbiózisa Baranyi Szabolcs IM Technical Sales Szabolcs.baranyi@hu.ibm.com BigData adatforrásai Adattárház kiterjesztés igénye BigData és adattárház integrációja a hatékonyság növelésére
Van-e ingyen-ebéd? Avagy mire elég a nyílt forráskodú Pentaho? Fekszi Csaba Ügyvezető 2012. október 4.
Van-e ingyen-ebéd? Avagy mire elég a nyílt forráskodú Pentaho? Fekszi Csaba Ügyvezető 2012. október 4. Omnit Solutions 2007 óta a piacon BI & adattárház tanácsadás 20 fős csapat Oracle, IBM és Pentaho
Célkitűzések Az Oracle10 g felépítésének, használatának alapszíntű megismerése
BEVEZETÉS Célkitűzések Az Oracle10g felépítésének, használatának alapszíntű megismerése A relációs adatbázis-kezelés elméleti és gyakorlati vonatkozásainak áttekintése Az SQL, PL/SQL nyelvek használatának
A Java EE 5 plattform
A Java EE 5 platform Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem Utolsó módosítás: 2007. 11. 13. A Java EE 5 platform A Java EE 5 plattform A J2EE 1.4 után következő verzió. Alapvető továbbfejlesztési
Kontrolling támogató rendszer bevezetése a NISZ-ben
Kontrolling támogató rendszer bevezetése a NISZ-ben HOUG Siófok, 2014. március 26. Szalontay Gyöngyi Vezető Szakértő NISZ Zrt. Szabó Gábor Csoportvezető R&R Software Zrt. Tartalom Szabó Gábor Essbase áttekintés
Papír helyett elektronikus űrlap. Szabadság és interaktivitás az űrlapkezelésben
Papír helyett elektronikus űrlap Szabadság és interaktivitás az űrlapkezelésben Csamangó András SAP tanácsadó Creative 4U Kft., Budapest 2010 Bemutatás 2002-ben alakult SAP Service Partner fő tevékenység:
(5. számú módosítás) MFB Zrt évi Közbeszerzési Terv. Uniós értékhatárt elérő értékű közbeszerzés
Sorszám MFB Zrt. 2016. évi Közbeszerzési Terv Uniós értékhatárt elérő értékű közbeszerzés 1. 2. Tárgy MFB részére Szervezetfejlesztés - MFB Szolgáltató Központok és Kompetencia Központok implementáció
Az Oracle Fusion szakértői szemmel
Az Oracle Fusion szakértői szemmel Pigniczki László ügyvezető igazgató ProMigCon Kft. HOUG 2017. november 8. ProMigCon Kft. 2009 novemberében alakult. Alapvető tevékenység: Oracle E-Business Suite bevezetés,
Tudásalapú információ-kereső rendszerek elemzése és kifejlesztése
Tudásalapú információ-kereső rendszerek elemzése és kifejlesztése 1 Tudásalapú információ-kereső rendszerek elemzése és kifejlesztése Természetes nyelv feldolgozás 2 Tudásalapú információ-kereső rendszerek
Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem
A Java EE 5 platform Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem Utolsó módosítás: 2008. 04. 17. A Java EE 5 platform A Java EE 5 plattform A J2EE 1.4 után következő verzió. Alapvető továbbfejlesztési
Component Soft 1994-2013 és tovább
Component Soft 1994-2013 és tovább IT szakemberek oktatása, tanácsadás Fő témáink: UNIX/Linux rendszerek, virtualizációs, fürtözési, tároló menedzsment és mentési technológiák Adatbázisok és middleware
RapidAnalytics Enterprise Edition bevezetés a Telenor Magyarországnál. Szakács Balázs - Telenor Magyarország Szücs Imre United Consult
RapidAnalytics Enterprise Edition bevezetés a Telenor Magyarországnál Szakács Balázs - Telenor Magyarország Szücs Imre United Consult Miről lesz szó? Telenor bemutatása Eszközválasztás háttere Igények
A cloud szolgáltatási modell a közigazgatásban
A cloud szolgáltatási modell a közigazgatásban Gombás László Krasznay Csaba Copyright 2011 Hewlett-Packard Development Company HP Informatikai Kft. 2011. november 23. Témafelvetés 2 HP Confidential Cloud
BI modul a lízing üzletágban. 2007 márc. 21. Előadó: Salamon András
BI modul a lízing üzletágban 2007 márc. 21. Előadó: Salamon András Rövid cég- és terméktörténet Lízing fejlesztések, K+F 1996 óta Lízing éles rendszer 1999 óta Új név: AdviseSoft Kft. 2002 óta Jelenleg:
Integrációs mellékhatások és gyógymódok a felhőben. Géczy Viktor Üzletfejlesztési igazgató
Integrációs mellékhatások és gyógymódok a felhőben Géczy Viktor Üzletfejlesztési igazgató Middleware projektek sikertelenségeihez vezethet Integrációs (interfész) tesztek HIÁNYA Tesztadatok? Emulátorok?
Oracle Enterprise Metadata Management
Oracle Enterprise Metadata Management Rövid bemutató Oracle Enterprise Metadata Management Gollnhofer Gábor 1 Tartalom Bevezetés a metaadatokhoz Oracle Enterprise Metadata Management - OEMM Összefoglaló
IRÁNYTŰ A SZABÁLYTENGERBEN
IRÁNYTŰ A SZABÁLYTENGERBEN amikor Bábel tornya felépül BRM konferencia 2008 október 29 BCA Hungary A Csapat Cégalapítás: 2006 Tanácsadói létszám: 20 fő Tapasztalat: Átlagosan 5+ év tanácsadói tapasztalat
IT Szolgáltatás Menedzsment az oktatási szektorban - 90 nap alatt költséghatékonyan
IT Szolgáltatás Menedzsment az oktatási szektorban - 90 nap alatt költséghatékonyan Bácsi Zoltán Bedecs Szilárd Napirend Közép Európai Egyetem (CEU) bemutatása IT stratégia kialakítása Változás előtt Termék
IBM Software Group Archiválási technológiák - tartalomkezelés Kovács László Az információ kezelésének evolúciója Struktúrált adatok kezelése '60s Alkalmazások '70s Adatbázisok alkalmazásokra optimalizálva
Oracle Enterprise Manager: Az első teljesértékű felhő üzemeltetési megoldás
2011 November 8. New York Palota Hotel Boscolo Budapest Oracle Enterprise Manager: Az első teljesértékű felhő üzemeltetési megoldás Sárecz Lajos, Vezető tanácsadó Oracle Hungary Átfogó felhő üzemeltetés
Változások előtt hol áll a banki (adat)elemzés? Nándorfi György
Változások előtt hol áll a banki (adat)elemzés? Nándorfi György Budapest Bank 1987-ben jött létre az egyik legelső hazai kereskedelmi bankként A 8 hazai nagybank egyike Tulajdonosi háttér: 1995-től 2015-ig
Ami a vízesésen túl van
Ami a vízesésen túl van Adattárház fejlesztés módszertani tapasztalatok a T-Systems adattárházában, a HIFI-ben Ponori.Ajtony@iqpp.hu 2012. június 12. Miről is lesz szó? HIFI háttér HIFI projekt szkóp Két
Átfogó megoldás a számlafolyamatok felgyorsításához ELO DocXtractor. Laczkó Kristóf ELO Digital Office Kft. Bálint András Prognax Kft.
Átfogó megoldás a számlafolyamatok felgyorsításához ELO DocXtractor Laczkó Kristóf ELO Digital Office Kft. Bálint András Prognax Kft. Áttekintés Struktúrált és egyéb Információk bármely forrásból dokumentumok
Big Data adattárházas szemmel. Arató Bence ügyvezető, BI Consulting
Big Data adattárházas szemmel Arató Bence ügyvezető, BI Consulting 1 Bemutatkozás 15 éves szakmai tapasztalat az üzleti intelligencia és adattárházak területén A BI Consulting szakmai igazgatója A BI.hu
Felkészülés az EU gyógyszer-ellenőrzési rendszeréhez való csatlakozásra
Felkészülés az EU gyógyszer-ellenőrzési rendszeréhez való csatlakozásra Mészárosné Balogh Réka, projektvezető Richter Gedeon Nyrt. reka.balogh@richter.hu 2015. november 6. A verifikációs rendszer szereplői
TOGAF elemei a gyakorlatban
TOGAF elemei a gyakorlatban Vinczellér Gábor 2009.06.0406 04 8 éves szakmai tapasztalat Bemutatkozás IT Support, Programozó, jelenleg Projektvezető, Termékfejlesztési Üzletág Vezető Tanácsadási és Szoftverfejlesztési
BI FÓRUM - 2013. Üzleti Intelligencia Osztály Motto: szenvedélyünk az adat
BI FÓRUM - 2013 Üzleti Intelligencia Osztály Motto: szenvedélyünk az adat Tartalom BI terület - rövid áttekintés Minden az adattisztítással kezdődött Az első eredmények Tanulságok A siker 4 pillére Háztáji
Informatikai prevalidációs módszertan
Informatikai prevalidációs módszertan Zsakó Enikő, CISA főosztályvezető PSZÁF IT szakmai nap 2007. január 18. Bankinformatika Ellenőrzési Főosztály Tartalom CRD előírások banki megvalósítása Belső ellenőrzés
ABAP dictionary objektumok SAP adatmodell Táblák kezelése. Az SAP programozása 1. Tarcsi Ádám
ABAP dictionary objektumok SAP adatmodell Táblák kezelése Az SAP programozása 1. Tarcsi Ádám 1. Data dictionary Tarcsi Ádám, ELTE Informatikai Kar: Az SAP programozása 1. 2 Adat modellezés az SAP-ban Adatmodellezés
A SIKERES ÜGYVITELI RENDSZER KIVÁLASZTÁS KULCSKÉRDÉSE
A SIKERES ÜGYVITELI RENDSZER KIVÁLASZTÁS 5 + 1 KULCSKÉRDÉSE ÜGYVITELI SZOFTVER EVOLÚCIÓ - Kockás füzet - Levelező rendszer, naptár (Outlook) - Excel táblázat(ok) tömege - Integrált ügyviteli rendszer pl.
Oracle9i Alkalmazás Szerver Üzleti folyamat integráció. Molnár Balázs Vezető értékesítési konzultáns Oracle Hungary
Oracle9i Alkalmazás Szerver Üzleti folyamat integráció Molnár Balázs Vezető értékesítési konzultáns Oracle Hungary Üzleti folyamat integráció Kereskedők Beszállítók Partnerek Alkalmazás Disztribútor Belső
ITIL alapú folyamat optimalizációs tapasztalatok
ITIL alapú folyamat optimalizációs tapasztalatok Berky Szabolcs vezető tanácsadó szabolcs.berky@stratis.hu A Stratisról dióhéjban 1998 2008: 10 éve vagyunk a tanácsadási piacon Független, tisztán magyar
Szabálykezelés a gyakorlatban
Szabálykezelés a gyakorlatban ILOG-eszközökkel Ivicsics László vezető tanácsadó BCA Hungary 2008. június 25. Üzleti folyamatok és szabályok Üzleti folyamatok Munkautasítások Szabályzatok Példa: Hitelképesség
Hogyan teremtsünk értéket strukturálatlan adatokból?
Hogyan teremtsünk értéket strukturálatlan adatokból? Nemeth.Zoltan@iqpp.hu Strukturálatlan adat A Merill Lynch becslése szerint az összes üzleti információ több mint 85%-a strukturálatlan adatok formájában
Üzleti szabálykezelés
Üzleti szabálykezelés Az Alerant és a BCA üzleti szabálykezelési szolgáltatásai Darmai Gábor technológiai igazgató 2008. június 25. A Alerant Al t Zrt. Z t Az 3. Nagyvállalati fókusz (TOP50 vállalat megcélzása)
m 3 /óra teljesítményű gázmérők távfelügyeletének telepítési és üzemeltetési tapasztalatai
20-100 m 3 /óra teljesítményű gázmérők távfelügyeletének telepítési és üzemeltetési tapasztalatai XXV. Dunagáz konferencia Visegrád, 2017.04.19-20 Berkes Gábor Műszaki Igazgató Jogszabályi háttér 2015.
Waberer s BI a BO-n túl. WABERER S INTERNATIONAL Nyrt. Szatmári Johanna, Tobak Tamás
Waberer s BI a BO-n túl WABERER S INTERNATIONAL Nyrt. Szatmári Johanna, Tobak Tamás 2018.09.10 Tartalom Kik vagyunk a Waberer s számokban Digitális transzformáció a Waberer s-nél Üzleti igények és kihívások