MMK-Informatikai projekt ellenőr képzés 4
|
|
- Zsombor Kiss
- 7 évvel ezelőtt
- Látták:
Átírás
1 Miről lesz szó Big Data definíció Mi a Hadoop Hadoop működése, elemei Köré épülő technológiák Disztribúciók, Big Data a felhőben Miért, hol és hogyan használják
2 Big Data definíció
3 Miért Big a Data?
4 MMK-Informatikai projekt ellenőr képzés 4
5 Mi a Hadoop? Open-source alkalmazás JAVA-baníródott keretrendszer az elosztott rendszerek operációs rendszere Lehetővé teszi az elosztott Adattárolást Adatfeldolgozást Lineárisan skálázható
6 Rövid történet 2002 Nutch (web crawler), új, gyorsabb keresőmotor Doug Cutting, Mike Cafarella 2003 Október Google File System paper 2004 December MapReduce paper (szintén a Google adta ki) 2005 ráépítették a Nutchot erre a két technológiára (20-40 gépen) 2006-ban Cuttinga Yahoo-hoz ment dolgozni A Yahoonak már akkor nagyon tetszett a GFS és a MapReduce -> open-source platform építése Elkezdték fejleszteni a Hadoop-ot az Apache SF keretei között Cutting vezetésével Egymás után jelentek meg a kiegészítő komponensek (orchestration, security) 2008: Cloudera, 2009-től Cuttingis ott dolgozik, jelenleg Chief Architect Eric Baldeschwieler (VP of Hadoop a Yahoo-nál) megalapítja a Hortonworks-öt
7 Komponensek HDFS adattárolás MapReduce adatfeldolgozás YARN erőforrás menedzsment
8 Cluster architektúra
9 Elosztottság Nem csak a fájlrendszer elosztott, hanem minden adatfeldolgozó szolgáltatás is (például a MapReduce)
10 Csak append HDFS (Hadoop Distributed File System)
11 MapReduce
12 SQL --> MapReduce SELECT pozicio, SUM(fizetes) FROM alkalmazottak WHERE fizetes > GROUP by pozicio >> MAP REDUCE MMK-Informatikai projekt ellenőr képzés 12
13 YARN MMK-Informatikai projekt ellenőr képzés 13
14 Főbb, Hadoop-pal együttműködő open-source szoftverkomponensek MMK-Informatikai projekt ellenőr képzés 14
15 Adattárház a Hadoopon Impala, Hive, Presto Adattárház funkciók a HDFS-en tárolt fájlokon SQL Táblák, adatbázisok, sémák Táblakapcsolatok Hozzáférés ODBC, JDBC-vel Oozie BI eszközök Workflow készítő és workflow ütemező, monitorozó HUE-ban monitorozó felület is van hozzá Az Oozie-ban definiált jobok folyamatosan feedback-et szolgáltatnak Sqoop Kapcsolat más rendszerekkel Kapcsolat a Hadoop és a relációs adatbázisok között MySQL, Oracle, PostreSQL, SQL Server, Generic JDBC Adatok importálása és exportálása Hivemetastore-t használja MMK-Informatikai projekt ellenőr képzés 15
16 Disztribúciók A Hadoopot önmagában sem könnyű telepíteni 20 szoftverkomponenssel majdnem lehetetlen üzemeltetni Létrejöttek disztribúciók MMK-Informatikai projekt ellenőr képzés 16
17 Data Engineer Data Analyst BI Tools Data Scientist Analytic Tools STREAM Stream processors Interfaces BATCH Structured Data Unstructured Data Loaders Hadoop-based Data Management Cluster Data Process Engines Data Store Structured Data Unstructured Data System Engineer
18 Nagyvállalati hibrid architektúra MMK-Informatikai projekt ellenőr képzés 18
19 RAID és HDFS RAID (hardveres megoldás) 1. Hibatűrés: replikáció a diszkeken 2. Jobb teljesítmény: 1 fájl több diszken van tárolva, párhuzamosan lehet olvasni HDFS (szoftveres megoldás) 1. Hibatűrés: a fájl blokkok replikálva vannak a több datanode diszkjein. 2. Jobb teljesítmény : Minden diszk full sebességen tud pörögni egy jól optimalizált clusteren, hiszen itt is párhuzamosan lehet felolvasni 1-1 fájlt, csak itt blokkonként. Tehát a HDFS gyakorlatilag elvégzi a RAID munkáját. Ha mindkettőt egyszerre használnánk, akkor Költésgesebb lenne Kevesebb storage állna rendelkezésre Lassabb lenne
20 Virtualizálás Az általános mondás szerint nem virtualizálunk Hadoopot, mert teljesítménycsökkenést okoz VMware kutatása szerint akár érdemes lehet virtualizálni (non-shared, direct-attached storage (DAS)) -brie f-look-at-the-possibility/
21 Felhő A felhőben Olcsón Könnyen Gyorsan Deployolhatunk Hadoop clustert A meglévő disztribúciók mellett kínálnak saját Hadoop disztribúciókat is A telepítés a platform saját konzoljáról történik MMK-Informatikai projekt ellenőr képzés 21
22 Szabó Csenger Chatbotok 22
GENERÁCIÓS ADATBÁZISOK A BIG DATA KÜLÖNBÖZŐ TERÜLETEIN
INFORMATIKAI PROJEKTELLENŐR 30 MB Szabó Csenger ÚJ GENERÁCIÓS ADATBÁZISOK A BIG DATA KÜLÖNBÖZŐ TERÜLETEIN 2016. 12. 31. MMK- Informatikai projektellenőr képzés Big Data definíció 2016. 12. 31. MMK-Informatikai
Big Data tömeges adatelemzés gyorsan
MEDIANET 2015 Big Data tömeges adatelemzés gyorsan STADLER GELLÉRT Oracle Hungary Kft. gellert.stadler@oracle.com Kulcsszavak: big data, döntéstámogatás, hadoop, üzleti intelligencia Az utóbbi években
Big Data adattárházas szemmel. Arató Bence ügyvezető, BI Consulting
Big Data adattárházas szemmel Arató Bence ügyvezető, BI Consulting 1 Bemutatkozás 15 éves szakmai tapasztalat az üzleti intelligencia és adattárházak területén A BI Consulting szakmai igazgatója A BI.hu
Hadoop és használata az LPDS cloud-on
Hadoop és használata az LPDS cloud-on Bendig Loránd lbendig@ilab.sztaki.hu 2012.04.13 Miről lesz szó? Bevezetés Hadoop áttekintés OpenNebula Hadoop cluster az LPDS cloud-on Tapasztalatok, nyitott kérdések
Élet az SQL-en túl: Az adatfeldolgozás legújabb trendjei. Földi Tamás
Élet az SQL-en túl: Az adatfeldolgozás legújabb trendjei Földi Tamás tfoldi@starschema.net IBM Kutatóközpont San Jose, California, 1970 Negyven évvel később Gartner Report Elsősorban relációs adatbázisok
Component Soft 1994-2013 és tovább
Component Soft 1994-2013 és tovább IT szakemberek oktatása, tanácsadás Fő témáink: UNIX/Linux rendszerek, virtualizációs, fürtözési, tároló menedzsment és mentési technológiák Adatbázisok és middleware
MapReduce paradigma a CAP-tétel kontextusában. Adatb haladóknak. Balassi Márton Adatbázisok haladóknak 2012.
MapReduce paradigma a CAP-tétel kontextusában Balassi Márton balassi.marton@gmail.com 2012. október 30. Adatbázisok haladóknak 2012. 2012. október 30. Miről lesz szó? Elosztott adatfeldolgozásról általában
Adatbázis rendszerek 7. előadás State of the art
Adatbázis rendszerek 7. előadás State of the art Molnár Bence Szerkesztette: Koppányi Zoltán Osztott adatbázisok Osztott rendszerek Mi is ez? Mi teszi lehetővé? Nagy sebességű hálózat Egyre olcsóbb, és
Webes alkalmazások fejlesztése 11. előadás. Alkalmazások felhőben. 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.
Eötvös Loránd Tudományegyetem Informatikai Kar Webes alkalmazások fejlesztése 11. előadás Alkalmazások felhőben 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Számítástechnikai
BIG DATA ÉS GÉPI TANULÁS KÖRNYEZET AZ MTA CLOUD-ON KACSUK PÉTER, NAGY ENIKŐ, PINTYE ISTVÁN, HAJNAL ÁKOS, LOVAS RÓBERT
BIG DATA ÉS GÉPI TANULÁS KÖRNYEZET AZ MTA CLOUD-ON KACSUK PÉTER, NAGY ENIKŐ, PINTYE ISTVÁN, HAJNAL ÁKOS, LOVAS RÓBERT TARTALOM MTA Cloud Big Data és gépi tanulást támogató szoftver eszközök Apache Spark
NIIF Központi Elosztott Szolgáltatói Platform
NIIF Központi Elosztott Szolgáltatói Platform Bajnok Kristóf kristof.bajnok@sztaki.hu MTA-SZTAKI ITAK 2004. április 7. MTA Sztaki / ITAK 1 A helyzet 2002-ben Az NIIF központi szolgáltatásait a helka.iif.hu
RHadoop. Kocsis Imre Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
RHadoop Kocsis Imre ikocsis@mit.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Házi feladat Csapatépítés o 2 fő, tetszőleges kombinációkban http://goo.gl/m8yzwq
Webes alkalmazások fejlesztése 11. előadás. Alkalmazások felhőben. Alkalmazások felhőben Számítástechnikai felhő
Eötvös Loránd Tudományegyetem Informatikai Kar Webes alkalmazások fejlesztése 11. előadás Számítástechnikai felhő A számítástechnikai felhő (computational cloud) egy olyan szolgáltatás alapú rendszer,
SUSE Linux Enterprise High Availability. Kovács Lajos Vezető konzultáns
SUSE Linux Enterprise High Availability Kovács Lajos Vezető konzultáns lkovacs@npsh.hu SUSE Linux Enterprise 12 célok 100 0 % Állásidő csökkentése Hatékonyabb üzemeltetés Gyorsabb innováció 2 Állásidő
Infor PM10 Üzleti intelligencia megoldás
Infor PM10 Üzleti intelligencia megoldás Infor Üzleti intelligencia (Teljesítmény menedzsment) Web Scorecard & Műszerfal Excel Email riasztás Riportok Irányít Összehangol Ellenőriz Stratégia Stratégia
Weblog elemzés Hadoopon 1/39
Weblog elemzés Hadoopon 1/39 Az előadás témái Egy Hadoop job életciklusa A Weblog-projekt 2/39 Mi a Hadoop? A Hadoop egy párhuzamos programozási séma egy implementációja. 3/39 A programozási séma: MapReduce
A Facebook adattárháza. Trencséni Márton info99
A Facebook adattárháza Trencséni Márton mtrencseni@gmail.com info99 1 Néhány szót rólam 1. BME-n végeztem 2004-ben műszaki informatikusként 2. Adatbázisok tárgy már akkor is volt :) Utána: ELTE, fizikus
Hogyan növelje kritikus üzleti alkalmazásainak teljesítményét?
Hogyan növelje kritikus üzleti alkalmazásainak teljesítményét? Alkalmazás archiválás EMC Forum 2013 Sepsy Zoltán Mindennapi alkalmazásaink Folyamatos változás az alkalmazás technológiákban. Kiterjedt
DSD DSD. Egy országos méretű orvosi adatbázissal kapcsolatos informatikai kihívások. Kovács László Pataki Balázs Pataki Máté MTA SZTAKI DSD
MTA SZTAKI Department of Distributed Systems Egy országos méretű orvosi adatbázissal kapcsolatos informatikai kihívások Kovács László Pataki Balázs Pataki Máté Témakörök MTA SZTAKI bemutatása Nemzeti Rákregiszter
RDBMS fejlesztési irányok. Ferris Wheel (óriáskerék) Jim Gray törvényei. Elosztott adatbázisok problémái. Elosztott adatbázisok
1 RDBMS fejlesztési irányok Column store Tömb adatmodell JIT fordító és vektorizált végrehajtás Ferris wheel (óriáskerék) Elosztott adatbázisok Ferris Wheel (óriáskerék) Optimalizált scan műveletek Table
EMC AVAMAR. YOU WILL NEVER BACK UP THE SAME DATA TWICE. Diriczi Norbert
EMC AVAMAR. YOU WILL NEVER BACK UP THE SAME DATA TWICE Diriczi Norbert norbert.diriczi@areus.hu Agenda Az ügyfél nehézségei Javasolt megoldás (EMC Avamar?) Tesztelt környezet (éles telephely) Elért eredmények
NetWare 6 technikai áttekintés 2. rész
NetWare 6 technikai áttekintés 2. rész A non-stop rendelkezésre állás megvalósítása Novell Cluster Services, NetWare Remote Management, Tárolási Szolgáltatások Az operációs rendszer továbbfejlesztései
Adatbázis-kezelés. Dr. Fülep Dávid. SELECT id FROM tantargy WHERE intezmeny = sze ORDER BY hasznossag LIMIT 1 NGB_SZ_003_9
Adatbázis-kezelés Dr. Fülep Dávid SELECT id FROM tantargy WHERE intezmeny = sze ORDER BY hasznossag LIMIT 1 NGB_SZ_003_9 Adatbázis-kezelés Első előadás 2 Célok Válaszok a következőkhöz hasonló kérdésekre:
Oracle Big Data koncepció. Stadler Gellért Vezető tanácsadó Oracle ConsulKng HTE 2015 Konferencia
Oracle Big Data koncepció Stadler Gellért Vezető tanácsadó Oracle ConsulKng HTE 2015 Konferencia Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle ConfidenKal Internal/Restricted/Highly
Big Data elemzési módszerek
Big Data elemzési módszerek 2015.09.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Előadók, közreműködők o dr. Pataricza András o Dr. Horváth Gábor o
Oracle adatkezelési megoldások helye az EA világában. Előadó: Tar Zoltán
Oracle adatkezelési megoldások helye az EA világában Előadó: Tar Zoltán Témák Bemutatkozás Enterprise Architecture bemutatása Mi az az EA? TOGAF bemutatása OEAF bemutatása Oracle megoldások Oracle termékek
Párhuzamos és Grid rendszerek
Párhuzamos és Grid rendszerek (12. ea) Cloud computing Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 2013.04.29. - 1 - Újabb buzzword? Metacomputing Utility computing Grid computing
COMPANY PROFILE SZOFI ALGORITHMIC RESEARCH KFT
COMPANY PROFILE SZOFI ALGORITHMIC RESEARCH KFT WWW.SZOFIUSA.COM CÉGTÖRTÉNET 1990 Alapítás 1990 Informatikai fejlesztések kezdete 1992 Felsőfokú informatikai képzési rendszer kidolgozása a kormányzat részére
Hiperkonvergens infrastruktúra. Brenner Zoltán rendszermérnök
Hiperkonvergens infrastruktúra Brenner Zoltán rendszermérnök Bevezetés Hyperconverged Infrastructure Software Defined Software Defined Datacenter HyperScale Enterprise Server SAN A hiperkonvergens inftrastruktúra,
Felhők teljesítményelemzése felhő alapokon
Felhők teljesítményelemzése felhő alapokon Kocsis Imre ikocsis@mit.bme.hu HTE Infokom 2014 Budapest University of Technology and Economics Department of Measurement and Information Systems 1 IT Szolgáltatásmenedzsment
Big Data: a több adatnál is több
Big Data: a több adatnál is több Sidló Csaba István MTA Számítástechnikai és Automatizálási Kutatóintézet Üzleti Intelligencia és Adattárházak Csoport sidlo@sztaki.mta.hu http://dms.sztaki.hu CIO Hungary
Takács Gábor mérnök informatikus, okl. mérnöktanár
Takács Gábor mérnök informatikus, okl. mérnöktanár takacsg@sze.hu http://rs1.sze.hu/~takacsg/ Big Data Definition Big Data is data that can t be stored or analyzed using traditional tools. Információ tartalom,
30 MB INFORMATIKAI PROJEKTELLENŐR
INFORMATIKAI PROJEKTELLENŐR 30 MB DOMBORA SÁNDOR BEVEZETÉS (INFORMATIKA, INFORMATIAKI FÜGGŐSÉG, INFORMATIKAI PROJEKTEK, MÉRNÖKI ÉS INFORMATIKAI FELADATOK TALÁKOZÁSA, TECHNOLÓGIÁK) 2016. 09. 17. MMK- Informatikai
Adatbázis-kezelés. Fülep Dávid. SELECT id FROM eloadas WHERE intezmeny = sze ORDER BY unalomfaktor LIMIT 1 NGB_SZ_003_9
Adatbázis-kezelés Fülep Dávid SELECT id FROM eloadas WHERE intezmeny = sze ORDER BY unalomfaktor LIMIT 1 NGB_SZ_003_9 Adatbázis-kezelés Első előadás 2 Célok Válaszok a következőkhöz hasonló kérdésekre:
The Power To Develop. i Develop
The Power To Develop 2001 Alkalmazások fejlesztése Oracle9i Alkalmazás rel Molnár Balázs Értékesítési konzultáns Oracle Hungary Miről is lesz szó? Mi az Oracle9i AS, technikailag? Hogyan működik Oracle9i
Data Integrátorok a gyakorlatban Oracle DI vs. Pentaho DI Fekszi Csaba Ügyvezető Vinnai Péter Adattárház fejlesztő 2013. február 20.
Data Integrátorok a gyakorlatban Oracle DI vs. Pentaho DI Fekszi Csaba Ügyvezető Vinnai Péter Adattárház fejlesztő 2013. február 20. 1 2 3 4 5 6 7 8 Pentaho eszköztára Data Integrator Spoon felület Spoon
Az információs rendszerek adatai
Az információs rendszerek adatai Nagy mennyiségű adat Tárolás Karbantartás Visszakeresés, feldolgozás Adatbázis 2 Az adatbázis fogalma Az adatbázis együtt tárolt, egymással kapcsolatban levő adatok rendszere.
Big Data, Distributed Storage & Computing. Gombos Gergő
Big Data, Distributed Storage & Computing Gombos Gergő 640K Big Data? 1981 Big Data Korszerű Adatbázisok 2 Big Data Big data is the term for a collection of data sets so large and complex that it becomes
VIRTUALIZÁCIÓS TECHNOLÓGIÁK EUCALYPTUS CLOUD PLATFORM
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar VIRTUALIZÁCIÓS TECHNOLÓGIÁK EUCALYPTUS CLOUD PLATFORM Sápi Dénes UWCRHX BUDAPEST, 2011 1. A Cloud Computingről általánosságban
2011. November 8. Boscolo New York Palace Budapest. Extrém teljesítmény Oracle Exadata és Oracle Exalogic rendszerekkel
2011. November 8. Boscolo New York Palace Budapest Extrém teljesítmény Oracle Exadata és Oracle Exalogic rendszerekkel Integrált rendszerek - Engineered Systems Együtt tervezett hardver és szoftver Egyedi
IBM felhő menedzsment
IBM Váltsunk stratégiát! Budapest, 2012 november 14. IBM felhő menedzsment SmartCloud Provisioning és Service Delivery Manager Felhő alapú szolgáltatások Felhasználás alapú számlázás és dinamikus kapacitás
Adatbáziskezelő-szerver. Relációs adatbázis-kezelők SQL. Házi feladat. Relációs adatszerkezet
1 2 Adatbáziskezelő-szerver Általában dedikált szerver Optimalizált háttértár konfiguráció Csak OS + adatbázis-kezelő szoftver Teljes memória az adatbázisoké Fő funkciók: Adatok rendezett tárolása a háttértárolón
A 21. század adatközpontja Oracle Solaris alapon
Fejlődő adatközpontok: Innovációra tervezve... A 21. század adatközpontja Oracle Solaris alapon Farkas András Oracle Hungary Kft. 1 Copyright 2011, Oracle and/or its affiliates. All rights Újra fogalmaztuk
Non-stop hozzáférés az üzleti információkhoz bárhol, bármikor és bármilyen eszközzel
Non-stop hozzáférés az üzleti információkhoz bárhol, bármikor és bármilyen eszközzel The Power to Change A NetWare 6 üzleti előnyeinek áttekintése NetWare 6: Az operációs rendszer szerepe a Hálózati szolgáltatásokban
EGI-InSPIRE. Café Grid március 24. Szeberényi Imre 3/25/ EGI-InSPIRE RI
EGI-InSPIRE Café Grid Szeberényi Imre szebi@iit.bme.hu 2011. március 24. 3/25/2011 1 Performance per Dollar Spent Aktualitás Technológiák gyors fejlődése e-infrastruktúra Doubling Time (months) 9 12 18
ETL keretrendszer tervezése és implementálása. Gollnhofer Gábor Meta4Consulting Europe Kft.
ETL keretrendszer tervezése és implementálása Gollnhofer Gábor Meta4Consulting Europe Kft. Tartalom Bevezetés ETL keretrendszer: elvárások és hogyan készítsük A mi keretrendszerünk Bevezetési tanulságok
Optimalizáció ESX-től View-ig. Pintér Kornél ügyfélszolgála3 mérnök pinter_kornel@mhm.hu
Optimalizáció ESX-től View-ig Pintér Kornél ügyfélszolgála3 mérnök pinter_kornel@mhm.hu MHM és referenciák MHM Computer Hungária Kft. 1996 óta Magyarországon Fókuszterületek: Adattárolás Adatmentés Archiválás
ADATBÁZIS-KEZELÉS - BEVEZETŐ - Tarcsi Ádám, ade@inf.elte.hu
ADATBÁZIS-KEZELÉS - BEVEZETŐ - Tarcsi Ádám, ade@inf.elte.hu Számonkérés 2 Papíros (90 perces) zh az utolsó gyakorlaton. Segédanyag nem használható Tematika 1. félév 3 Óra Dátum Gyakorlat 1. 2010.09.28.
Feltörekvő technológiák: seam, drools, richfaces és társai a JBossban
Feltörekvő technológiák: seam, drools, richfaces és társai a JBossban Török Tamás senior consultant ULX Nyílt Forráskódú Tanácsadó és Disztribúciós Kft. Miről lesz ma szó? Röviden az ULX-ről A JBoss közösségről
Webes alkalmazások fejlesztése Bevezetés. Célkitűzés, tematika, követelmények. A.NET Core keretrendszer
Eötvös Loránd Tudományegyetem Informatikai Kar Webes alkalmazások fejlesztése Bevezetés Célkitűzés, tematika, követelmények A.NET Core keretrendszer Cserép Máté mcserep@inf.elte.hu http://mcserep.web.elte.hu
Felhő rendszerek és felhő föderációk. Kacsuk Péter MTA SZTAKI
Felhő rendszerek és felhő föderációk Kacsuk Péter MTA SZTAKI Számítási felhő Egy technológia, amely segíti a nagy számítási- és tárolási kapacitás menedzselését A felhasználóknak skálázhatóságot, magas
Web harvesztelés. Automatikus módszerekkel
Országos Széchényi Könyvtár Miről lesz szó? Mi is az a web harvesztelés? Mire és hol használjuk? Miért hasznos? Saját megvalósításaink Mi a web harvesztelés? Interneten található weboldalak begyűjtése,
Rendszermodernizációs lehetőségek a HANA-val Poszeidon. Groma István PhD SDA DMS Zrt.
Rendszermodernizációs lehetőségek a HANA-val Poszeidon Groma István PhD SDA DMS Zrt. Poszeidon EKEIDR Tanúsított ügyviteli rendszer (3/2018. (II. 21.) BM rendelet). Munkafolyamat támogatás. Papírmentes
Az információs rendszerek adatai
Az információs rendszerek adatai Nagy mennyiségű adat Tárolás Karbantartás Visszakeresés, feldolgozás Adatbázis 2 Az adatbázis fogalma Az adatbázis együtt tárolt, egymással kapcsolatban levő adatok rendszere.
Operációs Rendszerek II. Első verzió: 2009/2010. I. szemeszter Ez a verzió: 2009/2010. II. szemeszter
Operációs Rendszerek II. Első verzió: 2009/2010. I. szemeszter Ez a verzió: 2009/2010. II. szemeszter 1 Mai témák ZFS NTFS 2 ZFS Új koncepció, nem továbbgondolás Pooled storage modell Minden művelet copy-on-write
Soltész Gábor. Önéletrajz Budapest, Lechner Ödön fasor em 26. a.
Soltész Gábor Önéletrajz SZEMÉLYI ADATOK Születési dátum: 1983.07.09 Születési hely: Lakcím: Dunaújváros 1095 Budapest, Lechner Ödön fasor 1. 2. em 26. a Telefonszám: +36/20-466-7553 Email: Weboldal: solteszgabor@solteszgabor.com
Könyvtári szervervirtualizáció Oracle Virtual Machine platformon
Könyvtári szervervirtualizáció Oracle Virtual Machine platformon avagy a virtualizáció licenszgazdálkodásra is használható? Marton József Ernő jmarton@omikk.bme.hu Nagy Elemér Károly eknagy@omikk.bme.hu
Korszerű technológiai és szolgáltatási modellek
Big Data Korszerű technológiai és szolgáltatási modellek BIG DATA Napjainkban rohamosan nő az informatikai rendszerekben tárolt adatok mennyisége. Nemcsak a klasszikus üzleti, vagy termelési adatok kerülnek
Webes alkalmazások fejlesztése Bevezetés. Célkitűzés, tematika, követelmények. A.NET Core keretrendszer
Eötvös Loránd Tudományegyetem Informatikai Kar Webes alkalmazások fejlesztése Célkitűzés, tematika, követelmények A.NET Core keretrendszer Cserép Máté mcserep@inf.elte.hu http://mcserep.web.elte.hu Célkitűzés
Sikerünk kulcsa: az információ De honnan lesz adatunk? Palaczk Péter
Sikerünk kulcsa: az információ De honnan lesz adatunk? Palaczk Péter Bevezető az Oracle9i adattárházas újdonságaihoz Elemzési és vezetői információs igények 80:20 az adatgyűjtés javára! Adattárházak kínálta
A virtualizáció a modern vállalati informatikai infrastruktúra alapja
A virtualizáció a modern vállalati informatikai infrastruktúra alapja Bodnár Ádám a-adbodn@microsoft.com Server Product Marketing Manager Microsoft Magyarország 0 Miről lesz ma szó? A virtualizáció Mire
DW/BI rendszerek kialakítása bevezetői szemszögből. Gollnhofer Gábor - Meta Consulting Kft.
DW/BI rendszerek kialakítása bevezetői szemszögből Gollnhofer Gábor - Meta Consulting Kft. Bemutatkozás Meta Consulting Kft. BI, DW és CRM rendszerek tervezése és kialakítása rendszerintegráció, egyedi
VvAaLlÓóSs IiıDdEeJjȷŰű OoDdSs goldengate alapokon a magyar telekomban
VvAaLlÓóSs IiıDdEeJjȷŰű OoDdSs goldengate alapokon a magyar telekomban Pusztai Péter IT fejlesztési senior menedzser Magyar Telekom Medveczki György szenior IT architekt T-Systems Magyarország 2014. március
Konszolidáció és költségcsökkentés a gyakorlatban. Az Országos Tisztifőorvosi Hivatal Oracle adatbázis konszolidációja
Konszolidáció és költségcsökkentés a gyakorlatban Az Országos Tisztifőorvosi Hivatal Oracle adatbázis konszolidációja Az Xperteam Zrt. Szolgáltatásaink Oracle termékekkel kapcsolatos kiemelkedő szakismeret:
OTRS bevezetése és tapasztalatok a DF-ISZK-n
OTRS bevezetése és tapasztalatok a DF-ISZK-n Kovács Csaba István cs.kovacs@mail.duf.hu Szabó József pici@mail.duf.hu Tartalom Kovács Csaba OTRS bemutatása Szabó József megvalósítás lépései ha az idő engedi,
Alkalmazásfüggetlen Big Data erőforrás elosztás
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék Alkalmazásfüggetlen Big Data erőforrás elosztás Készítette Haja Dávid Konzulens
Korszerű Adatbázisok. Gombos Gergő
Korszerű Adatbázisok Gombos Gergő Elérhetőségek Email: ggombos@inf.elte.hu Szoba: 2-503 (2-519) Honlap: http://people.inf.elte.hu/ggombos Tematika 1. Bevezetés: Virtualizáció, Cloud 2-3. XML XPath, XQuery
Korszerű Adatbázisok. Gombos Gergő
Korszerű Adatbázisok Gombos Gergő Elérhetőségek Email: ggombos@inf.elte.hu Szoba: 2-503 Honlap: http://ggombos.web.elte.hu Tematika 1. Bevezetés: Virtualizáció, Cloud 2-3. XML XPath, XQuery 4. Szemantikus
Hogyan lehet megakadályozni az üzleti modellezés és az IT implementáció szétválását? Oracle BPM Suite
Hogyan lehet megakadályozni az üzleti modellezés és az IT implementáció szétválását? Oracle BPM Suite Petrohán Zsolt Vezető tanácsadó zsolt.petrohan@oracle.com Napirend Oracle Fusion Middleware BPM kihívásai
Termékbemutató prospektus
Breona Kft. 1134 Budapest, Róbert Károly krt. 59. telefon: +36 1-814 - 2170 fax: +36 1-814 - 2171 imi.breona.eu, info@breona.hu Termékbemutató prospektus Az Irodai Mindenes a Breona Kft. iktató, dokumentum-
Oracle Containers for Java - j2ee alkalmazás szerver funkciók. Molnár Balázs Oracle Hungary
Oracle Containers for Java - j2ee alkalmazás szerver funkciók Molnár Balázs Oracle Hungary Mi is a J2EE? Szabványgyűjtemény Java alkalmazások számára A JavaSoft közösség alakította ki Összefogja az egyéni
Riak. Pronounced REE-ahk. Elosztott adattároló eszköz. Molnár Péter molnarp@ilab.sztaki.hu
Riak Pronounced REE-ahk Elosztott adattároló eszköz Molnár Péter molnarp@ilab.sztaki.hu Mi a Riak? A Database A Data Store A key/value store A NoSQL database Schemaless and data-type agnostic Written (primarily)
Nagy adathalmazok elosztott feldolgozása. Dr. Hajdu András, Debreceni Egyetem, Informatikai Kar
Nagy adathalmazok elosztott feldolgozása Dr. Hajdu András, Debreceni Egyetem, Informatikai Kar Mi a Big Data? Nem létezik egzakt Big Data definíció. A big data kifejezést a mai értelemben először Cox és
KORSZERŰ BIG DATA FELDOLGOZÓ KERETRENDSZEREK. 2014.02.03. Hermann Gábor MTA-SZTAKI
KORSZERŰ BIG DATA FELDOLGOZÓ KERETRENDSZEREK 2014.02.03. Hermann Gábor MTA-SZTAKI MI AZ A BIG DATA? MI AZ A BIG DATA? Sok adat! ENNYI? BIG DATA 4V Volume Velocity Variety Veracity +3V (7V) Variability
BEVEZETÉS AZ ADATTÁRHÁZ AUTOMATIZÁLÁSBA
BEVEZETÉS AZ ADATTÁRHÁZ AUTOMATIZÁLÁSBA Gollnhofer Gábor JET-SOL Kft. Nyilvántartási szám: 503/1256-1177 JET-SOL KFT. Alapadatok 2003-ban alakultunk Több mint 120 magasan képzett munkatárs Ügyfélkör Nagyvállalati
2. lépés: openssh szerver telepítés sudo apt-get install openssh-server
1. lépés: (master- és datanode esetén) Csoport készítés: sudo addgroup hadoop Felhasználók készítése: sudo adduser --ingroup hadoop yarn sudo adduser --ingroup hadoop hdfs sudo adduser --ingroup hadoop
Segesdi Dániel. OpenNebula. Virtualizációs technológiák és alkalmazásaik BMEVIMIAV89. 2011 ősz
Segesdi Dániel OpenNebula Virtualizációs technológiák és alkalmazásaik BMEVIMIAV89 2011 ősz OpenNebula Előszó A feladatom az OpenNebula nyílt forráskódú cloud management eszköz megismerése, mely egységes
Fejlesztés, működtetés, felügyelet Hatékony infrastruktúra IBM szoftverekkel
IBM Software Group Fejlesztés, működtetés, felügyelet Hatékony infrastruktúra IBM szoftverekkel Rehus Péter Szoftver üzletág igazgató 2005. február 2. 2003 IBM Corporation On demand igény szerinti működési
Klotz Tamás earchitect Oracle
Klotz Tamás earchitect Oracle Vállalati információ kezelés Az információ érték, vagyon (tőke) Az információ folyam maximalizálhatja a tőkét Tervezés Szolgáltatás Együttműködés Tranzakció feldolgozás Döntés
Alternatív adatbázisok Gráfadatbázisok
Alternatív adatbázisok Gráfadatbázisok Adatbázis típusok Relációs PostgreSQL, Oracle, MySQL, stb. Dokumentum MongoDB, CouchDB, OrientDB Gráfadatbázis Neo4J, OrientDB, ArangoDB, InfiniteGraph Key-value
Adatbáziskezelı-szerver SQL. Relációs adatbázis-kezelık. Relációs adatszerkezet. Házi feladat 2012.03.05.
1 2 Adatbáziskezelı-szerver Általában dedikált szerver Optimalizált háttértár konfiguráció Csak OS + adatbázis-kezelő szoftver Teljes memória az adatbázisoké Fő funkciók: Adatok rendezett tárolása a háttértárolón
Nagyvállalati adatintegráció és adatkezelés
Nagyvállalati adatintegráció és adatkezelés az Informatica eszközeivel Biró Attila fejlesztési igazgató, Areus Zrt. Nagy Balázs szoftverfejlesztő, Areus Zrt. Miről lesz ma szó? 17:05 18:00: Prezentáció
ALKALMAZÁS KERETRENDSZER
JUDO ALKALMAZÁS KERETRENDSZER 2014 1 FELHASZNÁLÓK A cégvezetők többsége a dobozos termékek bevezetésével összehasonlítva az egyedi informatikai alkalmazások kialakítását költséges és időigényes beruházásnak
ede.bodroghy@hu.ibm.com
ede.bodroghy@hu.ibm.com 5/30/2014 Globális piacvezető a hoszting szolgáltatásokban 21000 ügyfél 140 országban 100000 menedzselt eszköz 685 alkalmazott 13 adatközpont 17 hálózati belépési pont 2 SOFTLAYER
Utolsó módosítás:
Utolsó módosítás: 2016. 05. 09. 1 2 Gondoljunk rá, hogy egy ekkora rendszerben garantáltan folyamatosan van valami meghibásodás! Az adatok nem légből kapottak, az egyik magyarországi VMware Users Group
2278-771061-Y02 2014. márci
A WD és a WD embléma a Western Digital Technologies, Inc. az Egyesült Államokban és más országokban bejegyzett védjegyei; Az absolutely, a WD Re, a WD Se, a WD Xe, a RAFF és a StableTrac a Western Digital
Exadata, a világ leggyorsabb adatbázisgépe
ORACLE PRODUCT LOGO 2011. november 8. Budapest Exadata, a világ leggyorsabb adatbázisgépe Fekete Zoltán, principal sales consultant http://blogs.oracle.com/zfekete/ 1 Copyright 2011, Oracle and/or its
SUSE Linux Enterprise Server 12 Hargitai Zsolt
SUSE Linux Enterprise Server 12 Hargitai Zsolt Üzletfejlesztési Igazgató zhargitai@suse.com SUSE Linux Enterprise Server 12 A megbízható alap kritikus szolgáltatások futtatásához Állásidő minimalizálása
Elemzési adatok hatékony kezelésének infrastruktúrális vonzatai
Elemzési adatok hatékony kezelésének infrastruktúrális vonzatai Rab Gergely, Zsemlye Tamás HP Informatikai Kft. E-banking konferencia 2013 március 6. Igények az infrastruktúra felé - Hang és/vagy videó
Google App Engine az Oktatásban 1.0. ügyvezető MattaKis Consulting http://www.mattakis.com
Google App Engine az Oktatásban Kis 1.0 Gergely ügyvezető MattaKis Consulting http://www.mattakis.com Bemutatkozás 1998-2002 között LME aktivista 2004-2007 Siemens PSE mobiltelefon szoftverfejlesztés,
Fekete Csaba Csongor Üzleti intelligencia vezető Citibank ZRt.
Fekete Csaba Csongor Üzleti intelligencia vezető Citibank ZRt. Tartalom BI mérföld kövek Kezdeti architektúra és kontextus Lokális Adattárház Kialakítása CRM Evolúció Üzleti Intelligencia kiaknázó eszközök
webalkalmazások fejlesztése elosztott alapon
1 Nagy teljesítményű és magas rendelkezésreállású webalkalmazások fejlesztése elosztott alapon Nagy Péter Termékmenedzser Agenda Java alkalmazás grid Coherence Topológiák Architektúrák
Az Oracle Fusion szakértői szemmel
Az Oracle Fusion szakértői szemmel Pigniczki László ügyvezető igazgató ProMigCon Kft. HOUG 2017. november 8. ProMigCon Kft. 2009 novemberében alakult. Alapvető tevékenység: Oracle E-Business Suite bevezetés,
Nézetek és indexek. AB1_06C_Nézetek_Indexek - Adatbázisok-1 EA (Hajas Csilla, ELTE IK) - J.D. Ullman elıadásai alapján
Nézetek és indexek Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 8.1. Nézettáblák 8.2. Adatok módosítása nézettáblákon keresztül 8.3. Indexek az SQL-ben 8.4. Indexek
SQL Server High Availability
SQL Server High Availability Bevezetés az SQL Server magas rendelkezésre állási megoldásaiba Berke János SQL Server MVP 2016.05.18 Bemutatkozás 10+ év SQL Server tapasztalat Oktató Kapcsolat: Email: Janos@iamBerke.com
Adattárház és BigData Szimbiózisa. Baranyi Szabolcs IM Technical Sales
Adattárház és BigData Szimbiózisa Baranyi Szabolcs IM Technical Sales Szabolcs.baranyi@hu.ibm.com BigData adatforrásai Adattárház kiterjesztés igénye BigData és adattárház integrációja a hatékonyság növelésére
TELJESÍTÉNYMÉRÉS FELHŐ ALAPÚ KÖRNYEZETBEN AZURE CLOUD ANALÍZIS
TELJESÍTÉNYMÉRÉS FELHŐ ALAPÚ KÖRNYEZETBEN AZURE CLOUD ANALÍZIS Hartung István BME Irányítástechnika és Informatika Tanszék TEMATIKA Cloud definíció, típusok, megvalósítási modellek Rövid Azure cloud bemutatás
Üzletmenet-folytonosság és katasztrófa helyzet kezelés (Honnan indultunk, miért változtunk, hova tartunk?)
Üzletmenet-folytonosság és katasztrófa helyzet kezelés (Honnan indultunk, miért változtunk, hova tartunk?) Év indító IT szakmai nap - PSZÁF Budapest, 2007.01.18 Honnan indultunk? - Architektúra EBH IT
JAVA webes alkalmazások
JAVA webes alkalmazások Java Enterprise Edition a JEE-t egy specifikáció definiálja, ami de facto szabványnak tekinthető, egy ennek megfelelő Java EE alkalmazásszerver kezeli a telepített komponensek tranzakcióit,