A HOMOKOK SZEMELOSZLÁSA ÉS MÁS TALAJFIZIKAI JELLEMZŐI KÖZÖTTI KAPCSOLAT

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A HOMOKOK SZEMELOSZLÁSA ÉS MÁS TALAJFIZIKAI JELLEMZŐI KÖZÖTTI KAPCSOLAT"

Átírás

1 A HOMOKOK SZEMELOSZLÁSA ÉS MÁS TALAJFIZIKAI JELLEMZŐI KÖZÖTTI KAPCSOLAT Imre Emőke 1 Király Csaba 1 Rajkai Kálmán 2 Laufer Imre 3 Juhász Miklós 4 Lőrincz János 4 Szent István Egyetem 1, MTA ATK TAKI 2, Lambda Kft 3, Tengizchevroil 4 Kulcsszavak homok, tömörség, nyírószilárdság, kompresszió 1 BEVEZETÉS A szemeloszlási görbe jellemzésére kevesebb paramétert használunk, mint amennyit mérünk, és ezek sem a legmegfelelőbbek. Ezen a problémán segít az statisztikus entrópia alkalmazása, amely minden mérési adatot magában foglaló entrópia koordinátákat használ. Az entrópia koordináták és mérések összevetése alapján áttörés volt lehetséges számos területen (a vázszerkezet stabilitása, szemcsehalmazok szétosztályozódása, szűrőszabályok, a kötött talajok esetén alkalmazott mésszel való módosítás sikerességének megértése, a diszperzív jelleg, buzgárosodásra való hajlam megértése, száraz térfogatsűrűség a leglazább állapotban. ([1,2]). A folyamatban lévő kutatás a homokok szemeloszlási görbéje, térfogatsűrűsége, víztartási görbéje, nyírószilárdsága és kompressziója közötti kapcsolatot elemzi, laboratóriumi és numerikus kísérletek segítségével. Ehhez optimális (szemeloszlási entrópia elméleti szempontból átlagos) és szemcse-hiányos szemeloszlásokat alkalmaz, és bemutatja a mért adatok entrópia koordinátákkal való kapcsolatát. E munka a többszakaszos közvetlen nyíró- és kompressziós kísérletek eredményét tárgyalja a korábbi minimális száraz térfogatsűrűség vagy e max (s min ) kísérlet kísérletek alapján, valamint numerikus kísérletek lehetőségét mutatja be. 1. táblázat Az i-dik frakció saját entrópiája S 0,i i D [mm] S 0,i

2 Entropy increment, S [-] 2.8 N=7 N=6 2.4 N=5 2.0 N=4 1.6 N=3 1.2 N= Base entropy, S 0 [-] 1. ábra. A 7 frakciós szemeloszlások tere (hat dimenziós szimplex) reprezentálható a folytonos rész-szimplexek hálójával. A folytonos rész-szimplexek entrópiadiagramban vett képének maximális vonalai. 2 VÁLTOZÓK Szemeloszlási görbe tér A szemcseátmérő széles határok között változhat, így gyakorlati megfontolásból a szemeloszlási vizsgálatnál használt sziták átmérője és így a frakciók mérete duplázódik. Az i-edik frakció esetén a szemcsék átmérője (d) az alábbi i 1 i határok között van: 2 d min d 2 d min ahol d min egy önkényesen választott méret. A frakciók átmérője és i sorszáma egy értelmű kapcsolatban áll egymással. Az i-edik frakció relatív gyakorisága x i alapján (i=1..n) felírható: N x 1; x 0 (1) i= 1 i i ahol N a frakciók száma. Ez az egyenlet egyúttal egy N-1 dimenziós szimplex definiáló egyenlete, amely korlátos és zárt, és azonosítható az N frakciós, adott minimális frakciójú szemeloszlások terével. A nulla, egy, két vagy három-dimenziós szimplex ábrázolható a három dimenziós térben, a nagyobb dimenziós nem. Ábrázolható viszont pl. a folytonos rész-szimplexek szerkezete (1). Az entrópia koordináták A szemeloszlási entrópia két részből áll (az entrópia koordinátákból): S = S N 0 S, S0 xis0i i= 1 1 N, S xi ln xi ln 2 (2) i= 1

3 ahol S 0 az alap entrópia, S entrópia növekmény, S 0i a frakciók saját entrópiája (1. táblázat). A normált entrópia koordináták az A relatív alap entrópia és B a normalizált entrópia növekmény: S A = S o o max S S o min o min, S B = ln(n) (3) Az entrópia koordináták jelentése Az S 0 alap entrópia lényegében azonos az átlagos frakciómérettel (azaz átlagos absztrakt szemcseátmérő, i 0 ). Az A relatív alap entrópia ennek szemcseátmérő terjedelemmel normalizált változata (átlagos, normált absztrakt szemcseátmérő, k m ), kifejezve, hogy az átlagos érték mennyire van közel a maximálishoz. A S entrópia növekmény maximuma az azonos S 0 értékű szemeloszlások átlagát jelöli ki, az ún. optimális szemeloszlást. E szemeloszlási görbék eloszlása véges fraktál. Entrópia diagram Bármely szemeloszlási görbe egy ponttal jellemezhető az entrópia koordináták terében. Az N-1 dimenziós szimplex képe e leképezés során korlátos és zárt. Így az entrópia diagramnak (és minden rész-szimplex képének) van maximum és minimum vonala. A maximum vonalak (1 ábra) lényegében az 1 ábra szerinti szerkezetet mutatják. A maximum vonal őse a folytonos rész-szimplex optimális vagy átlagos vonala, pontjai pedig az ún. optimum pontok vagy optimális szemeloszlások, melyek fraktál eloszlások. A szimplex képének minimum vonalát általában az 1-N ik él képével helyettesítjük, ez a maximálisan szemcsehiányos keverékek képe. Mivel minden folytonos részszimplexhez csak egy optimum vonal, és egy 1-N típusú él rendelhető, ezen 1-N típusú élek szerkezete is az reprezentálható az 1 ábrán látható hálóval. E munka során ezt az ábrázolást használtuk. Geotechnikai paraméterek a tömörség leírására A munka során használt szokásos tömörségi paraméterek a hézagtényező e, a száraz térfogatsűrűség d = s s ahol a szilárd fázis térfogati aránya s= 1/(1 e), és a szemcsék sűrűsége s. A homokok minimális száraz térfogatsűrűség vagy e max kísérletének eredményét két paraméterrel jellemezzük Lőrincz [1] alapján: s s s0 = ( s s0 ) s0 (4) ahol s(=s min ) a keverék mért minimális száraz térfogatsűrűség értéke, s 0 ennek egy matematikai súlyozott átlaggal történő lineáris közelítése:

4 i max s 0 = x i s (5) i i min ahol i a frakció szám s i a mért frakció sűrűség.* i 3 A MÓDSZEREK A mérések során 5 homokfrakció (2. táblázat) és az ezekből készült olyan optimális és frakcióhiányos keverékek kerültek vizsgálatra, amelyek részszimplex optimális vonalainak és 1-N típusú éleinek pontjaival reprezentálhatók mind Lőrincz [1], mind a jelen vizsgálat esetén. A minimális száraz térfogatsűrűség vagy e max (s min ) kísérlet esetén a talajt tölcséren a Proctor edénybe töltik, ez 10 cm-es átmérő mérete miatt nem okoz átboltozódást a mintában ([4, 5]). A kompressziós kísérletek főbb adatai a következők voltak: 50, 100, 200, 400 kpa terhelés tehermentesítéssel, mindkét szakasz hossza 5 perc, d=7,5 cm; h=2 cm. A többlépcsős nyírókísérletek (a mintát visszahúzzák, nem veszik ki az egyes szakaszok után) adatai a következők voltak. A terhelések: 31,5 kpa, 62,5 kpa, 112,5 kpa; a nyíródoboz mérete 6 cm x 6 cm x4.2 cm. A homokminták lég-szárazon, a lehető legnagyobb hézagtérfogattal kerültek bekészítésre a nyírási és kompressziós kísérletek során. A kis edényméret miatt a bekészítési tömörség csak közelítően volt a leglazább. 2. táblázat Felhasznált szemcsefrakciók Frakció d mm 1 0,063-0, ,125-0,25 3 0,25-0,5 4 0,5-1,0 5 1,0-2,0 4 AZ EREDMÉNYEK Lőrincz [1] méréseit feldolgozva látható, hogy a frakció sorszámával nő a tömörség (2 ábra), az s 0 lényegében egyértelműen követi ugyanezt az aszimmetrikus trendet matematikai definíciója alapján. A keverési növekmény (s - s 0 ) jellegében ugyanúgy (szimmetrikusan) változik az S 0

5 és N szerint, mint a S (lásd 1 és 2 ábra), de kissé eltérően optimális és szemcsehiányos keverékek esetén. A 3. ábra szerint a kompressziós kísérletek eredménye nem tér el a talajok esetén ismert képtől: A terhelés-tehermentesítés görbe rugalmasképlékeny jellemzőket és előterhelési hatást látszik mutatni. A térfogati alakváltozás maximuma csökken az i frakció sorszám növekedésével. A 4 ábra szerint a többlépcsős nyírókísérletek során minden szakasz ellenkező irányú, maradó nyírási alakváltozással fejeződött be. A 4 ábra szerint a többlépcsős nyírókísérletek eredménye az első szakaszban a leglazább állapotban bekészített mintáknál is kompressziót, térfogat-csökkenést mutat a második-harmadik szakasztól minden esetben, de sok esetben már az első nyírási szakaszban is, minden szakasz maradó kompressziós alakváltozással fejeződött be. Az 5. ábra szerint a Mohr-Coulomb burkoló tipikus alakja nemlineáris, parabolával jól közelíthető. A 6. ábra szerint, a harmadik terhelési lépcsőben lineáris burkoló feltételezésével számolt súrlódási szög nő az i frakció sorszámmal. A nyírókísérletek és a kompressziós kísérletek bekészítésből, mintaméretből és falsúrlódásból [7] eredő hibái miatt numerikus DEM kísérletek tervezését kezdtük meg. Az előzetes vizsgálatok szerint bizonyos keverékek modellje gond nélkül futtatható, de vannak olyan keverékek, amelyek nagy számú gömböt igényelnek a modellben. Dry density difference s [-] 1E-1 8E-2 4E-2 N=2 N=3 N=5 N=5 gap Abstract mean diameter i0 [-] 2. ábra Lőrincz [1] eredményei [2] Frakciók. Optimális keverékek a maximális szemcsehiányos bemutatásával

6 0.00 v [mm] v [mm] [kpa] [kpa] 0.00 v [mm] v [mm] [kpa] (c) [kpa] (d) 3. ábra. Kompressziós kísérletek. - (c) Rugalmas-képlékeny viselkedés. (d) A frakció sorszám és a kompressziós görbe. 4. ábra. A nyírókísérletek Feszültség-alakváltozás. Térfogatváltozás 4. ábra. A Mohr-Coulomb burkoló (kék: mért, barna: illesztett)

7 5 TÁRGYALÁS, ÖSSZEGEZÉS A szemeloszlási entrópia elmélet A szemeloszlási koordináták hiányoznak jelenleg a talajmechanikai szakvélemények eszköztárából, jóllehet bizonyítást nyert, hogy döntő fontosságuk van a szemcsés talajok viselkedésének (pl. erózióra való hajlam megítélése, szűrőszabály) szempontjából. Homokok minimális száraz térfogatsűrűsége Lőrincz ([1], [2]) a minimális száraz térfogatsűrűségét két részre bontotta. A mért adatok újrafeldolgozása alapján látható, hogy ezek változása a frakciók sorszámával illetve azok átlagával (amit S 0 ír le) kétféle kapcsolatban van, az egyik rész szimmetrikus, a másik aszimmetrikus, ez utóbbi kapcsolata S 0 al egyértelmű. 6. ábra. A súrlódási szög, a harmadik lépcsőben lineáris burkolóval számolva. optimális keverékek frakcióhiányos keverékek

8 A fizikai magyarázat a következő. A gömb-halmaz sűrűsége növekszik, ha a gömbök átmérője nagyobb tartományban változhat. Ez a tartomány nő a frakciók sorszámának átlagával (amit S 0 ír le, aszimmetrikus rész) és szimmetrikusan változik mind a frakciók számával és az A relatív alap entrópiával (ami S függéséhez hasonló). Homokok összenyomhatósága és szilárdsága A kompressziós kísérletek eredményét a nagy falsúrlódás miatt, a a többszakaszos közvetlen nyírókísérletek eredményét a relatíve kis nyíródoboz méret miatt feltehetően jelentős hiba terheli. Annyi megállapíthatónak látszik, hogy mind a súrlódási szög, mind a maximális térfogati alakváltozás határozott kapcsolatban van a frakciók sorszámával illetve azok átlagával (amit S 0 ír le). IRODALOM 1. Lőrincz, J (1986). Grading entropy of soils Doctoral Thesis, Technical Sciences, TU of Budapest. 2. Imre E, Hazay M, Juhász M, Lőrincz J, Rajkai K, Schanz T, Lins Y, Hortobágyi Zs (2014) Sand mixture density.proceedings of UNSAT2014 Sydney, Australia, 2-4 July : Király Cs (2014) Szakdolgozat. Telítetlen talajok egyes laboratóriumi kísérletei. SZIE. 4. Imre E, Fityus S, Keszeyné E, Schanz T(2011) A Comment on the Ratio of the Maximum and Minimum Dry Density for Sands. Geotechnical Engineering 42(4) pp Imre, E & Gerendai, E & Szalkai, R &Lőrincz, J & Lins, Y & Schanz T Some notes concerning the dry density testing standards. In: Proc 18th ICSMGE. Paris Einav Breakage mechanics Part I. Theory Journal of the Mech. and Physics of Solids, 55: Kézdi Árpád Talajmechanika I., Tankönyvkiadó,Budapest, Imre, E; Lőrincz, J.; Szendefy, J.; Trang, P.Q.; Nagy, L.; Singh, V.P.; Fityus, S "Case Studies and Benchmark Examples for the Use of Grading Entropy in Geotechnics." Entropy Entropy-Switz 14, no. 6:

9

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

TALAJOK OSZTÁLYOZÁSA ÉS MEGNEVEZÉSE AZ EUROCODE

TALAJOK OSZTÁLYOZÁSA ÉS MEGNEVEZÉSE AZ EUROCODE TALAJOK OSZTÁLYOZÁSA ÉS MEGNEVEZÉSE AZ EUROCODE ALAPJÁN Dr. Móczár Balázs BME Geotechnikai Tanszék Szabványok MSz 14043/2-79 MSZ EN ISO 14688 MSZ 14043-2:2006 ISO 14689 szilárd kőzetek ISO 11259 talajtani

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 2008 PJ-MA SOIL MECHANICS Talajok tömörítése BME Geotechnikai Tanszék Tömörség értelmezése Építési terület D r T r r Tömörségi fok: e max e max r d helyszín r e d max e helyszín min 100 100 [%] [%] 2008

Részletesebben

Talajmechanika. Aradi László

Talajmechanika. Aradi László Talajmechanika Aradi László 1 Tartalom Szemcsealak, szemcsenagyság A talajok szemeloszlás-vizsgálata Természetes víztartalom Plasztikus vizsgálatok Konzisztencia határok Plasztikus- és konzisztenciaindex

Részletesebben

Talajmechanika II. ZH (1)

Talajmechanika II. ZH (1) Nev: Neptun Kod: Talajmechanika II. ZH (1) 1./ Az ábrán látható állandó víznyomású készüléken Q = 148 cm^3 mennyiségű víz folyt keresztül 5 perc alatt. A mérőeszköz adatai: átmérő [d = 15 cm]., talajminta

Részletesebben

SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ

SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ 2008 PJ-MA SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ Tanszék: K épület, mfsz. 10. & mfsz. 20. Geotechnikai laboratórium: K épület, alagsor 20. BME

Részletesebben

Talajmechanika, földművek (BMEEOGT-L43) levelező kiegészítő képzés

Talajmechanika, földművek (BMEEOGT-L43) levelező kiegészítő képzés Talajmechanika, földművek (BMEEOGT-L43) levelező kiegészítő képzés Tanszék: Előadó: BME Geotechnikai Tanszék (K ép. magasföldszint 1.) Szendefy János (K.ép.. alagsor 3.) Ajánlott irodalom: Dr. Kabai Imre:

Részletesebben

ÖDOMÉTERES VIZSGÁLAT LÉPCSŐZETES TERHELÉSSEL MSZE CEN ISO/TS 17892-5 BEÁLLÍTÁS ADAT. Zavartalan 4F/6,0 m Mintadarab mélysége (m)

ÖDOMÉTERES VIZSGÁLAT LÉPCSŐZETES TERHELÉSSEL MSZE CEN ISO/TS 17892-5 BEÁLLÍTÁS ADAT. Zavartalan 4F/6,0 m Mintadarab mélysége (m) BEÁLLÍTÁS ADAT Minta leírás Barna iszap Előkészítési módszer magmintából Részecske-sűrűség (Mg/m³) 2.70 Feltételezett / Mért Feltételezett Betöltés sorrend információ Kezdeti mérések (gyűrű) Terhelési

Részletesebben

LABORATÓRIUMI SOROZATMÉRÉSEK HATÁSA TALAJOK ÁLLÉKONYSÁGI PARAMÉTEREIRE EFFECT OF LABORATORY MEASUREMENTS TO THE GEOTECHNICAL PARAMETERS OF SOILS

LABORATÓRIUMI SOROZATMÉRÉSEK HATÁSA TALAJOK ÁLLÉKONYSÁGI PARAMÉTEREIRE EFFECT OF LABORATORY MEASUREMENTS TO THE GEOTECHNICAL PARAMETERS OF SOILS Műszaki Földtudományi Közlemények, 83. kötet, 1. szám (2012), pp. 71 80. LABORATÓRIUMI SOROZATMÉRÉSEK HATÁSA TALAJOK ÁLLÉKONYSÁGI PARAMÉTEREIRE EFFECT OF LABORATORY MEASUREMENTS TO THE GEOTECHNICAL PARAMETERS

Részletesebben

Alagútfalazat véges elemes vizsgálata

Alagútfalazat véges elemes vizsgálata Magyar Alagútépítő Egyesület BME Geotechnikai Tanszéke Alagútfalazat véges elemes vizsgálata Czap Zoltán mestertanár BME Geotechnikai Tanszék Programok alagutak méretezéséhez 1 UDEC 2D program, diszkrét

Részletesebben

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS Műszaki Földtudományi Közlemények, 83. kötet, 1. szám (2012), pp. 271 276. HULLADÉKOK TEHERBÍRÁSÁNAK MEGHATÁROZÁSA CPT-EREDMÉNYEK ALAPJÁN DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT /2012 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT /2012 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1220/2012 nyilvántartási számú akkreditált státuszhoz Az EULAB Laboratóriumi és Technológiai Kft. Vizsgáló Laboratórium (2120 Dunakeszi,

Részletesebben

Melléklet. 4. Telep fluidumok viselkedésének alapjai Olajtelepek

Melléklet. 4. Telep fluidumok viselkedésének alapjai Olajtelepek Melléklet 4. Telep fluidumok viselkedésének alapjai 4.1. Olajtelepek A nyersolaj fizikai tulajdonságok és kémiai összetétel alapján igen széles tartományt fednek le, ezért célszerű őket csoportosítani,

Részletesebben

GEOTECHNIKAI VIZSGÁLATOK 2012. 10.29.

GEOTECHNIKAI VIZSGÁLATOK 2012. 10.29. 1 GEOTECHNIKAI VIZSGÁLATOK 2012. 10.29. Laborvizsgálatok 2 Talajazonosító vizsgálatok Víztartalom Szemeloszlás Konzisztencia határok Térfogatsűrűség Hidraulikai jellemzők vizsgálata Áteresztőképesség Összenyomódási

Részletesebben

TALAJAZONOSÍTÁS Kötött talajok

TALAJAZONOSÍTÁS Kötött talajok 2008 PJ-MA SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK TALAJAZONOSÍTÁS Kötött talajok Előadó: Dr. Mahler András mahler@mail.bme.hu Tanszék: K épület, mfsz. 10. &

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Épület alapozása síkalappal (1. rajz feladat) Minden építmény az önsúlyát és a rájutó terheléseket az altalajnak adja át, s állékonysága, valamint tartóssága attól függ, hogy sikerült-e az építmény és

Részletesebben

CPT PÓRUSVÍZNYOMÁS DISSZIPÁCIÓS VIZSGÁLATOK MÉLYSÉGI SZIKES KÖRNYEZETBEN. Kulcsszavak disszipációs kísérlet, CPTu, Szeged, szikes talaj, puha talaj

CPT PÓRUSVÍZNYOMÁS DISSZIPÁCIÓS VIZSGÁLATOK MÉLYSÉGI SZIKES KÖRNYEZETBEN. Kulcsszavak disszipációs kísérlet, CPTu, Szeged, szikes talaj, puha talaj CPT PÓRUSVÍZNYOMÁS DISSZIPÁCIÓS VIZSGÁLATOK MÉLYSÉGI SZIKES KÖRNYEZETBEN Imre Emőke 1 Juhász Miklós 1 Hegedűs Márton 2 Bakacsi Zsófia 3 Rajkai Kálmán 3 Pozsár László 4 Richter László 5 1 Szent István Egyetem,

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

A talajok alapvető jellemzői

A talajok alapvető jellemzői A talajok alapvető jellemzői A talajok felépítése és a tulajdonságaikat meghatározó fő jellemzők Főalkotók A talaj alkotórészei szemcsék - szilárd fázis víz - folyékony fázis levegő - légnemű fázis Egyéb

Részletesebben

a NAT /2006 számú akkreditált státuszhoz

a NAT /2006 számú akkreditált státuszhoz Nemzeti Akkreditáló Testület SZÛKÍTETT RÉSZLETEZÕ OKIRAT a NAT-1-1056/2006 számú akkreditált státuszhoz A H-TPA Innovációs és Minõségvizsgáló Kft. Pécs Laboratórium (7628 Pécs, Eperfás u. 6.; 8900 Zalaegerszeg,

Részletesebben

NYÍRÓSZILÁRDSÁG MEGHATÁROZÁSA KÖZVETLEN NYÍRÁSSAL (kis dobozos nyírókészülékben) Közvetlen nyíróvizsgálat MSZE CEN ISO/TS BEÁLLÍTÁSI ADATOK

NYÍRÓSZILÁRDSÁG MEGHATÁROZÁSA KÖZVETLEN NYÍRÁSSAL (kis dobozos nyírókészülékben) Közvetlen nyíróvizsgálat MSZE CEN ISO/TS BEÁLLÍTÁSI ADATOK BEÁLLÍTÁSI ADATOK Fúrás száma 6F Minta típusa Tömörített kohéziómentes Minta száma 6F/6.0 m Minta leírása Sárgásszürke homokos agyagos iszap Részecske sűrűség (Mg/m³) 2.70 Feltételezett/Mért Feltételezett

Részletesebben

Talajok osztályozása az új szabványok szerint

Talajok osztályozása az új szabványok szerint Talaj- és kőzetosztályozás Talajok osztályozása az új szabványok szerint :5 Geotechnikai vizsgálatok. 1. rész: Azonosítás és leírás. MSZ EN ISO 14688-2:5 Geotechnikai vizsgálatok. 2. rész: Osztályozási

Részletesebben

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1244/2012 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1244/2012 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1244/2012 nyilvántartási számú akkreditált státuszhoz Az INNOTESZT Minőségvizsgáló, Technológiai és Fejlesztési Kft. Mobil Nagylabor

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT-1-1659/2015 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT-1-1659/2015 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület RÉSZLETEZŐ OKIRAT a NAT-1-1659/2015 nyilvántartási számú akkreditált státuszhoz Az IQC Mérnöki Kft. Vizsgáló laboratórium (1112 Budapest, Repülőtéri u. 2.) akkreditált területe

Részletesebben

Termelés- és szolgáltatásmenedzsment

Termelés- és szolgáltatásmenedzsment Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése

Részletesebben

7.1. Al2O3 95%+MLG 5% ; 3h; 4000rpm; Etanol; ZrO2 G1 (1312 keverék)

7.1. Al2O3 95%+MLG 5% ; 3h; 4000rpm; Etanol; ZrO2 G1 (1312 keverék) 7.1. Al2O3 95%+MLG 5% ; 3h; 4000rpm; Etanol; ZrO2 G1 (1312 keverék) 7.1.1. SPS: 1150 C; 5 (1312 K1) Mért sűrűség: 3,795 g/cm 3 3,62 0,14 GPa Három pontos törés teszt: 105 4,2 GPa Súrlódási együttható:

Részletesebben

CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN*

CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN* A Miskolci Egyetem Közleménye A sorozat, Bányászat, 66. kötet, (2004) p. 103-108 CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN* Dr.h.c.mult. Dr. Kovács Ferenc az

Részletesebben

NSZ/NT betonok alkalmazása az M7 ap. S65 jelű aluljáró felszerkezetének építésénél

NSZ/NT betonok alkalmazása az M7 ap. S65 jelű aluljáró felszerkezetének építésénél NSZ/NT betonok alkalmazása az M7 ap. S65 jelű aluljáró felszerkezetének építésénél Betontechnológiai kísérletek Az I. kísérlet sorozatban azt vizsgáltuk, hogy azonos betonösszetétel mellett milyen hatást

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0801 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

A.2. Acélszerkezetek határállapotai

A.2. Acélszerkezetek határállapotai A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

Újdonságok 2013 Budapest

Újdonságok 2013 Budapest Újdonságok 2013 Budapest Tartalom 1. Általános 3 2. Szerkesztés 7 3. Elemek 9 4. Terhek 10 5. Számítás 12 6. Eredmények 13 7. Méretezés 14 8. Dokumentáció 15 2. oldal 1. Általános A 64 bites változat lehetőséget

Részletesebben

Hőszivattyúk - kompresszor technológiák Január 25. Lurdy Ház

Hőszivattyúk - kompresszor technológiák Január 25. Lurdy Ház Hőszivattyúk - kompresszor technológiák 2017. Január 25. Lurdy Ház Tartalom Hőszivattyú felhasználások Fűtős kompresszor típusok Elérhető kompresszor típusok áttekintése kompresszor hatásfoka Minél kisebb

Részletesebben

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 14. Határozzuk meg a nyírásból adódó csúsztatófeszültség

Részletesebben

MUNKAGÖDÖR TERVEZÉSE

MUNKAGÖDÖR TERVEZÉSE MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek

Részletesebben

Utak földművei. Útfenntartási és útüzemeltetési szakmérnök szak 2012. I. félév 2./1. témakör. Dr. Ambrus Kálmán

Utak földművei. Útfenntartási és útüzemeltetési szakmérnök szak 2012. I. félév 2./1. témakör. Dr. Ambrus Kálmán Utak földművei Útfenntartási és útüzemeltetési szakmérnök szak 2012. I. félév 2./1. témakör Dr. Ambrus Kálmán 1. Az utak földműveiről általában 2. A talajok vizsgálatánál használatos fogalmak 3. A talajok

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás. Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

NSZ/NT beton és hídépítési alkalmazása

NSZ/NT beton és hídépítési alkalmazása NSZ/NT beton és hídépítési alkalmazása Farkas Gy.-Huszár Zs.-Kovács T.-Szalai K. R forgalmi terhelésű utak - megnövekedett forgalmi terhelés - fokozott tartóssági igény - fenntartási idő és költségek csökkentése

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Beépítési útmutató Enkagrid georácsokra

Beépítési útmutató Enkagrid georácsokra Enkagrid georácsokra Colbond Geosynthetics GmbH 1. Alkalmazási terület 2. Szállítás és tárolás 3. Altalaj előkészítés 4. Georács fektetése 5. Feltöltés készítése 6. Tömörítés, és tömörségellenörzés 7.

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Függőleges és vízszintes vasalás hatása a téglafalazat nyírási ellenállására

Függőleges és vízszintes vasalás hatása a téglafalazat nyírási ellenállására Függőleges és vízszintes vasalás hatása a téglafalazat nyírási ellenállására FÓDI ANITA Témavezető: Dr. Bódi István Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki kar Hidak és Szerkezetek

Részletesebben

Kádár István 1 Dr. Nagy László 1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem,

Kádár István 1 Dr. Nagy László 1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem, TANULSÁGOK A NYÍRÓSZILÁRDSÁGI PARAMÉTEREK STATISZTIKAI ÉRTÉKELÉSÉBŐL LESSONS OF THE STATISTICAL EVALUATION OF SHEAR STRENGTH PARAMETERS Kádár István 1 Dr. Nagy László 1 1 Budapesti Műszaki és Gazdaságtudományi

Részletesebben

IGAZI, GEORÁCCSAL ERŐSÍTETT HÍDFŐ ELSŐ MAGYARORSZÁGI ALKALMAZÁSA. Tóth Gergő

IGAZI, GEORÁCCSAL ERŐSÍTETT HÍDFŐ ELSŐ MAGYARORSZÁGI ALKALMAZÁSA. Tóth Gergő IGAZI, GEORÁCCSAL ERŐSÍTETT HÍDFŐ ELSŐ MAGYARORSZÁGI ALKALMAZÁSA Tóth Gergő Gradex Mérnöki és Szolgáltató Kft. 1034 Budapest, Bécsi út 120. Telefon: +36-1/436-0990 www.gradex.hu Pálossy, Scharle, Szalatkay:Tervezési

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Mélyépítő technikus Mélyépítő technikus

Mélyépítő technikus Mélyépítő technikus Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/10. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Korrodált acélszerkezetek vizsgálata

Korrodált acélszerkezetek vizsgálata Korrodált acélszerkezetek vizsgálata 1. Szerkezeti példák és laboratóriumi alapkutatás Oszvald Katalin Témavezető : Dr. Dunai László Budapest, 2009.12.08. 1 Általános célkitűzések Korrózió miatt károsodott

Részletesebben

Földstatikai feladatok megoldási módszerei

Földstatikai feladatok megoldási módszerei Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek

Részletesebben

5. Laboratóriumi gyakorlat

5. Laboratóriumi gyakorlat 5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

Akusztikus aktivitás AE vizsgálatoknál

Akusztikus aktivitás AE vizsgálatoknál Akusztikus aktivitás AE vizsgálatoknál Kindlein Melinda, Fodor Olivér ÁEF Anyagvizsgáló Laboratórium Kft. 1112. Bp. Budaörsi út 45. Az akusztikus emissziós vizsgálat a roncsolásmentes vizsgálati módszerek

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

POLIMERTECHNIKA Laboratóriumi gyakorlat

POLIMERTECHNIKA Laboratóriumi gyakorlat MÉRÉSI JEGYZŐKÖNYV Polimer anyagvizsgálat Név: Neptun kód: Dátum:. Gyakorlat célja: 1. Műanyagok folyóképességének vizsgálata, fontosabb reológiai jellemzők kiszámítása 2. Műanyagok Charpy-féle ütővizsgálata

Részletesebben

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2013 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2013 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1728/2013 nyilvántartási számú akkreditált státuszhoz A Holcim Magyarország Kft. Műszaki Szolgáltató Központ Építőanyag-vizsgáló Laboratórium

Részletesebben

se és alkalmazása Alun Thomas RHK Kft. SDMTS

se és alkalmazása Alun Thomas RHK Kft. SDMTS Plate loading módszer m ismertetése se és alkalmazása Alun Thomas SDMTS RHK Kft. Témák Bevezetés San Diego Hindhead Bátaapáti Következtetések Milyen egy helyszíni mérés? Bármilyen vizsgálat, amit valós

Részletesebben

Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése

Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése Tóth László, Rózsahegyi Péter Bay Zoltán Alkalmazott Kutatási Közalapítvány Logisztikai és Gyártástechnikai Intézet Bevezetés A mérnöki

Részletesebben

Kód Megnevezés Előírás. Geotechnikai (talaj és földmű) vizsgálatok. MSZ 14043-6:1980. 1.2.1 pontjai alapján 1.5 Szemeloszlás szitálással

Kód Megnevezés Előírás. Geotechnikai (talaj és földmű) vizsgálatok. MSZ 14043-6:1980. 1.2.1 pontjai alapján 1.5 Szemeloszlás szitálással Kód Megnevezés Előírás 1.1 Mintavétel vizsgálatokhoz MSZ 4488:1976 1.2 Mintavétel vizsgálatokhoz MSZ 140436:1981 1.3 Vizsgálati minta előkészítése MSZ 182841:1991 1.4 Víztartalom MSZ 140436:1980. 1.2.1

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

A vizsgálatok eredményei

A vizsgálatok eredményei A vizsgálatok eredményei A vizsgált vetőmagvak és műtrágyák nagy száma az eredmények táblázatos bemutatását teszi szükségessé, a legfontosabb magyarázatokkal kiegészítve. A közölt adatok a felsorolt publikációkban

Részletesebben

2011.11.08. 7. előadás Falszerkezetek

2011.11.08. 7. előadás Falszerkezetek 2011.11.08. 7. előadás Falszerkezetek Falazott szerkezetek: MSZ EN 1996 (Eurocode 6) 1-1. rész: Az épületekre vonatkozó általános szabályok. Falazott szerkezetek vasalással és vasalás nélkül 1-2. rész:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

Víz az útpályaszerkezetben

Víz az útpályaszerkezetben 40. Útügyi Napok SZEGED 2015. szeptember 15-16. Víz az útpályaszerkezetben Kovácsné Igazvölgyi Zsuzsanna tanársegéd Soós Zoltán PhD hallgató dr. Tóth Csaba adjunktus Az előadás tartalma Problémafelvetés

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

1. ábra. A 10 db azonos valószínűséggel előforduló nyírószilárdsági paraméter értékpár meghatározása.

1. ábra. A 10 db azonos valószínűséggel előforduló nyírószilárdsági paraméter értékpár meghatározása. A Miskolci Egyetem Közleménye, A sorozat, Bányászat, 81. kötet (211) EGY HULLADÉKLERAKÓ MAGASÍTÁSÁNAK TAPASZTALATAI Dr. Szabó Imre, Faur Krisztina Beáta egyetemi tanár, tanszéki mérnök Miskolci Egyetem,

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 2008 PJ TALAJOK AZONOSÍTÁSA BME Geotechnikai Tanszék Szemcsés talajok Azonosítás: Szemeloszlásuk alapján Vizsgálatok: - szitálás - hidrometrálás Talajok azonosítása Kötött talajok Azonosítás: Konzisztencia

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,

Részletesebben

A lineáris programozás 1 A geometriai megoldás

A lineáris programozás 1 A geometriai megoldás A lineáris programozás A geometriai megoldás Készítette: Dr. Ábrahám István A döntési, gazdasági problémák optimalizálásának jelentős részét lineáris programozással oldjuk meg. A módszer lényege: Az adott

Részletesebben

Kémiai reakciók mechanizmusa számítógépes szimulációval

Kémiai reakciók mechanizmusa számítógépes szimulációval Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.

Részletesebben

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ Egykristály és polikristály képlékeny alakváltozása A Frenkel féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges

Részletesebben