HÍRKÖZLÉSTECHNIKA. 1.ea. Dr.Varga Péter János

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "HÍRKÖZLÉSTECHNIKA. 1.ea. Dr.Varga Péter János"

Átírás

1 HÍRKÖZLÉSTECHNIKA 1.ea Dr.Varga Péter János

2 Elérhetőségek 2 Dr.Varga Péter János varga.peter@kvk.uni-obuda.hu Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Telefon: +36 (1) Cím: 1084 Budapest, Tavaszmező u. 17. C ép. 508 WEB:

3 Ajánlott irodalom 3 Tantárgy Jegyzet Szerzők Híradástechnika I. (prezentáció) 2046 Lukács-Mágel-Wührl Híradástechnika I. (könyv) OE KVK 2090 Lukács-Wührl HTE online könyve: Távközlő hálózatok és informatikai szolgáltatások Link:

4 Számonkérés 4 Követelmény típus: Vizsga Osztályzatok - 60% : %: %: %: %: 5

5 Számonkérés 5 Utolsó alkalommal ZH Vizsgaidőszakban 3 vizsgaalkalom

6 6 Szabadon választott félévközi feladatok Kiválasztott aktuális témában elkészített dolgozat Követelmény: Min.: 10 oldal. Formai megfelelés Elérhető százalék a félévi ZH-ból: max. 30% Elkészített dolgozat előadása az utolsó előtti alkalommal Követelmény: Min.: 8-10 slide Formai megfelelés Előadás hossza max. 10 perc Elérhető százalék a félévi ZH-ból: max. 30%

7

8 8

9 9

10 10

11 11

12 12

13 A fejlődés legfontosabb fejezetei 13 A felfedezés időpontja Telefon 1876 Rádióhullámok Televízió 1936 Rádiótelefon 1946 Számítógép 1946 Távközlési műhold 1962 Tároltprogram-vezérlésű telefonközpont 1965 Mikroprocesszor 1971 Fényvezető kábel 1977 Lokális számítógép hálózatok A.G. Bell Feltaláló(k) H. Hertz, A Popov, G. Marconi British Broadcasting Co. (BBC) Cellás rendszer, Bell Laboratórium Electronic Numeric Integrator and Computer (ENIAC) University of Pensylvania Telstar, Bell Laboratórium No. 1. ESS, Bell Laboratórium Intel Corp. Corning Glass Works Ethernet, Xerox-Intel-DEC

14 14 A fejlődés képekben

15

16

17 A Híradástechnika elméleti 17 alapjainak kialakulása Ismeret Hálózatelmélet Elektromágneses térelmélet Forgalomelmélet Jelátvitel, moduláció Hálózatszintézis Statisztikus hírközléselmélet Információelmélet és kódolás Jelfeldolgozás Meghatározó személyek Ohm 1827, Kirchoff 1847, Heaviside 1900, Bode 1945 Maxwell 1873 Erlang 1917 Nyquist, és Hartley Amstrong (FM) 1936, Reekes (PCM) 1937 Foster 1924, Cauer Brune 1931, Darlington 1939 Rice, Wiener, Kotelnikov Shannon, Hamming Cooley és Tukey (FFT) 1965

18 Kiemelkedő magyar alkotók 18 a híradástechnikában Alkotók Puskás Tivadar ( ) Pollák Antal ( ) Virág József ( ) Békésy György ( ) Neumann János ( ) Bay Zoltán ( ) Gábor Dénes ( ) Kozma László ( ) Rényi Alfréd ( ) Alkotásaik Telefonközpont 1878, Telefonhírmondó 1893 Gyorstávíró 1898 Hallási folyamatok kutatása (Nobel díj 1961) Elektronikus számítógép elve Radarjel visszaverődése a holdról 1946 Holográfiai módszer felfedezése (Nobel díj 1971) Telefonközpontok tervezése, számítógép építés Információelmélet

19

20 Témakörök 20 Híradástechnika fogalma Jelek és osztályozásuk Modulációk Digitális jelek előállítása A jelátvitel fizikai közegei Antennák Műholdas helymeghatározás Emberi érzékelés Jelátalakítók Műsorszórás Távközlő hálózatok Mobil távközlés

21 Híradástechnika fogalma 21 Jelek tárolása, továbbítása átalakítása és feldolgozása. Azon (elektronikus) műszaki megoldások összessége, amelyek segítségével információt tudunk átvinni bármely két pont között, bármilyen távolságra, lehetőség szerint kis torzítással és hibával, ésszerű költségek mellett.

22 A hírközlés célja, modellje 22 Üzenet Hír Jel Jel Hír Üzenet Információ forrása Kódoló Adó Kommunikációs csatorna Vevő Dekódoló Információ felhasználása Zaj

23 A hírközlés célja, modellje 23 Üzenet: Továbbításra szánt adathalmaz Hír: Időfüggvénnyé alakított üzenet Jel: A hír elektromos mása Zaj: Minden egyéb, amely az előzőek mellett nem kívánatos jelenségként fellép Cél: VETT ÜZENET = KÜLDÖTT ÜZENET

24 Mi lehet az üzenet? 24 Beszéd Zene Szöveg Állókép Mozgókép Adat

25 Emberi érzékelés 25 Hallás Látás

26 A hallás 26 A hang fogalma: rugalmas közegben terjedő, mechanikus rezgőrendszer által keltett hullám,amely az emberben hangérzetet kelt A kellemetlen hang II ZAJ

27 Az emberi hallás mechanizmusa 27 Külső fül: a fülkagylóból, a hallójáratból és a dobhártyából áll Középfül: a nyomáshullám átalakul rezgéssé a hallócsontocskák segítségével Belső fül: a rezgés folyadékban terjedő hullámmá alakul, a folyadék mozgatja a szőrsejteket, amely a hallóidegekhez csatlakozik

28 28

29 A hangjelenségek felosztása 29 A hangjelenségek felosztása frekvencia alapján f < 20 Hz infrahang Hz < f < 20 khz hallható hangok 20 khz < f < 100 MHz ultrahang MHz < f hiperhang 1. 2.

30 Emberi hallás 30 Hallásküszöb és fájdalomküszöb I db = 10 log I[ W m 2] I 0 [ W m 2] I 0 = [ W m 2]

31 Emberi hallás 31 Hangosság szintek (Fletchner-Munson a Phon görbék)

32 32 Hallás és a zaj

33 33 Hallás és az elfedési jelenség

34 34 A látás A szem

35 Az emberi látás 35 A szembe érkező fénysugarak 2 helyen törnek meg: szaruhártya lencse Áthaladnak az üvegtesten Retinákra érkeznek, ahol kicsinyített fordított állású kép keletkezik A fény hatására a receptorok ingerületbe jönnek Az ingerületet átveszik az idegsejtek és látóidegként kilépnek A látóideg részlegesen átkereszteződik A képet az agy visszafordítja

36 36 A szem felépítése

37 37

38 Fénytechnikai alapok 38 Láthatósági függvény Szín Ibolya Kék Zöld Sárga Narancs Vörös Hullámhossz nm nm nm nm nm nm

39 39 A jelek

40 Alapfogalmak 40 A jel fogalma: A fizikai mennyiség olyan érteke vagy értékváltozása, amely egy egyértelműen hozzárendelt információt hordoz A jel információtartalommal bír Matematikai függvények x D f : értelmezesi tartomány y R f : értékkészlet

41 Jelek felosztása 41 értékkészlet szerint lefolyás szerint az információ megjelenési formája szerint az érték meghatározottsága szerint

42 A jel értékkészlete szerint 42 Folytonos a jel, ha tetszés szerinti értéket vehet fel és értékkészlete folytonos, vagyis egy összefüggő tartomány

43 A jel értékkészlete szerint 43 Szakaszos a jel, ha csak meghatározott, diszkrét (izolált) értékeket vehet fel, egy megszámlálható számhalmaz elemeiből, két szomszédos diszkrét értéke közötti értékkészlete hiányzik. Az ilyen jel, időben folytonos, de értékkészletében diszkrét. (lépcsős, más néven kvantált jelalak, vagy diszkrét értékű jel).

44 Lefolyás szerint 44 Folyamatos a jel, ha a független változó egy adott tartományában megszakítás nélkül fennáll. A folyamatos jel matematikai modellezésénél olyan függvényt alkalmazunk, ahol a független változó t R (R a valós számok halmaza). Dinamikus rendszerek esetében a független változó az idő. Ilyenkor folytonos idejű jelről beszélünk, melynek jele FI.

45 Lefolyás szerint 45 Szaggatott a jel, ha az a független változó egy adott tartományában csak megszakításokkal áll fenn. A független változó meghatározott értékeiben szolgáltatnak információt a jel a többi értékeknél megszakad. Az információszolgáltatás a független változó bizonyos értékeire értelmezett. Időt alkalmazva független változóként eljutunk a diszkrét idejű jel fogalmához, melynek jele a DI.

46 46 Az információ megjelenési formája szerint Analóg a jel, ha az információt a jelhordozó értéke vagy értékváltozása közvetlenül képviseli. Az analóg jel információtartalma tetszőlegesen kis változásokat is közvetít. Digitális a jel, ha az információ a jelhordozó számjegyet kifejező, diszkrét, jelképi értékeiben (kódjaiban) van jelen.

47 Az érték meghatározottsága szerint 47 Determinisztikus a jel, ha értéke meghatározott időfüggvénnyel egyértelműen megadható, elegendő pontossággal lehet mérni, és megismételhető folyamatot hoz létre. T T t t 1 t 2 t 3

48 Az érték meghatározottsága szerint 48 Sztochasztikus a jel, ha véletlen lefolyású, és csak valószínűség-számítási módszerekkel írható le, a jel mérésekor véletlenszerű eredményeket kapunk. Ilyenkor nem tudunk egyértelmű időfüggvényt megadni. A jel statisztikus tulajdonságait kell meghatározni, mint például a várható értékét, szórását.

49 49 Jelek értelmezési tartománya és értékkészlete

50 50 Jelek grafikus ábrázolása

51 Ki volt Fourier? 51 Jean Baptiste Joseph Fourier ( ) matematikus es fizikus A Hő terjedését tanulmányozta 1807-ben írt dolgozatában a hő eloszlását szinuszokkal próbálta közelíteni A dolgozat bírálói: J. L. Lagrange ( ) és P. S. Laplace ( ) A dolgozatot Lagrange kérésére visszautasították 15 évvel később, Lagrange halála után, kiadták a dolgozatot

52 A Fourier transzformáció célja 52 Áttranszformálni a jelet IDŐ tartományból FREKVENCIA tartományba Frekvencia tartományban sokszor egyszerűbb eszközökkel dolgozható fel a jel

53 Sávhatárolt jel 53 x(t) sávhatárolt f 1 <f 2 frekvenciák között, ha a spektrum összetevők az [f 1 f 2 ] és a [-f 1,- f 2 ] intervallumokon kívül zérus súlyúak. spektrum f sávhatárolt f 1 f 2 f

54 Legfontosabb jelek és spektruma 54 Szinuszos jel: f 1 T, 2 f 2 T Négyszög jel: A A T T T t C t sin 0t sin 3 0t sin 5 0t

55 Legfontosabb jelek és spektruma 55 Fűrészjel: C t sin 0t sin 2 0t sin 3 0t C(t) f Szinuszos jel kétutas egyenírányítás után: C(t) f C t sin 0t sin 2 0t sin 3 0t

56 Legfontosabb jelek és spektruma 56 Szinuszos jel egyutas egyenirányítás után C(t) f C t sin t sin 2 0t sin t... t

57 57 Spektrum fontossága

58 A kommunikációban használt 58 fontosabb fogalmak A sávszélesség A sávszélesség az a frekvenciatartomány, amelyben az áramkör használható. A sávszélességet az f 2 -f 1 különbséggel definiáljuk, ahol f 1 az alsó és f 2 az ún. felső határfrekvancia. Ezekben a pontokban a kimenő jel a maximális érték felére esik vissza. BW=f 2 -f 1

59 A kommunikációban használt 59 fontosabb fogalmak A csillapítás Ha valamely elektronikus alkatrész, vagy adatátviteli összeköttetés kimenetén a jel amplitúdója kisebb, mint a bemenetére adott jelé, azt mondjuk, hogy csillapítás lépett fel. Definíció szerint a csillapítás a kimenő és a bemenő teljesítmény hányadosa. A csillapítást az áramkörök belsejében levő veszteségek okozzák.

60 A kommunikációban használt 60 fontosabb fogalmak A decibel-skála A csillapítást decibelben szokás megadni. A decibelskála két teljesítmény arányának (P 1 /P 2 ) logaritmikus skálán való kifejezése

61 61 A kommunikációban használt fontosabb fogalmak A zaj és a jel/zaj viszonyszám Minden olyan jelet, ami nem része az információnak, a kommunikációs összeköttetésben zajnak tekintünk.

62 A hírközlés célja, modellje 62 Üzenet Hír Jel Jel Hír Üzenet Információ forrása Kódoló Adó Kommunikációs csatorna Vevő Dekódoló Információ felhasználása Zaj

63 63 Modulációk

64 Mi a moduláció? 64 A hírközlésben a vivőhullám valamely jellemzőjének változtatását nevezik modulációnak A szinuszos jel három fő paraméterét, az amplitúdóját, a fázisát vagy a frekvenciáját módosíthatja a modulációs eljárás, azért, hogy a vivő információt hordozhasson

65 Miért van szükség modulációra? 65 hullámokat megfelelő hatásfokkal sugározhassuk ha minden adó ugyanazon a frekvencián sugározna, az eredmény az lenne, mintha több száz ember beszélne egyszerre, ugyanabba a teremben

66 Mi az eszköze? 66 A berendezés, amely végrehajtja a modulációt: modulátor A berendezés, ami a visszaállításhoz szükséges inverz műveletet hajtja végre: demodulátor A mindkét művelet végrehajtására képes eszköz (a két kifejezés összevonásából): modem

67 A moduláció fajtái 67 Két alapvető fajtát használunk: analóg moduláció digitális moduláció Forrás s m (t) Modulátor f v s(t) Csatorna N 0 n(t) Zaj r(t) Demodulátor s m (t) moduláló jel (információ) f v vivőfrekvencia s(t) modulált jel r(t) modulált jel és a csatorna zaja s d (t) demodulált jel s d (t) Nyelő

68 Analóg - Amplitúdómoduláció 68 Az elnevezés is utal arra, hogy ezeknél az eljárásoknál az amplitúdó hordozza az információt A modulált jel f AM (t) pillanatnyi amplitúdója a moduláló jel m(t) pillanatnyi értékétől függ f AM ( t) m( t)cos( t) 3 2 U +U v m v 1 U v

69 Szögmodulációk 69 Szögmoduláción olyan modulációs eljárásokat értünk, amelyeknél a szinuszos vivő fázisa hordozza az információt, amplitúdója konstans Amikor a modulált jel fázisa arányos a moduláló jellel, fázismodulációról (PM) beszélünk. Ha a modulált jel (kör)frekvenciája - a fázis idő szerinti deriváltja - arányos a moduláló jellel, frekvenciamodulációval (FM) van dolgunk.

70 Frekvenciamoduláció 70 A szinuszos nagyfrekvenciás vivő pillanatnyi frekvenciája változik a moduláló jellel arányosan, annak ütemében. Miközben amplitúdója állandó marad. A moduláció frekvenciaváltozást löketnek nevezik és Δf a jele. A moduláció nagyságát a modulációs index jelöli: m f = Δf v / f m A maximális löket: B FM = ±Δf

71 71 Frekvenciamoduláció

72 72 FM adó DIY

73 73 FM az autóban

74 74 Digitális jelek előállítása

75 Digitális modulációk 75 A digitális moduláció célja a lehető legtöbb információ átvitele a legkisebb sávszélesség felhasználásával, a legkisebb hibavalószínűséggel. Ellentétben az analóg modulációs eljárásokkal, itt nem feltétel a jelek alakhű átvitele, a digitális üzenet hibaaránya minősíti az átviteli rendszert.

76 Digitális jelek előállítása 76 Első lépés: Mintavételezés Az időben folytonos analóg jelet, időben diszkrétté tesszük. Előáll a Pulzus Amplitúdó Modulált (PAM) jel. X(t) t Tm Mintavételezési frekvencia: f m 1 T m

77 77 Digitális jelek előállítása

78 Digitális jelek előállítása 78 Mintavételezési frekvencia Veszteségmentes jel visszaállítás, a jel mintákból akkor lehetséges, ha f m 2 f max feltétel teljesül. Vagyis a mintavételi frekvencia nagyobb vagy egyenlő mint az analóg jelben előforduló legnagyobb frekvenciájú komponens (f max ) kétszerese.

79 Digitális jelek előállítása 79 Az f m 2 f max teljesülését Shannon mintavételi tételének, vagy Nyquist kritériumnak szoktuk nevezni. Shannon mintavételi tétel betartása esetén a jel mintákból az analóg jel veszteségmentesen reprodukálható!

80 Digitális jelek előállítása 80 Mintavételi tétel betartása a gyakorlatban: Az analóg jelben szereplő maximális frekvencia komponens gyakran nem definiálható, például azért, mert a hasznos jelre zajok, zavarok, nemkívánatos komponensek ülnek additív módon. Megoldás: Sávkorlátozás

81 Digitális jelek előállítása 81 Sávkorlátozás: A sávkorlátozás szűréssel történik (általában aluláteresztő szűrő alkalmazásával). Analóg jel Sávkorlátozott Analóg jel Mintavételező áramkör PAM f m

82 Digitális jelek előállítása 82 PAM jel: - időben diszkrét - halmazon folytonos Ha a PAM jelet a Shannon mintavételi tétel betartásával állítottuk elő, akkor az analóg jel veszteségmentesen visszaállítható. Ellenkező esetben átlapolódás (Aliasing) jelenség lép fel.

83 Digitális jelek előállítása 83 Aliasing jelenség (vizsgálata a frekvencia tartományban) X Ha az alapsávi jelben előforduló maximális frekvencia nagyobb mint a Nyquist frekvencia, akkor az alsó oldalsáv és az alapsáv átlapolódik. X Alapsávi jel spektruma Nyquist frekvencia Alapsávi jel spektruma Alsó oldalsáv f m Alsó oldalsáv Felső oldalsáv Felső oldalsáv f Átlapolódó spektrum f m f

84 84

85 Digitális jelek előállítása 85 Kvantálás és kódolás Második lépés: A mintavételezett jel (PAM) értékkészletét (É.K.) is diszkrétté tesszük, így előáll a digitális jel. Az analóg jel digitalizálását modulációnak is felfoghatjuk, innen ered az elnevezés: PCM Pulse Code Modulation

86 86 Digitális jelek előállítása Kvantálás és kódolás Példa: 0 mv 80 mv, bitek száma n=3, 2 n állapot Digitális szám Ábrázolt feszültség érték mv mv mv mv mv mv mv mv 33,5 mv Hiba: 1,5 mv

87 87 Digitális jelek előállítása Kvantálás és kódolás X(t) Ábrázolandó minták t A jel a továbbiakban csakis az ábrázolandó pontok halmazában lesz értelmezett, vagyis értékkészlete véges n bitszám esetén 2 n db érték értelmezhető

88 Digitális jelek előállítása 88 Kvantálás és kódolás X Kvantálás esetén minden mintára nagyságú zaj ül. Ha a kvantálást matematikai kerekítéssel végezzük, akkor: max két szomszédos min ta közti 2 Lépcsöfél távolság PAM minta t

89 89 Digitális jelek előállítása Kvantálás és kódolás A kvantálásból eredő hiba zajként jelentkezik, ezért azt kvantálási zajnak nevezzük. A értéke egyenletes eloszlású (0 és a lépcső fél tartományban) a rendszerben fehérzajként jelentkezik.

90 90 Digitális jelek előállítása Kvantálás és kódolás A kvantálásból eredő zaj végérvényesen a jelen marad, az onnan a későbbiekben nem távolítható el!

91 91 Digitális jelek előállítása Kvantálás és kódolás Lineáris kvantálás Ekkor az ábrázolási tartományt lineárisan osztjuk 2 n részre Nemlineáris kvantálás Általában logaritmikus, vagy logaritmikus görbe töréspontos közelítése

92 92 Analóg jel visszaállítása a digitális jelből A D/A konverter a mintavételi frekvencia ütemében érkező mintával arányos feszültséget (áramot) állít elő és azt kitartja a következő mintáig. D A Helyreállító szűrő Analóg jel

93 93 Analóg jel visszaállítása a digitális jelből Helyreállító szűrő: Aluláteresztő szűrő Amplitúdó korrektor

94 Teljes digitális lánc 94 A D PCM Átviteli lánc PCM D A f m Tárolás Jelfeldolgozás Veszteség mentes Hibák, torzítások helyei: Sávkorlátozó szűrő (analóg) Kvantálási hiba [additív zaj] Helyreállító szűrő (analóg)

95 95 Digitális lánc és a zaj

96 96

97 Digitális modulációs technikák 97 Az amplitúdóeltolás-billentyűzés (ASK, Amplitude- Shift Keying) véges számú amplitúdót használ, és nagyon hasonlít az impulzus-kód modulációhoz. A frekvenciaeltolás-billentyűzés (FSK, frequency- Shift Keying) véges számú frekvenciát használ. A fáziseltolás-billentyűzés (PSK, phase-shift keying) véges számú fázist használ.

98 98 Vivőfrekvenciás digitális modulációs rendszerek ASK FSK PSK AM-DSB A moduláló jel alapsávi Impulzus formálás után

99 99 Amplitúdó billentyűzés ASK (Amplitude Shift Keying) Amplitúdó billentyűzés esetén a vivő jel szinuszos, a moduláló jel pedig digitális (értékkészlete 0 vagy 1 ). A moduláló jel jelen esetben a vivő jel amplitúdóját változtatja ( kapcsolgatja ). Az így előállított jel (modulált jel) teljesítményszintje folyamatosan ingadozó, mivel a logikai 0 - hoz A0, a logikai 1 -hez pedig A1 amplitudó tartozik. u ASK (t) = A * sin (2 * * f + )

100 100 Frekvencia billentyűzés FSK (Frequency Shift Keying) Frekvencia billentyűzés esetén a vivő jel szinuszos, a moduláló jel pedig digitális (értékkészlete 0 vagy 1 ). A moduláló jel jelen esetben a vivő jel frekvenciáját (f p ) változtatja, például a logikai 0 -hoz f 0, míg a logikai 1 -hez f 1 tartozik. u FSK (t) = A * sin (2 * * f p + ), ahol A az FSK jel amplitúdója, f p a vivő jel pillanatnyi frekvenciája (f 0 vagy f 1 ), pedig a vivőjel kezdőfázisa.

101 101 Fázis billentyűzés PSK (Phase Shift Keying) Fázis billentyűzés esetén a vivő jel szinuszos, a moduláló jel pedig digitális (értékkészlete 0 vagy 1 ). A moduláló jel jelen esetben a vivő jel fázisát változtatja. u PSK (t) = A * sin (2 * * fp + ) ahol az A a PSK jel amplitúdója, az f a vivő jel frekvenciája, a pedig a vivőjel pillanatnyi fázisa ( 0 vagy 1... n ).

102 Többszintű fázis billentyűzés (QPSK) 102 PSK egyfrekvenciás hordozó 2 n fázishelyzetbe kódolják. Pl.: n=2 8 fázisú jellel 3 bit kódolható bit értékpárjai 4 fázisú PSK Jel és zaj elválasztása 8 fázisú PSK esetén Tovább nem növelhető így, mert nehéz a fázishelyzetek megállapítása a zaj miatt. Referencia jel szükséges, amihez a pillanatnyi fázishelyzetet viszonyítják.

103 Többszintű fázis billentyűzés (QPSK) 103 Scatter plot Zajos csatornán továbbított jel konstellációs ábrája Quadrature Quadrature In-Phase In-Phase

104 Digitális modulációk 104 QAM (quadratura amplitudo modulation) A PSK továbbfejlesztésének tekinthető, bár a jel előállítása és detektálása eltérően történik. 16 állapotú QAM: Fázis és amplitúdó is változik

105 105 Digitális modulációk

106 QAM

107 107 DVB-C beállítása

108 108 A jelátvitel fizikai közegei

109 Történelem 109 A hálózatok fejlődésének kezdetén különféle célorientált hálózatok jöttek létre: távközlő hálózatok műsorelosztó hálózatok adathálózatok Fejlődés integrált hálózatok létrejötte Megvalósult: eszközök szintjén hálózatok szintjén

110 110

111 111 T M A

112 112 Az átviteli rendszer tervezésekor a legfontosabb szempontok a kívánt adatátviteli sebesség elérése megfelelő távolság áthidalása reflexiómentesség (visszaverődés nélküli rendszer) Minden esetben igyekszünk a reflexió mértékét az egész átviteli frekvenciasávban a lehető legalacsonyabban tartani

113 113 A jelátvitel fizikai közegei

114 Forrás 114 Lukács-Mágel-Wührl: Híradástechnika I. (prezentáció) Lukács-Wührl: Híradástechnika I. (könyv) Pletl Szilveszter-Magyar Attila: Jelek és rendszerek példatár Távközlő hálózatok és informatikai szolgáltatások online könyv ANTAL Margit: Jelfeldolgozas - 5. előadás (2007) Jákó András: Wireless LAN, BME EISzK Rick Graziani: Antennas, Cabrillo College Mohó László: Rádióhullámok és antennák Dér Balázs: Passzív hálózati elemek telepítése

115 Forrás 115 Lukács-Mágel-Wührl: Híradástechnika I. (prezentáció) Lukács-Wührl: Híradástechnika I. (könyv) Pletl Szilveszter-Magyar Attila: Jelek és rendszerek példatár Távközlő hálózatok és informatikai szolgáltatások online könyv ANTAL Margit: Jelfeldolgozas - 5. előadás (2007)

Híradástechnika I. 1.ea

Híradástechnika I. 1.ea } Híradástechnika I. 1.ea Dr.Varga Péter János 2 Híradástechnika Intézet Elérhetőségek Dr.Varga Péter János E-mail: varga.peter@kvk.uni-obuda.hu Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet

Részletesebben

Híradástechnika I. 1.ea

Híradástechnika I. 1.ea } Híradástechnika I. 1.ea Dr.Varga Péter János Elérhetőségek Dr.Varga Péter János E-mail: varga.peter@kvk.uni-obuda.hu Kandó Kálmán Villamosmérnöki Kar Telefon: +36 (1) 666-5140 Cím: 1084 Budapest, Tavaszmező

Részletesebben

Híradástechnika I. 2.ea

Híradástechnika I. 2.ea } Híradástechnika I. 2.ea Dr.Varga Péter János Spektrum ábra példa Híradástechnika Intézet 2 A kommunikációban használt fontosabb fogalmak A sávszélesség A sávszélesség az a frekvenciatartomány, amelyben

Részletesebben

Hírközléstechnika 2.ea

Hírközléstechnika 2.ea } Hírközléstechnika 2.ea Dr.Varga Péter János Modulációk 2 Miért van szükség modulációra? hullámokat megfelelő hatásfokkal sugározhassuk ha minden adó ugyanazon a frekvencián sugározna, az eredmény az

Részletesebben

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János HÍRADÁSTECHNIKA I. 2. Dr.Varga Péter János 2 Modulációk Miért van szükség modulációra? 3 hullámokat megfelelő hatásfokkal sugározhassuk ha minden adó ugyanazon a frekvencián sugározna, az eredmény az lenne,

Részletesebben

HÍRKÖZLÉSTECHNIKA. 2.ea. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. 2.ea. Dr.Varga Péter János HÍRKÖZLÉSTECHNIKA 2.ea Dr.Varga Péter János 2 Digitális jelek előállítása Digitális jelek előállítása 3 Híradástechnika I. (prezentáció) jegyzet 48.dia Digitális jelek előállítása 4 Híradástechnika I.

Részletesebben

Dr.Varga Péter János HÍRADÁSTECHNIKA. 1.ea

Dr.Varga Péter János HÍRADÁSTECHNIKA. 1.ea Dr.Varga Péter János HÍRADÁSTECHNIKA 1.ea Elérhetőségek 2 Dr.Varga Péter János e-mail: varga.peter@kvk.uni-obuda.hu Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Telefon: +36 (1) 666-5140 Cím:

Részletesebben

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRADÁSTECHNIKA I. Dr.Varga Péter János 3. HÍRADÁSTECHNIKA I. Dr.Varga Péter János Digitális modulációk 2 A digitális moduláció célja a lehető legtöbb információ átvitele a legkisebb sávszélesség felhasználásával, a legkisebb hibavalószínűséggel.

Részletesebben

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ] Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt

Részletesebben

Elektronika Előadás. Modulátorok, demodulátorok, lock-in erősítők

Elektronika Előadás. Modulátorok, demodulátorok, lock-in erősítők Elektronika 2 10. Előadás Modulátorok, demodulátorok, lock-in erősítők Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki

Részletesebben

5. témakör. Szögmodulációk: Fázis és frekvenciamoduláció FM modulátorok, demodulátorok

5. témakör. Szögmodulációk: Fázis és frekvenciamoduláció FM modulátorok, demodulátorok 5. témakör Szögmodulációk: Fázis és frekvenciamoduláció FM modulátorok, demodulátorok Szögmoduláció Általánosan felírva a vivőfrekvenciás jelet (AM-nél megismert módon): Amennyiben a vivő pillanatnyi amplitúdója

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Informatikai eszközök fizikai alapjai Lovász Béla

Informatikai eszközök fizikai alapjai Lovász Béla Informatikai eszközök fizikai alapjai Lovász Béla Kódolás Moduláció Morzekód Mágneses tárolás merevlemezeken Modulációs eljárások típusai Kódolás A kód megállapodás szerinti jelek vagy szimbólumok rendszere,

Részletesebben

Mintavételezés és AD átalakítók

Mintavételezés és AD átalakítók HORVÁTH ESZTER BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM JÁRMŰELEMEK ÉS JÁRMŰ-SZERKEZETANALÍZIS TANSZÉK ÉRZÉKELÉS FOLYAMATA Az érzékelés, jelfeldolgozás általános folyamata Mérés Adatfeldolgozás 2/31

Részletesebben

NEPTUN-kód: KHTIA21TNC

NEPTUN-kód: KHTIA21TNC Kredit: 5 Informatika II. KHTIA21TNC Programozás II. oratórium nappali: 2 ea+ 0 gy+ 0 KMAPR22TNC Dr. Beinschróth József Az aláírás megszerzésnek feltétele: a félév folyamán 2db. ZH mindegyikének legalább

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.

Részletesebben

2. gyakorlat Mintavételezés, kvantálás

2. gyakorlat Mintavételezés, kvantálás 2. gyakorlat Mintavételezés, kvantálás x(t) x[k]= =x(k T) Q x[k] ^ D/A x(t) ~ ampl. FOLYTONOS idı FOLYTONOS ANALÓG DISZKRÉT MINTAVÉTELEZETT DISZKRÉT KVANTÁLT DIGITÁLIS Jelek visszaállítása egyenköző mintáinak

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

Választható önálló LabView feladatok 2013 A zárójelben szereplő számok azt jelentik, hogy hány főnek lett kiírva a feladat

Választható önálló LabView feladatok 2013 A zárójelben szereplő számok azt jelentik, hogy hány főnek lett kiírva a feladat Választható önálló LabView feladatok 2013 A zárójelben szereplő számok azt jelentik, hogy hány főnek lett kiírva a feladat 1) Hálózat teszt. Folyamatosan működő számítógép hálózat sebességet mérő programot

Részletesebben

Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel

Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel Németh Krisztián BME TMIT 2017. február 14. A tárgy felépítése 1. Bevezetés Bemutatkozás, játékszabályok, stb. Technikatörténeti áttekintés Mai

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY Dr. Soumelidis Alexandros 2018.10.25. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mintavételezés

Részletesebben

2. Az emberi hallásról

2. Az emberi hallásról 2. Az emberi hallásról Élettani folyamat. Valamilyen vivőközegben terjedő hanghullámok hatására, az élőlényben szubjektív hangérzet jön létre. A hangérzékelés részben fizikai, részben fiziológiai folyamat.

Részletesebben

Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel

Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel Németh Krisztián BME TMIT 2016. február 23. A tárgy felépítése 1. Bevezetés Bemutatkozás, játékszabályok, stb. Technikatörténeti áttekintés Mai

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu

Részletesebben

DIGITÁLIS KOMMUNIKÁCIÓ Oktató áramkörök

DIGITÁLIS KOMMUNIKÁCIÓ Oktató áramkörök DIGITÁLIS KOMMUNIKÁCIÓ Oktató áramkörök Az elektronikus kommunikáció gyors fejlődése, és minden területen történő megjelenése, szükségessé teszi, hogy az oktatás is lépést tartson ezzel a fejlődéssel.

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt.

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális jel esetében?

Részletesebben

A fázismoduláció és frekvenciamoduláció közötti különbség

A fázismoduláció és frekvenciamoduláció közötti különbség Fázismoduláció (PM) A fázismoduláció és frekvenciamoduláció közötti különbség A fázismoduláció, akárcsak a frekvenciamoduláció, a szögmoduláció kategóriájába sorolható. Mivel a modulációs index és a fázislöket

Részletesebben

Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése

Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése Németh Krisztián BME TMIT 2015. szept. 14, 21. A tárgy felépítése 1. Bevezetés Bemutatkozás, játékszabályok, stb. Történelmi áttekintés

Részletesebben

Orvosi Fizika és Statisztika

Orvosi Fizika és Statisztika Orvosi Fizika és Statisztika Szegedi Tudományegyetem Általános Orvostudományi Kar Természettudományi és Informatikai Kar Orvosi Fizikai és Orvosi Informatikai Intézet www.szote.u-szeged.hu/dmi Orvosi fizika

Részletesebben

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI.

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI. 216. okóber 7., Budapes JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI. Alapfogalmak, fizikai réeg mindenki álal ismer fogalmak (hobbiból azér rákérdezheek vizsgán): jel, eljesímény,

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1

Részletesebben

Választható önálló LabView feladatok 2015. A zárójelben szereplő számok azt jelentik, hogy hány főnek lett kiírva a feladat

Választható önálló LabView feladatok 2015. A zárójelben szereplő számok azt jelentik, hogy hány főnek lett kiírva a feladat Választható önálló LabView feladatok 2015 A zárójelben szereplő számok azt jelentik, hogy hány főnek lett kiírva a feladat 1) Hálózat teszt. Folyamatosan működő számítógép hálózat sebességet mérő programot

Részletesebben

Digitális modulációk vizsgálata WinIQSIM programmal

Digitális modulációk vizsgálata WinIQSIM programmal Digitális modulációk vizsgálata WinIQSIM programmal Lódi Péter(D1WBA1) Bartha András(UKZTWZ) 2016. október 24. 1. Mérés célja Mérés helye: PPKE-ITK 3. emeleti 321-es Mérőlabor Mérés ideje: 2016.10.24.

Részletesebben

Hangtechnika. Médiatechnológus asszisztens

Hangtechnika. Médiatechnológus asszisztens Vázlat 3. Előadás - alapjai Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Ismétlés Vázlat I.rész: Ismétlés II.rész: A digitális Jelfeldolgozás

Részletesebben

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.

Részletesebben

Informatika Rendszerek Alapjai

Informatika Rendszerek Alapjai Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának

Részletesebben

9. Modulátorok. Losonczi Lajos - Analóg áramkörök kurzus - Sapientia Tudományegyetem Marosvásárhely 9-1

9. Modulátorok. Losonczi Lajos - Analóg áramkörök kurzus - Sapientia Tudományegyetem Marosvásárhely 9-1 9. Modulátorok A modulátorok olyan elektronikus áramkörök, amelyek egy vivő jel paramétereit módosítják (modulálják), egy információt tartalmazó jel függvényében. A moduláló jel tartalmazza az információt,

Részletesebben

Választható önálló LabView feladatok 2017

Választható önálló LabView feladatok 2017 1) Alapsávi vezetékes átvitelben használt modulációs eljárások I. Egy elméleti összefoglalót kérek annak bemutatására, hogy alapsávi telefonmodemek milyen modulációs eljárással kommunikálnak, és hogyan

Részletesebben

Analóg digitális átalakítók ELEKTRONIKA_2

Analóg digitális átalakítók ELEKTRONIKA_2 Analóg digitális átalakítók ELEKTRONIKA_2 TEMATIKA Analóg vs. Digital Analóg/Digital átalakítás Mintavételezés Kvantálás Kódolás A/D átalakítók csoportosítása A közvetlen átalakítás A szukcesszív approximációs

Részletesebben

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók Elektronika 2 9. Előadás Digitális-analóg és analóg-digitális átalakítók Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki

Részletesebben

ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem. Jelfeldolgozás. ANTAL Margit. Adminisztratív. Bevezetés. Matematikai alapismeretek.

ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem. Jelfeldolgozás. ANTAL Margit. Adminisztratív. Bevezetés. Matematikai alapismeretek. Jelfeldolgozás 1. Sapientia - Erdélyi Magyar Tudományegyetem 2007 és jeleket generáló és jeleket generáló és jeleket generáló Gyakorlatok - MATLAB (OCTAVE) (50%) Írásbeli vizsga (50%) és jeleket generáló

Részletesebben

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, 2011. május 19., Budapest

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, 2011. május 19., Budapest JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI. 2011. május 19., Budapest Alapfogalmak, fizikai réteg mindenki által l ismert fogalmak (hobbiból azért rákérdezhetek k vizsgán): jel,

Részletesebben

INFOKOMMUNIKÁCIÓS RENDSZEREK MENEDZSMENTJE

INFOKOMMUNIKÁCIÓS RENDSZEREK MENEDZSMENTJE BME Gazdaság- és Társadalomtudományi Kar Műszaki menedzser alapszak (BSc) INFOKOMMUNIKÁCIÓS RENDSZEREK MENEDZSMENTJE Infokommunikációs alapfogalmak Vezetékes beszédkommunikáció Dr. Babarczi Péter - Dr.

Részletesebben

Digitális mérőműszerek

Digitális mérőműszerek KTE Szakmai nap, Tihany Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt KT-Electronic MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális TV jel esetében? Milyen paraméterekkel

Részletesebben

2011. május 19., Budapest UWB ÁTTEKINTÉS

2011. május 19., Budapest UWB ÁTTEKINTÉS 2011. május 19., Budapest UWB ÁTTEKINTÉS Mi az UWB? Hot new topic. Más elnevezések: impulzus rádió, alapsávi rádió, vivő- mentes rádió. Az USA védelmi minisztériuma használta először az UWB elnevezést

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása

Részletesebben

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:

Részletesebben

Modulációk vizsgálata

Modulációk vizsgálata Modulációk vizsgálata Mérés célja: Az ELVIS próbapanel használatának és az ELVIS műszerek, valamint függvénygenerátor használatának elsajátítása, tapasztalatszerzés, ismerkedés a frekvencia modulációs

Részletesebben

Informatika Rendszerek Alapjai

Informatika Rendszerek Alapjai Informatika Rendszerek Alapjai Dr. Kutor László Alapfogalmak Információ-feldolgozó paradigmák Analóg és digitális rendszerek jellemzői Jelek típusai Átalakítás rendszerek között http://uni-obuda.hu/users/kutor/

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás

Részletesebben

Kvantálási torzítás mérése PCM A karakterisztika

Kvantálási torzítás mérése PCM A karakterisztika Kvantálási torzítás mérése PCM A karakterisztika Elméleti összefoglaló PCM kódolás, dekódolás (Coding) Az analóg jel az A/D átalakítást követıen válik digitálissá. A konverzió több lépésben történik: Mintavételezés;

Részletesebben

A PC vagyis a személyi számítógép

A PC vagyis a személyi számítógép ismerd meg! A PC vagyis a személyi számítógép XX. rész A hangkártya 1. Bevezetés A hangkártya (sound-card) egy bõvítõ kártya, amely az alaplapon elhelyezkedõ hangszóró gyenge hangminõségét küszöböli ki.

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

OFDM-jelek előállítása, tulajdonságai és méréstechnikája

OFDM-jelek előállítása, tulajdonságai és méréstechnikája OFDM-jelek előállítása, tulajdonságai és méréstechnikája Mérési útmutató Kidolgozta: Szombathy Csaba tudományos segédmunkatárs Budapest, 2016. A mérés célja, eszközei A jelen laborgyakorlat célja sokvivős

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos

Részletesebben

1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban

1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban 1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz

Részletesebben

Alapvető Radar Mérések LeCroy oszcilloszkópokkal Radar impulzusok demodulálása és mérése

Alapvető Radar Mérések LeCroy oszcilloszkópokkal Radar impulzusok demodulálása és mérése Alapvető Radar Mérések LeCroy oszcilloszkópokkal Radar impulzusok demodulálása és mérése Összefoglalás A radar rendszerekben változatos modulációs módszereket alkalmaznak, melyek közé tartozik az amplitúdó-,

Részletesebben

A hang mint mechanikai hullám

A hang mint mechanikai hullám A hang mint mechanikai hullám I. Célkitűzés Hullámok alapvető jellemzőinek megismerése. A hanghullám fizikai tulajdonságai és a hangérzet közötti összefüggések bemutatása. Fourier-transzformáció alapjainak

Részletesebben

Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése

Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése Németh Krisztián BME TMIT 2011. szet. 12. A tárgy feléítése 1. Bevezetés Bemutatkozás, játékszabályok, stb. Történelmi áttekintés Mai

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két

Részletesebben

Nagyfrekvenciás rendszerek elektronikája házi feladat

Nagyfrekvenciás rendszerek elektronikája házi feladat Nagyfrekvenciás rendszerek elektronikája házi feladat Az elkészítendő kis adatsebességű, rövidhullámú, BPSK adóvevő felépítése a következő: Számítsa ki a vevő földelt bázisú kis zajú hangolt kollektorkörös

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ Dr. Soumelidis Alexandros 2018.09.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG A tárgy célja

Részletesebben

3.18. DIGITÁLIS JELFELDOLGOZÁS

3.18. DIGITÁLIS JELFELDOLGOZÁS 3.18. DIGITÁLIS JELFELDOLGOZÁS Az analóg jelfeldolgozás során egy fizikai mennyiséget (pl. a hangfeldolgozás kapcsán a levegő nyomásváltozásait) azzal analóg (hasonló, arányos) elektromos feszültséggé

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Távközlő hálózatok és szolgáltatások IP hálózatok elérése távközlő és kábel-tv hálózatokon

Távközlő hálózatok és szolgáltatások IP hálózatok elérése távközlő és kábel-tv hálózatokon Távközlő hálózatok és szolgáltatások IP hálózatok elérése távközlő és kábel-tv hálózatokon Németh Krisztián BME TMIT 2009. szet. 23. A tárgy feléítése 1. Bevezetés 2. IP hálózatok elérése távközlő és kábel-tv

Részletesebben

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.

Részletesebben

Wavelet transzformáció

Wavelet transzformáció 1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan

Részletesebben

1. A hang, mint akusztikus jel

1. A hang, mint akusztikus jel 1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem

Részletesebben

Iványi László ARM programozás. Szabó Béla 6. Óra ADC és DAC elmélete és használata

Iványi László ARM programozás. Szabó Béla 6. Óra ADC és DAC elmélete és használata ARM programozás 6. Óra ADC és DAC elmélete és használata Iványi László ivanyi.laszlo@stud.uni-obuda.hu Szabó Béla szabo.bela@stud.uni-obuda.hu Mi az ADC? ADC -> Analog Digital Converter Analóg jelek mintavételezéssel

Részletesebben

6. témakör. Mintavételezés elve Digitális jelfeldolgozás (DSP) alapjai

6. témakör. Mintavételezés elve Digitális jelfeldolgozás (DSP) alapjai 6. témakör Mintavételezés elve Digitális jelfeldolgozás (DSP) alapjai A mintavételezés blokkvázlata Mintavételezés: Digitális jel mintavevô kvantáló kódoló Átvitel Tárolás antialiasing szűrő Feldolgozás

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció

Részletesebben

ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS

ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS Földtudományi mérnöki MSc mesterszak 2018/19 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy

Részletesebben

Audiofrekvenciás jel továbbítása optikai úton

Audiofrekvenciás jel továbbítása optikai úton Audiofrekvenciás jel továbbítása optikai úton Mechanikai rezgések. Hanghullámok. Elektromágneses rezgések. Rezgésnek nevezünk minden olyan állapotváltozást, amely időben valamilyen ismétlődést mutat. A

Részletesebben

BME Mobil Innovációs Központ

BME Mobil Innovációs Központ rádiós lefedettség elméleti jellemzői és gyakorlati megvalósulása, elméleti alapok rofesszionális Mobiltávközlési Nap 010 Dr. ap László egyetemi tanár, az MT rendes tagja BME Mobil 010.04.15. 1 rádiókommunikáció

Részletesebben

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki. Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 2. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-2/1 Ellenállás mérés és adatbeolvasás Rn ismert

Részletesebben

A/D és D/A átalakítók gyakorlat

A/D és D/A átalakítók gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem A/D és D/A átalakítók gyakorlat Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2013. február 27. ebook ready Tartalom 1 A/D átalakítás alapjai (feladatok)

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek

Részletesebben

Széchenyi István Egyetem Távközlési Tanszék Szám: L103 Mérési útmutató

Széchenyi István Egyetem Távközlési Tanszék Szám: L103 Mérési útmutató Szám: L103 Mérési útmutató Labor gyakorlat (NGB_TA009_1) laboratóriumi gyakorlathoz Készítette: Szemenyei Balázs BSc hallgató Konzulens: Vári Péter, Soós Károly Győr, 2011. szeptember 7. A laborgyakorlat

Részletesebben

Csomagok dróton, üvegen, éterben. Szent István Gimnázium, Budapest Tudományos nap Papp Jenő 2014 április 4

Csomagok dróton, üvegen, éterben. Szent István Gimnázium, Budapest Tudományos nap Papp Jenő 2014 április 4 Csomagok dróton, üvegen, éterben Szent István Gimnázium, Budapest Tudományos nap Papp Jenő 2014 április 4 Az Internet, a legnagyobb csomagalapú hálózat Az Internet, a legnagyobb csomagalapú hálózat Csomag

Részletesebben

Az irányítástechnika alapfogalmai

Az irányítástechnika alapfogalmai Az irányítástechnika alapfogalmai 2014. 02. 08. Folyamatirányítás - bevezetés Legyen adott egy tetszőleges technológiai rendszer Mi a cél? üzemeltetés az előírt tevékenység elvégzése (termék előállítása,

Részletesebben

Az irányítástechnika alapfogalmai. 2008.02.15. Irányítástechnika MI BSc 1

Az irányítástechnika alapfogalmai. 2008.02.15. Irányítástechnika MI BSc 1 Az irányítástechnika alapfogalmai 2008.02.15. 1 Irányítás fogalma irányítástechnika: önműködő irányítás törvényeivel és gyakorlati megvalósításával foglakozó műszaki tudomány irányítás: olyan művelet,

Részletesebben

4. gyakorlat: Analóg modulációs eljárások

4. gyakorlat: Analóg modulációs eljárások 4 gyakorlat: Analóg modulációs eljárások O4 Kétoldalsávos AM jel előállítása és demodulációja Az ideális (torzítatlan) kétoldalsávos amplitúdómodulált (AM-DSB) jel időfüggvénye U x( cos Ft (*) alakú, ahol

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

Beszédinformációs rendszerek 5. gyakorlat Mintavételezés, kvantálás, beszédkódolás. Csapó Tamás Gábor

Beszédinformációs rendszerek 5. gyakorlat Mintavételezés, kvantálás, beszédkódolás. Csapó Tamás Gábor Beszédinformációs rendszerek 5. gyakorlat Mintavételezés, kvantálás, beszédkódolás Csapó Tamás Gábor 2016/2017 ősz MINTAVÉTELEZÉS 2 1. Egy 6 khz-es szinusz jelet szűrés nélkül mintavételezünk

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Objektív beszédminősítés

Objektív beszédminősítés Objektív beszédminősítés Fegyó Tibor fegyo@tmit.bme.hu Beszédinformációs rendszerek -- Objektív beszédminõsítés 1 Beszédinformációs rendszerek -- Objektív beszédminõsítés 2 Bevezető kérdések Mi a [beszéd]

Részletesebben

Akusztikus MEMS szenzor vizsgálata. Sós Bence JB2BP7

Akusztikus MEMS szenzor vizsgálata. Sós Bence JB2BP7 Akusztikus MEMS szenzor vizsgálata Sós Bence JB2BP7 Tartalom MEMS mikrofon felépítése és típusai A PDM jel Kinyerhető információ CIC szűrő Mérési tapasztalatok. Konklúzió MEMS (MicroElectrical-Mechanical

Részletesebben

A rezgőkörben ilyen elektromágneses tér jön létre. A zárt rezgőkörben (2. ábra) az erőterek szóródása, így kisugárzása kicsiny. 2.

A rezgőkörben ilyen elektromágneses tér jön létre. A zárt rezgőkörben (2. ábra) az erőterek szóródása, így kisugárzása kicsiny. 2. 3.11. Rádió adás és rádió vétel 3.11.1. Alapfogalmak Rádióösszeköttetés A rádióösszeköttetés az adó- és a vevőállomás közötti vezeték nélküli jelátvitelt jelent. (Az átvitt jel lehet távírójel, hang, állókép,

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

Gingl Zoltán, Szeged, 2015. 2015.09.29. 19:14 Elektronika - Alapok

Gingl Zoltán, Szeged, 2015. 2015.09.29. 19:14 Elektronika - Alapok Gingl Zoltán, Szeged, 2015. 1 2 Az előadás diasora (előre elérhető a teljes anyag, fejlesztések mindig történnek) Könyv: Török Miklós jegyzet Tiezte, Schenk, könyv interneten elérhető anyagok Laborjegyzet,

Részletesebben