Mesterséges Intelligencia MI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mesterséges Intelligencia MI"

Átírás

1 Mesterséges Intelligencia MI Egyszerű döntés. Tanuljuk meg! Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437,

2 ?

3 Kétértékű függvény = osztályozás = bináris döntés cs t = f(m T, cs T, TB t-1 ) = igaz / hamis igazi állapot f(x) feltételezett állapot h(x) helyzet paciens beteg felismerjük kezeljük, helyesen tesszünk f(x) = I h(x) = I Igaz Pozitív, True Positive TP paciens egészséges felismerjük nem kezeljük, most is jól f(x) = H h(x) = H tesszünk, Igaz Negatív, True Negative TN paciens beteg nem ismerjük fel nem kezeljük, nem járunk el jól, Hamis Negatív, f(x) = I h(x) = H False Negative FN, ( elnézett támadás, 2. tip. hiba) paciens egészséges nem ismerjük fel kezeljük fölöslegesen, nem járunk el jól, Hamis Pozitív, f(x) = H h(x) = I False Positive FP, ( hamis riadó, 1. tip. hiba)

4 Néhány esetre kiprobáltuk betegek döntés: belül pozitív kívül - negatív egészségesek TP = 5, TN = 11, FP = 4, FN = 10 P = 15, N = 15 true positive rate (TPR) igaz pozitív arány, érzékenység felidézés (hit rate, recall, sensitivity) TPR = TP/P = TP / (TP+FN) false positive rate (FPR) hamis pozitív arány (false alarm rate, fall-out) FPR = FP/N = FP / (FP+TN) és sok más TPR = TP / (TP+FN) = 5/15 =.33 FPR = FP / (FP+TN) = 4/15 =.26 ACC = (TP+TN)/(P+N) = 1/2 =.5

5 Néhány esetre kiprobáltuk Melyik jobb? betegek betegek egészségesek TP = 10, TN = 9, FP = 6, FN = 5 egészségesek TP = 9, TN = 12, FP = 3, FN = 6

6 Hiba (confusion) matrix true positive rate (TPR) TPR = TP/P = TP / (TP+FN) false positive rate (FPR) FPR = FP/N = FP / (FP+TN) Döntés Populáció Beteg Egészséges Beteg TP FP Egészséges FN TN ROC: Vevő működési karakterisztika Receiver Operating Characteristic A.U.C Area Under Curve

7 Probléma: döntés, hogy milyen esettel állunk szemben egy numerikus paraméter értéke alapján. Cél: rájönni, mi teszt (optimális) küszöb értéke.

8 ROC: Vevő működési karakterisztika Receiver Operating Characteristic

9 Probléma: döntés, hogy egy adott étteremben várjunk-e asztalra. Cél: előállítani a döntés logikai definícióját. A probléma milyen tulajdonsága vagy attribútuma ismert? 1. Alternatíva: van-e a környéken más megfelelő étterem. (I/N) 2. Bár: van-e az étteremben kényelmes bár, ahol várhatunk. (I/N) 3. Pén/Szom: igaz pénteken- és szombatonként. (I/N) 4. Éhes: éhesek vagyunk-e. (I/N) 5. Kuncsaft: hányan vannak már benn (Senki, Néhány és Tele). 6. Ár: mennyire drága (Olcsó, Közepes, Drága) 7. Eső: esik-e kint (I/N) 8. Foglalás: foglalni kell-e előzetesen az asztalt (I/N) 9. Típus: az étterem típusa (Francia, Olasz, Thai v. Burger) 10. BecsültVár: a pincér által bemondott várakozási idő (0-10 perc, 10-30, 30-60, >60 perc) VárniFog = f(alternativa, Bár, Pén/Szom, Éhes, Kuncsaft, Ár, Eső, Foglalás, Típus, BecsültVár, )

10 Az eddigi kiruccanásaink tapasztalata Pl. Attribútumok Cél Altern Bár Pént Éhes Kuncs Ár Eső Fogl Típus Becs VárniFog X 1 Igen Nem Nem Igen Néhány Drága Nem Igen Francia 0 10 Igen X 2 Igen Nem Nem Igen Tele Olcsó Nem Nem Thai Nem X 3 Nem Igen Nem Nem Néhány Olcsó Nem Nem Burger 0 10 Igen X 4 Igen Nem Igen Igen Tele Olcsó Nem Nem Thai Igen X 5 Igen Nem Igen Nem Tele Drága Nem Igen Francia >60 Nem X 6 Nem Igen Nem Igen Néhány Közep Igen Igen Olasz 0 10 Igen X 7 Nem Igen Nem Nem Senki Olcsó Igen Nem Burger 0 10 Nem X 8 Nem Nem Nem Igen Néhány Közep Igen Igen Thai 0 10 Igen X 9 Nem Igen Igen Nem Tele Olcsó Igen Nem Burger >60 Nem X 10 Igen Igen Igen Igen Tele Drága Nem Igen Olasz Nem X 11 Nem Nem Nem Nem Senki Olcsó Nem Nem Thai 0 10 Nem X 12 Igen Igen Igen Igen Tele Olcsó Nem Nem Burger Igen Mi benne a viselkedésünk mintája? Van-e egyáltalán egy konzisztens viselkedési mintánk? (9216 lehetséges példa)

11 Hogyan lehetne egy döntést (ágensfüggvényt) megvalósítani? (1) Analitikus tervezés: Begyűjteni az analitikus modelleket. Megtervezni analitikusan a konkrét mechanizmust és azt algoritmusként implementálni. (2) Megtervezni a tanulás mechanizmusát és azt algoritmusként implementálni, majd alkalmazásával megtanulni vele a döntés tényleges mechanizmusát és azt algoritmusként implementálni.

12 Tanuló ágens - cselekvő alrendszer (+) - tanuló alrendszer - kritikus (+) - problémagenerátor Milyen feladatok körében? a rendszerek, folyamatok fizikai, kémiai, szociális, stb. modellje olyan bonyolult, hogy kezelhetetlen vagy nem is ismert a feladatról nagy mennyiségű adat áll rendelkezésre a feladatok többsége emberi intelligenciával nagyon hatékonyan megoldható

13 Tanuló alrendszer tervezése: A cselekvő alrendszer (eddigi ágens) mely részeit kell javítani? (Érzékelés? TB? Következtetés? Cselekvés?...) Milyen tudás reprezentációt használnak ezek az alrendszerek? (Tábla? Logika? Valószínűség?...) Milyen a priori információ áll rendelkezésünkre? Milyen visszacsatolásra van lehetőség? (mi a helyes eredmény?) felügyelt tanulás egy komponensnek mind a bemenetét, mind a kimenetét észlelni tudjuk megerősítéses tanulás az ágens az általa végrehajtott tevékenység csak bizonyos értékelését kapja meg = jutalom, büntetés, megerősítés felügyelet nélküli tanulás semmilyen utalás sem áll rendelkezésünkre a helyes kimenetről (az észlelések közötti összefüggések tanulása)

14 A különböző feladatok közös magja A cselekvő alrendszer minden komponense = egy-egy függvény-kapcsolat, pl. cs t = f(m t-1, cs t-1, TB T ) Minden tanulás felfogható úgy, mint egy függvény valamilyen reprezentációjának a megtanulása. (Tiszta) Induktív felügyelt tanulás (induktív következtetés): tanulási példa: tanulás célja: h(x) = f(x), h(x') f(x'), (x, y = f(x)) adatpár, ahol f(x) ismeretlen f(x) értelmes közelítése (egy h(x) hipotézissel) x egy ismert példán x' a tanulás közben még nem látott eset (általánosító képesség) az f-re vonatkozó példák egy halmaza alapján (tanító halmaz), adjon meg egy olyan h függvényt (hipotézist), amely tulajdonságaiban közelíti az f-et (amit teszt halmazon verifikálunk).

15 A tanulási algoritmus teljesítménye A tanulási algoritmus akkor jó, ha jó hipotéziseket szolgáltat azon esetekre is, amelyeket nem látott előtte. Hogyan? 1. A példahalmazt bontsuk szét egy tanító és egy teszt halmazra. 2. A tanuló algoritmust a tanító halmazra alkalmazva állítsuk elő a h hipotézist. 3. Vizsgáljuk meg, hogy h a teszt halmaz milyen részét sorolja be jól. 4. Ismételjük a 2-4 lépéseket különböző tanító halmaz méretekre. Tanulási görbe (hibagörbe)

16 Elfogultság - A példáknak való megfelelésen túl (konzisztens ipotézisek) előnyben részesítjük az egyik vagy a másik hipotézist. Mivel mindig nagy számú lehetséges hipotézis létezik, az összes tanuló algoritmus mutat valamilyen elfogultságot. Miért? Tanulási zaj - Példa-1: (x, y1) Példa-2: (x, y2) és y1 =/= y2! (inkonzisztens példák) Túltanulás (túlzott illeszkedés, overfitting) és nem elegendő tanulás Avagy a lényegtelen, a hibák tanulása.

17 Kifejezőképesség és hatékonyság A legfontosabb döntés a tanuló ágens tervezője számára: mi legyen a kívánt függvény (és a hipotézisek) reprezentációja? (az elfogultsággal együtt, ez a tanuló algoritmus jellegét határozza meg, eldöntheti, hogy a probléma kezelhető-e). Kompromisszum: (cél: legyen tömör és jól általánosító) a kifejezőképesség képesség és a hatékonyság között. Kifejezőképesség: a kívánt függvény jól (egyáltalán) ábrázolható-e. Hatékonyság: a tanulási probléma kezelhető lesz-e egy adott reprezentációs nyelv választás esetén. (tanulási algoritmus tár-, idő-komplexitása)

18 Döntési fák tanulása döntési fa = egy logikai függvény bemenete: egy tulajdonsághalmazzal leírt objektum vagy szituáció kimenete: egy igen/nem döntés/cselekvés" belső csomópont = valamelyik tulajdonság tesztje él = a teszt lehetséges értéke levél = logikai érték, amelyet akkor kell kiadni, ha ezt a levelet elértük.

19 Legyen egy konkrét eset: Kuncsaft = Tele, és Éhes, és Étterem = Olasz VárniFog (Kuncsaft = Néhány) ((Kuncsaft = Tele) Éhes (Típus = Francia)) ((Kuncsaft = Tele) Éhes (Típus = Thai) P/Sz) ((Kuncsaft = Tele) Éhes (Típus = Burger))

20 Döntési fák kifejezőképessége teljes - minden (ítélet)logikai függvény felírható döntési faként. (az igazságtábla minden sora = a fa egy bejárása, de így az igazságtábla mérete = a fa mérete = exponenciális!) Döntési fák kialakítása példák alapján példa: (attribútumok értékei, cél predikátum értéke) példa besorolása: a cél predikátum értéke pozitív/negatív példa: a cél predikátum értéke igaz / hamis tanító halmaz: a teljes példa halmaz triviális fa, könnyű - mindegyik példához egy önálló bejárási út a levél a példa besorolását adja. fa egyszerűen memorizálja a példát, nem alakít ki jellegzetes mintákat a példákból nem általánosít (nem tud ismeretlen példákra extrapolálni) igazi fa - a jellegzetes minták kinyerése, a módszer képes nagyszámú esetet tömör formában leírni, és így az egyelőre ismeretlen példákra is általánosítani

21 Sz. Témába Vág Sok Reklám Sok Script Sok Link Sok Text Frissített Érdekes Lap X1 N N N I N N I X2 I I N N N I N X3 I N I I I N I X4 I N N N I I I X5 N N I N N I I X6 I I I N I N N X7 I I N I N I I X8 N N N N N N N TV SR TV SL SS F SR Nem Igen F F F Nem Igen Igen? Igen Nem??

22 A döntési fa építése általános jelenségek Van néhány pozitív és néhány negatív példánk, válasszuk azt az attribútumot, amelyik a legjobban szétválasztja őket. Ha az összes megmaradt eset pozitív, (vagy az összes negatív), akkor készen vagyunk: a válasz Igen vagy Nem.

23 A döntési fa építése általános jelenségek Ha nem maradt egyetlen példa sem, ez azt jelenti, hogy ilyen példát nem figyeltünk meg eddig (de a jövőben mégis jelentkezhet). Ilyenkor valamilyen alapértéket adunk vissza, amelyet a csomópont szülőjének többségi besorolási válaszából származtatunk. (induktív tanulás nem egy formális deduktív módszer, milyen veszély leselkedik itt ránk?)

24 A döntési fa építése általános jelenségek Nem maradt már teszteletlen attribútum, de maradtak még pozitív és negatív példák. Baj van. Ezeknek a példáknak pontosan megegyezik a leírása, de különböző a besorolásuk. Néhány adat tehát nem korrekt: a tanulási zaj torzítja az adatokat. Megoldás? Pl. a többségi szavazás használata.

25 Döntési fák kialakítása példák alapján A legkisebb döntési fa megtalálása - általánosságban nem megoldható Heurisztika: mohóság - egy meglehetősen egyszerű (jó) fa is jó lesz! Az alapötlet: először a legfontosabb attribútumot teszteljük. legfontosabb" = a legnagyobb eltérést okozza példák besorolásában Elvárás: kisszámú teszt alapján korrekt besoroláshoz jutunk: a bejárási utak rövidek lesznek, és így az egész fa kicsi (tömör) lesz. Az információelmélet felhasználása Olyan attribútumot válasszunk, amely a lehető legmesszebb megy a pontos besorolás biztosításában. A tökéletes attribútum a példákat két csoportra bontja, az egyikbe csak pozitív, a másikba csak negatív példák tartoznak. Ezzel be is lehetne fejezni a fa tanítását!

26 A Kuncsaft attribútum nem tökéletes, de elég jó. Egy nagymértékben haszontalan attribútum, mint pl. a Típus olyan példa halmazokat hoz létre, amelyek nagyjából ugyanolyan arányban tartalmaznak pozitív és negatív példákat, mint az eredeti halmazok.

27 Elég jó?" Nagymértékben haszontalan?" A mérték maximuma: a fenti értelemben tökéletes attribútumra minimuma: olyan attribútumra, aminek egyáltalán nincs értéke számunkra. Egy megfelelő mérték: az attribútum által adott információ várható értéke, információ átlagos tartalma, entrópia, Ha a lehetséges v k válaszok valószínűsége sége P(v k ), akkor az adott konkrét válasz információ tartalma: n 1 ),..., P( ν n )) = P( ν i ) log2 P( i ) i= 1 I( P( ν ν pl. szabályos pénzérme dobás? V P(v 1 ) P(v n ) v 1 v k v n

28 A döntési fa információ tartalma = a tanító halmazban található pozitív és negatív példák aránya Tanító halmaz p pozitív és n negatív példát tartalmaz: két válasz: v 1, v 2, valószínűségük: P(v 1 ) = p /(p+n), P(v 2 ) = n /(p+n), Ekkor a fa információ tartalmának becslése: I ( p n p p n n, ) = log 2 log 2 p + n p + n p + n p + n p + n p + n (Az étterem tanító halmaz: p = n, 1 bit információt képvisel) Hogyan válasszunk attribútumot? Mennyi információt ad egy attribútum tesztelése? Mennyi információra van még szükségünk az attribútum tesztelése után?

29 Bármelyik A attribútum az E tanító halmazt E 1,E 2,,E n részhalmazokra bontja az A tesztjére adott válaszoknak megfelelően, ha A tesztje n különböző választ ad. A p + n Nyereség(A) é 1 é k é n I(teljes fa) I(részfa k ) Maradék(A) = Σ k súly(részfa k ) I(részfa k ) p 1 + n 1 p k + n k p n + n n # példa(részfa k ) súly(részfa k ) = # példa(fa)

30 Hogyan válasszunk attribútumot? ), ( ) ( 1 i i i i i i i i i n p n n p p I n p n p A Maradék = = ν bit információra van szükségünk a példa besorolásához. Az attribútum tesztjének információ nyeresége az eredeti információ igény és a teszt utáni új információ igény különbsége: ) ( ), ( ) ( A Maradék n p n n p p I A Nyereség + + =

31 Nézzük meg a Kuncsaft és a Típus attribútumokat I(0,1) = - 0 * ln 0 1 * ln 1 = - 0 * ln 0 =? ln x ( ) 1/x 0 * ln 0 = lim x = --- lim --- = lim --- = lim x 0 x = 0 1/x ( ) -1/x 2 I(0,1) =? Nyereség ( Kuncsaft) = 1 [ I (0,1) + I (1,0) + I (, )] ,541 bit Nyereség ( Típus) = 1 [ I (, ) + I (, ) + I (, ) + I (, )] = Több attributumra is kellene a számítás, de a Kuncsaft kimagasló 0 bit

32 (Kuncsaft = Tele) ágon még fennmaradó példák Példa Attribútumok Cél Altern Bár Pént Éhes Ár Eső Fogl Típus Becs VárniFog X 2 Igen Nem Nem Igen Olcsó Nem Nem Thai Nem X 5 Igen Nem Igen Nem Drága Nem Igen Francia >60 Nem X 9 Nem Igen Igen Nem Olcsó Igen Nem Burger >60 Nem X 10 Igen Igen Igen Igen Drága Nem Igen Olasz Nem X 4 Igen Nem Igen Igen Olcsó Nem Nem Thai Igen X 12 Igen Igen Igen Igen Olcsó Nem Nem Burger Igen Részfában: p 1 = 2, n 1 = 4, p 1 /(p 1 +n 1 ) = 1/3, n 1 /(p 1 +n 1 ) = 2/3

33 I = I(részfa) = I(2/6, 4/6) =.9183 Ny(Al) = I [5/6 I(2/5, 3/5) + 1/6 I(0, 1)] Al = Igen Al = Nem p2 = 2, p3 = 0 n2 = 3 n3 = 1 6 példa Ny(Al) = I [5/6 I(2/5, 3/5) + 1/6 I(0, 1)] =

34 Ny(Al) = I [5/6 I(2/5, 3/5) + 1/6 I(0,1)] = Ny(Bár) = I [1/2 I(1/3, 2/3) + 1/2 I(1/3, 2/3)] = = 0 Ny(Péntek) = I [5/6 I(2/5, 3/5) + 1/6 I(0,1)] = Ny(Éhes) = I [4/6 I(1/2, 1/2) + 2/6 I(0,1)] = Ny(Ár) = I [4/6 I(1/2, 1/2) + 2/6 I(0,1)] = Ny(Eső) = I [5/6 I(2/5, 3/5) + 1/6 I(0,1)] = Ny(Foglalt) = I [2/6 I(0,1) + 4/6 I(1/2,1/2)] = Ny(Típus) = I [2/6 I(1/2, 1/2) + 1/6 I(0,1) + 2/6 I(1/2, 1/2) + 1/6 I(0,1)] = Ny(Becs) = I [2/6 I(1/2, 1/2) + 2/6 I(0,1) + 2/6 I(1/2, 1/2)] =

35

36 (Éhes = Igen) ágon még fennmaradó példák Példa Attribútumok Cél Alt Bár Pént Ár Eső Fogl Típus Becs VárniFog X 2 Igen Nem Nem Olcsó Nem Nem Thai Nem X 10 Igen Igen Igen Drága Nem Igen Olasz Nem X 4 Igen Nem Igen Olcsó Nem Nem Thai Igen X 12 Igen Igen Igen Olcsó Nem Nem Burger Igen Részfában: p 1 = 2, n 1 = 2, p 1 /(p 1 +n 1 ) = 1/2, n 1 /(p 1 +n 1 ) = 1/2

37 Ny(Alt) = I [1/1 I(1/2, 1/2) + 0] = 1-1 = 0 Ny(Bár) = I [1/2 I(1/2, 1/2) + 1/2 I(1/2, 1/2)] = 1-1 = 0 Ny(Péntek) = I [1/4 I(0,1) + 3/4 I(1/3,2/3)] = Ny(Ár) = I [1/4 I(0,1) + 3/4 I(1/3,2/3)] = Ny(Eső) = I [1/1 I(1/2, 1/2) + 0] = 1-1 = 0 Ny(Foglalt) = I [1/4 I(0,1) + 3/4 I(1/3,2/3)] = Ny(Típus) = I [1/4 I(0,1) + 1/4 I(0,1) + 1/2 I(1/2, 1/2)] =.5 Ny(Becs) = I [1/2 I(1/2, 1/2) + 1/2 I(1/2, 1/2)] = 1-1 = 0

38 (Típus = Thai) ágon még fennmaradó példák Példa Attribútumok Cél Alt Bár Pént Ár Eső Fogl Becs VárniFog X 2 Igen Nem Nem Olcsó Nem Nem Nem X 4 Igen Nem Igen Olcsó Nem Nem Igen A többi nem jellemző Részfában: p 1 = 1, n 1 = 1, p 1 /(p 1 +n 1 ) = 1/2, n 1 /(p 1 +n 1 ) = 1/2 És ez u.u. marad pl. a Bár = Nem, vagy Eső = Nem, vagy Ár = Olcsó, stb. mentén (azaz így tovább nem érdemes építeni)

39

40 Döntési fa nyesése: (1) Beállított max. mélység (2) Ismerjük fel a nem releváns attribútumot és az adott ágat ott fejezzük be Irreleváns attribútum: példahalmaz kettévágásánál a kapott részhalmazok azonos arányban tartalmaznak pozitív és negatív példát, mint az eredeti halmaz. Az információ nyereség ilyenkor közel 0. Az információ nyereség hiánya az irrelevancia jó jelzése. Milyen nagy (nem 0) legyen az információ nyereség, hogy egy attribútumot mégis felhasználjunk a példahalmaz megosztására? (a) Értékbeállítás (b) Statisztikai teszt: nincs jellegzetes minta = ún. nulla hipotézis. Ha az eltérés nagy (nagyobb, mint 0) nem valószínű, hogy az észlelt minta statisztikai ingadozásból következik lényeges minta van az adatokban.

41 Kis HF3 Eszköz: Click here to start the tool using Java Web Start. Sorsolt feladat a példák a számított DF max. mélysége Beküldendő megoldás P, N,, TP/P, FP/N, azaz a számított DF helye a ROC diagramon Több információ a HF szerveren

42

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Egyszerű döntés Döntési fák Tanuljuk meg! Metsszük meg! Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Példaprobléma:

Részletesebben

Intelligens orvosi műszerek VIMIA023

Intelligens orvosi műszerek VIMIA023 Intelligens orvosi műszerek VIMIA023 A mintapéldákból tanuló számítógépes program (egyik lehetőség): döntési fák 2018 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu

Részletesebben

Gépi tanulás. Egyszerű döntés tanulása (döntési fák) (Részben Dobrowiecki Tadeusz fóliáinak átdolgozásával) Pataki Béla (Bolgár Bence)

Gépi tanulás. Egyszerű döntés tanulása (döntési fák) (Részben Dobrowiecki Tadeusz fóliáinak átdolgozásával) Pataki Béla (Bolgár Bence) Gépi tanulás Egyszerű döntés tanulása (döntési fák) (Részben Dobrowiecki Tadeusz fóliáinak átdolgozásával) Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki

Részletesebben

Intelligens orvosi műszerek VIMIA023

Intelligens orvosi műszerek VIMIA023 Intelligens orvosi műszerek VIMIA023 Diagnózistámogatás = döntéstámogatás A döntések jellemzése (ROC, AUC) 2018 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Egyszerű döntés. Tanuljuk meg! Optimalizáljuk! (itt =metsszük vissza) Pataki Béla (Hullám Gábor) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Gépi tanulás elemei Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Egy intelligens rendszer

Részletesebben

Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)

Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence) Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló

Részletesebben

2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit.

2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit. Példa 1. Döntési fa számítása/1 1. Legyen a felhasználandó példahalmaz: Példa sz. Nagy(x) Fekete(x) Ugat(x) JóKutya(x) X1 Igen Igen Igen Nem X2 Igen Igen Nem Igen X3 Nem Nem Igen Nem X4 Nem Igen Igen Igen

Részletesebben

1. gyakorlat. Mesterséges Intelligencia 2.

1. gyakorlat. Mesterséges Intelligencia 2. 1. gyakorlat Mesterséges Intelligencia. Elérhetőségek web: www.inf.u-szeged.hu/~gulyasg mail: gulyasg@inf.u-szeged.hu Követelmények (nem teljes) gyakorlat látogatása kötelező ZH írása a gyakorlaton elhangzott

Részletesebben

Mesterséges Intelligencia I. (I602, IB602)

Mesterséges Intelligencia I. (I602, IB602) Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) kurzus kilencedik előadásának jegyzete (2008. november 3.) Tanulás (Learning) Készítette: Szabó Péter EHA: SZPNAAT.SZE Szeged, 2008. december

Részletesebben

Gépi tanulás Gregorics Tibor Mesterséges intelligencia

Gépi tanulás Gregorics Tibor Mesterséges intelligencia Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat

Részletesebben

TANULÁS. I. Logikai formulák tanulása. Tanulási módok. Miért m ködik jól az induktív tanulás? Induktív tanulás

TANULÁS. I. Logikai formulák tanulása. Tanulási módok. Miért m ködik jól az induktív tanulás? Induktív tanulás TANULÁS Egy algoritmus tanul, ha egy feladat megoldása során olyan változások következnek be a m ködésében, hogy kés bb ugyanazt a feladatot vagy ahhoz hasonló más feladatokat jobb eredménnyel, illetve

Részletesebben

Programozási módszertan. A gépi tanulás alapmódszerei

Programozási módszertan. A gépi tanulás alapmódszerei SZDT-12 p. 1/24 Programozási módszertan A gépi tanulás alapmódszerei Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu SZDT-12 p. 2/24 Ágensek Az új

Részletesebben

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával

Részletesebben

Adatbányászati feladatgyűjtemény tehetséges hallgatók számára

Adatbányászati feladatgyűjtemény tehetséges hallgatók számára Adatbányászati feladatgyűjtemény tehetséges hallgatók számára Buza Krisztián Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalomjegyék Modellek kiértékelése...

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés

Részletesebben

[1000 ; 0] 7 [1000 ; 3000]

[1000 ; 0] 7 [1000 ; 3000] Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított

Részletesebben

VIII. INDUKTÍV TANULÁS

VIII. INDUKTÍV TANULÁS Induktív tanulás VIII. INDUKTÍV TANULÁS Induktív tanulási modell Az f leképezést tanuljuk meg az (x i,f(x i )) példák (minták) alapján úgy, hogy előállítunk egy olyan h leképezést (hipotézist), amelyre

Részletesebben

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)

Részletesebben

Diagnosztikus tesztek értékelése

Diagnosztikus tesztek értékelése n e c n b c szegregancia relevancia Diagnosztikus tesztek értékelése c Átlapoló eloszlások feltételezés: egy mérhető mennyiség (pl. koncentráció) megnövekszik a populációban (a megváltozás a lényeges és

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)

Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence) Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Keresés ellenséges környezetben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Ellenség

Részletesebben

Eredmények kiértékelése

Eredmények kiértékelése Eredmények kiértékelése Nagyméretű adathalmazok kezelése (2010/2011/2) Katus Kristóf, hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tanszék 2011. március

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79

Részletesebben

Intelligens orvosi műszerek (VIMIA023) Gyakorló feladatok, megoldással (2016 ősz)

Intelligens orvosi műszerek (VIMIA023) Gyakorló feladatok, megoldással (2016 ősz) Intelligens orvosi műszerek (VIMIA23) Gyakorló feladatok, megoldással (216 ősz) Régi zárthelyi- és vizsgafeladatok, egyéb feladatok megoldással. Nem jelenti azt, hogy pontosan ezek, vagy pontosan ilyenek

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Az információelmélet alapjai, biológiai alkalmazások. 1. A logaritmusfüggvény és azonosságai

Az információelmélet alapjai, biológiai alkalmazások. 1. A logaritmusfüggvény és azonosságai Az információelmélet alapjai, biológiai alkalmazások 1. A logaritmusfüggvény és azonosságai 2 k = N log 2 N = k Például 2 3 = 8 log 2 8 = 3 10 4 = 10000 log 10 10000 = 4 log 2 2 = 1 log 2 1 = 0 log 2 0

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége, hogy ilyen problémákkal mégis megbirkozzék.

Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége, hogy ilyen problémákkal mégis megbirkozzék. Vizsga, 2015. dec. 22. B cs. B1. Hogyan jellemezhetők a tanulást igénylő feladatok? (vendégelőadás) Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége,

Részletesebben

Gépi tanulás a gyakorlatban. Lineáris regresszió

Gépi tanulás a gyakorlatban. Lineáris regresszió Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Módszertani áttekintés

Módszertani áttekintés Módszertani áttekintés 1. A CSŐDMODELLEKNÉL ALKALMAZOTT STATISZTIKAI MÓDSZEREK... 1 1.1. DISZKRIMINANCIA ANALÍZIS... 1 1.2. REGRESSZIÓS MODELLEK... 3 1.2.1. Logisztikus (logit) regresszió... 4 1.2.2. Probit

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI A szükséges mintaszám krlát elemzése Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Mit is jelent az eredmény, ha pnts lenne

Részletesebben

Nagy adathalmazok labor

Nagy adathalmazok labor 1 Nagy adathalmazok labor 2015-2015 őszi félév 2015.09.09 1. Bevezetés, adminisztráció 2. Osztályozás és klaszterezés feladata 2 Elérhetőségek Daróczy Bálint daroczyb@ilab.sztaki.hu Személyesen: MTA SZTAKI,

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Stratégiák tanulása az agyban

Stratégiák tanulása az agyban Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel általános problémák Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Valószínűségi

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl

Részletesebben

GONDOLKODÁS ÉS NYELV

GONDOLKODÁS ÉS NYELV GONDOLKODÁS ÉS NYELV GONDOLKODÁS A. Propozicionális B. Képzeleti Propozicionális gondolkodás Propozíció kijelentés, amely egy tényállásra vonatkozik, meghatározott viszonyban összekombinált fogalmakból

Részletesebben

Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.

Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom. Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?

Részletesebben

Nagy adathalmazok labor

Nagy adathalmazok labor 1 Nagy adathalmazok labor 2018-2019 őszi félév 2018.09.12-13 1. Kiértékelés 2. Döntési fák 3. Ipython notebook notebook 2 Féléves terv o Kiértékelés: cross-validation, bias-variance trade-off o Supervised

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Logikai Emberi ágens tudás és problémái gépi reprezentálása Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Bizonytalanságok melletti következtetés

Bizonytalanságok melletti következtetés Bizonytalanságok melletti következtetés Mesterséges Intelligencia I. Valószínűségi alapfogalmak (ismétlés) A, B,C események esetén a priori valószínűség: feltételes (a posteiori) valószínűség: Bayes-formula

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

Turing-gép május 31. Turing-gép 1. 1

Turing-gép május 31. Turing-gép 1. 1 Turing-gép 2007. május 31. Turing-gép 1. 1 Témavázlat Turing-gép Determinisztikus, 1-szalagos Turing-gép A gép leírása, példák k-szalagos Turing-gép Univerzális Turing-gép Egyéb Turing-gépek Nemdeterminisztikus

Részletesebben

FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE

FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel - ha segítenek útjelzések Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade A szükséges

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e

Részletesebben

1. Gauss-eloszlás, természetes szórás

1. Gauss-eloszlás, természetes szórás 1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális

Részletesebben

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y. Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Számításelmélet. Második előadás

Számításelmélet. Második előadás Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi

Részletesebben

Gépi tanulás a gyakorlatban. Bevezetés

Gépi tanulás a gyakorlatban. Bevezetés Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis

Részletesebben

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük

Részletesebben

A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása

A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása azdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállakozásgazdaságtan Tanszék A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása Készítette: dr. Koltai Tamás egyetemi tanár Budapest,.

Részletesebben

Hatvány gyök logaritmus

Hatvány gyök logaritmus Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Hatvány gyök logaritmus Hatványozás azonosságai 1. Döntse el az alábbi állításról, hogy igaz-e vagy hamis! Ha két szám négyzete egyenl, akkor

Részletesebben

Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.

Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1. Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok

Részletesebben

Megerősítéses tanulási módszerek és alkalmazásaik

Megerősítéses tanulási módszerek és alkalmazásaik MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc, 2017. szeptember 15. Tartalom

Részletesebben

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport 10-es Keressünk egy egész számokat tartalmazó négyzetes mátrixban olyan oszlopot, ahol a főátló alatti elemek mind nullák! Megolda si terv: Specifika cio : A = (mat: Z n m,ind: N, l: L) Ef =(mat = mat`)

Részletesebben

Mesterséges Intelligencia (MI)

Mesterséges Intelligencia (MI) Mesterséges Intelligencia (MI) Intelligens ágensek Dobrowiecki Tadeusz Antal Péter, Bolgár Bence, Engedy István, Eredics Péter, Strausz György és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Mesterséges intelligencia, szakértői rendszerek Ágensek, multi ágens rendszerek, tanuló ágensek p. 1/43

Mesterséges intelligencia, szakértői rendszerek Ágensek, multi ágens rendszerek, tanuló ágensek p. 1/43 Mesterséges intelligencia, szakértői rendszerek Ágensek, multi ágens rendszerek, tanuló ágensek p. 1/43 Mesterséges intelligencia, szakértői rendszerek Ágensek, multi ágens rendszerek, tanuló ágensek Werner

Részletesebben

Csima Judit október 24.

Csima Judit október 24. Adatbáziskezelés Funkcionális függőségek Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. október 24. Csima Judit Adatbáziskezelés Funkcionális függőségek 1 / 1 Relációs sémák

Részletesebben

Megerősítéses tanulás

Megerősítéses tanulás Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel lokális információval Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Intelligens ágensek. Mesterséges intelligencia február 28.

Intelligens ágensek. Mesterséges intelligencia február 28. Intelligens ágensek Mesterséges intelligencia 2014. február 28. Ágens = cselekvő Bevezetés Érzékelői segítségével érzékeli a környezetet Beavatkozói/akciói segítségével megváltoztatja azt Érzékelési sorozat:

Részletesebben

Mesterséges intelligencia 3. laborgyakorlat

Mesterséges intelligencia 3. laborgyakorlat Mesterséges intelligencia 3. laborgyakorlat Kétszemélyes játékok - Minimax A következő típusú játékok megoldásával foglalkozunk: (a) kétszemélyes, (b) determinisztikus, (c) zéróösszegű, (d) teljes információjú.

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor

Kettőnél több csoport vizsgálata. Makara B. Gábor Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10

Részletesebben

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Mérnökinformatikus szak BME Villamosmérnöki és Informatikai Kar. 2015. május 27.

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Mérnökinformatikus szak BME Villamosmérnöki és Informatikai Kar. 2015. május 27. Név, felvételi azonosító, Neptun-kód: MI pont(45) : Csak felvételi vizsga: csak záróvizsga: közös vizsga: Közös alapképzéses záróvizsga mesterképzés felvételi vizsga Mérnökinformatikus szak BME Villamosmérnöki

Részletesebben

CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens

CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens CARE Biztonságos CARE Biztonságos otthonok idős embereknek otthonok idős embereknek 2010-09-02 Dr. Vajda Ferenc Egyetemi docens 3D Érzékelés és Mobilrobotika kutatócsoport Budapesti Műszaki és Gazdaságtudományi

Részletesebben

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására VÉGZŐS KONFERENCIA 2009 2009. május 20, Budapest Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására Hidasi Balázs hidasi@tmit.bme.hu Konzulens: Gáspár-Papanek Csaba Budapesti

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

Döntéselmélet KOCKÁZAT ÉS BIZONYTALANSÁG

Döntéselmélet KOCKÁZAT ÉS BIZONYTALANSÁG Döntéselmélet KOCKÁZAT ÉS BIZONYTALANSÁG Bizonytalanság A bizonytalanság egy olyan állapot, amely a döntéshozó és annak környezete között alakul ki és nem szüntethető meg, csupán csökkenthető különböző

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése

Részletesebben

V. Kétszemélyes játékok

V. Kétszemélyes játékok Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Intelligens orvosi műszerek VIMIA023

Intelligens orvosi műszerek VIMIA023 Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

, , A

, , A MI Nagy ZH, 2011. nov. 4., 14.15-16, A és B csoport - Megoldások A/1. Milyen ágenskörnyezetrıl azt mondjuk, hogy nem hozzáférhetı? Adjon példát egy konkrét ágensre, problémára és környezetre, amire igaz

Részletesebben