2. TÉTEL. Információ: Adatok összessége. Értelmezett adat, mely számunkra új és fontos.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2. TÉTEL. Információ: Adatok összessége. Értelmezett adat, mely számunkra új és fontos."

Átírás

1 INFORMÁCIÓ ÁBRÁZOLÁS 02. tétel (SZÁM, LOGIKAI ÉRTÉK, SZÖVEG, KÉP, HANG, FILM STB). 2. TÉTEL Adat: A bennünket körülvevő mérhető és nem mérhető jellemzők a világban. - mérhető: hőmérséklet, távolság, idő, szín - nem mérhető: Minden, ami szubjektív(szépség, érzelmek). Információ: Adatok összessége. Értelmezett adat, mely számunkra új és fontos. Informatika: Az adatok tárolásával, feldolgozásával foglalkozó tudományág. Típus: Az adat tulajdonsága, mely egyértelműen meghatározza az - felvehető értékek halmazát, - a számára lefoglalt memóriaterület szerkezetét és méretét, - a rajta elvégezhető műveleteket. Számok ábrázolása: Értékhalmaz: o Egész számok o Valós számok Szerkezet: Függ az értékhalmaztól. o történhet 1,2,4, de akár több bájton is. o Előjel nélkül a tartomány n biten: 0..2 n -1 (1B 255-ig, 2B ig) o Előjelesen a tartomány n biten: -2 n n-1-1 (1B ig, 2B ) Műveletek: Minden műveletet az összeadásra vezet vissza. o Összeadás o Kivonás o Szorzás 1 / 9

2 o Osztás Ábrázolási módok: Egész számok Tört számok Fixpontos számábrázolás: Fixpontos szám ábrázolás során az ábrázolás előre rögzített kettedes jegy pontos, azaz a kettedes és egész jegyek száma adott. Ezt általában egész számok ábrázolását jelenti, mikor a kettedes jegyek száma nulla. Nem negatív egész számok: A bináris számot tároljuk, a megadott méretű területen. Ha nem töltjük ki az adott bájtot, akkor ki kell pótolni 0-kal. A legkisebb ábrázolható szám a 0. A legnagyobb ábrázolható szám n biten 2 n -1. Egész számok: Az eljárás hasonló, mint az előzőnél, csak itt a legfelső bitet beáldozzuk, és attól függően, hogy az értéke 1 vagy 0, értelmezzük negatív vagy pozitív számként. ha a legfelső bit 0, akkor a szám pozitívként értelmezendő ha 1, akkor a szám negatív. Lebegőpontos számábrázolás: Alapja a számok kettes számrendszerbeli normál alakja. m*2 k, ahol m-et mantisszának, a k-t pedig karakterisztikának hívjuk. Példán levezetve könnyebb: Emelt szint: Váltsuk át a számot kettes számrendszerbe ,majd az így kapott számot alakítsuk át normálalakba * merthogy 7 jegyet csúszott balra a kettedespont. Ebből következik a karakterisztika: és a mantissza: , itt lehagytuk a szám elején lévő 0-át, mert az mindig 0 lesz, ezért felesleges a tárolása. Így a teljes ábrázolt szám: Ami nem lett teljesen pontos esetünkben, mert csak 8 bitet hagytunk a mantisszának, de az igazából 9 biten fért volna el, levágtuk az utolsó számjegyet ( ). Megegyezés szerint lehet több-kevesebb helyet hagyni a mantisszának és a karakterisztikának, de értelemszerűen az egyik növelése, a másik rovására megy. Manapság ez a fajta számábrázolás az elterjedt. 2 / 9

3 Műveletek: Összeadás: Fogjunk két számot: 42 és = 2 ; = Ezeket összeadjuk: Szorzás: * Kivonás: a példa itt is. o Komplemens képzése: A 23-ból(= ) k(23)= , majd ehhez 1-et hozzá kell adni k 2 (23) , és ezután ezt a számot kell hozzá adni a 42-höz, majd a túlcsordult 1-et lehúzzuk Szövegek ábrázolása: Jel: jelentéssel bíró egyszerű ábra. Karakter: számítógépen ábrázolt (kóddal ellátott) jel. Karakternek nevezzük a szöveget alkotó betűket, számjegyeket, írásjeleket és az egyéb speciális jeleket is. Értéke: Lehet a megadott táblázatban tárolt bármely karakter. A szöveg szerkezete: 3 / 9

4 o Lehet végjeles, ahol a memóriából addig olvassuk ki a karaktereket, amíg végjelbe nem ütközünk. Végjel Extrementális elem. Olyan karakter (pl. vezérlőkarakter), Ami a szövegben agyébként nem fordulhat elő. Pl. sorvégjel. o Lehet megadott tárhelyen kitöltött szöveg is. PL: Ha megvan adva, hogy 255 karakter hosszú lehet egy szöveges változó, akkor nem léphetem túl a 256-ot, de nem feltétlen fogom felhasználni mind a 255 helyet. (Általában 1B-on tároljuk a szöveg hosszát) Művelet: o pl. Összefűzés: Két karaktersorozatot összefűz. o Kivágás: Megadott szempont szerint a karaktersorozatból valamennyi karaktert eltávolítunk. 1. A számítógép a karakterek tárolásához kódtáblákat használ, ami alapján visszafejthető, hogy melyik bináris szám melyik karaktert jelöli. Az első ilyen kódtábla angol nyelven született, és 7 bites volt, mivel az amerikaiak 95 karaktere elfért 7 biten is. 2. Később született meg az ASCII (American Standard Code for Information Interchange) szabvány amely már 8 bites volt, így kétszer annyi karakter kódolására volt képes, mint az előző, így megfelelt már a nemzetközi elvárásoknak. A különböző nemzeti nyelvek miatt jöttek létre az úgynevezett kódlapok (code pages), amelyek sorszámot kaptak, és az arra jellemző nyelvi sajátosságokat tartalmazták, pl: magyar: A további fejlődés következtében jött létre az UNICODE, amit az ISO hozott létre. Ez a kódtábla már 16 bites volt, azaz a Föld minden nyelvének minden karakterét meg tudta jeleníteni. A számítógép egy szöveget karaktersorozatként jelenít meg, így egy szöveget bájtok tartalmának összeolvasásaként fogunk fel. Általában a szöveget ritkán tárolódnak így. Többnyire alkalmaznak különféle technikákat, tömörítéseket. Logikai adatok ábrázolása: A George Bool által létrehozott Bool algebrán alapszik. Értékhalmaz: Igaz/Hamis, True/False, 1/0, / Szerkezet: 1 bájton tárolódik, mert ez a legkisebb megcímezhető egység a memóriában. 4 / 9

5 Műveletek: A,B:Logikai érték(ill. kifejezés) A Negáció (Nem) B Negáció (Nem) És Vagy Kizáró vagy Következtetés A B &, ^ v x i i h h i i h i h i i h h i i i i h h i h i i h h h i i h h h i A matematikai logikában egy állítás kizárólag egy értéket vehet fel egyszerre, Igaz vagy Hamis, a két állítás kizárja egymást. Számítógépes megvalósításban az igaz illetve a hamis értékekhez egy feszültségértéket, vagy egyéb jól megkülönböztethető jellemzőt rendelünk. A számítógép kapuáramkörökkel dolgozik. Műveleti sorrend (precedencia): o Zárójel o A Nem művelet(ek) o És művelet(ek) o Vagy művelet(ek) Néhány fontosabb azonosság: o De Morgan azonosság: (A v B) = A & B ; (A&B) = A v B o Negációs tétel: A v A = True ; A & A = False ; ( A) = A 5 / 9

6 Képábrázolás: A számítógépes grafika körébe soroljuk a grafikus objektumok (képek, rajzok, diagramok) előállítását, tárolását, a számítógép számára feldolgozható formává alakítását (képdigitalizálás), valamint megjelenítését (képernyőn, papíron) A számítástechnikában a képeket kétféleképpen írhatjuk le: vektorgrafikusan: ekkor a kép elemeit adjuk meg, például egy egyenes kezdés végpontjának koordinátáit, vastagságát, stílusát, színét. Alapvetően így működik például a CorelDraw, Adobe Illustrator és a Macromedia Flash (animációs). Jellemzői: A kép egymástól független vonalakból és területekből áll. Minden objektum önállóan szerkeszthető utólag is bármikor. Az objektumok takarhatják egymást, ill. átlátszók/áttetszők lehetnek Torzítás nélkül lehet nagyítani, kicsinyíteni Az egyszerűbb alakzatokból álló grafikus ábrák kicsi méretű fájlokat adnak. A bonyolult ábrák, fényképek igen nagyméretűek, lassú a megjelenítésük a sok számolás miatt, és nem képes a fénykép minőség visszaadására A vektorgrafikát a főleg vonalakból és egyszerű mértani alakzatokból álló rajzok, pl. betűtípusok, műszaki rajzok, építési és termék tervek, üzleti ábrák, grafikonok elkészítésére használjuk. Raszter grafikaként (bittérképes vagy pixelgrafikusnak is nevezik): A képet függőleges és vízszintes irányokban pontokra (pixelekre- kis négyzet alakú területekre) osztja fel, és minden egyes pontnak tárolja a színinformációit. Megjelenítéskor a képernyő egy-egy képpontjában jeleníti meg a tárolt kép egyes pontjait a megfelelő színben. Jellemzői: A bitképek adott számú pixelt tartalmaznak, emiatt a kép átméretezéskor torzulhat. (nagyításkor a képpontok mérete változik, emiatt homályos, ill. raszteres lehet a kép..) Igen jó minőségű képek készíthetők (fényképekről is). A nagy felbontás (sok képpont) és a sok szín tárolása igen nagy méretűvé teheti a bitképes a fájlokat (még akkor is, ha viszonylag egyszerűbb rajzokat tartalmaznak.) A kép méretét (szélesség, magasság) megadhatjuk a képpontok számával. Felbontáson az egységnyi hosszúságú szakaszon (1 cm-en, 1 inch-en[~2,54 cm]) elhelyezett képpontok számát értjük. Mértékegység: DPI (Dot/Inch) Egy képponton megjeleníthető színek számát színmélységnek nevezzük és a tároló bitek számával adjuk meg. Színmélység megjeleníthető színek száma 4 bit 2 4 =16 8 bit(1 bájt) 2 8 = bit (2 bájt) 2 16 = bit(3 bájt) 2 24 ~16 Millió Egy kép méretét megbecsülhetjük, ha a kép vízszintes méretét (képpontok száma) szorozzuk a függőleges irányú pontokban mért méretével, majd ezt megszorozzuk a színmélységgel. Pl.: Egy digitális géppel készült képnek (szélesség:1700 pixel, magasság: 1100 pixel, színmélység 24 bit) fájlmérete tömörítés nélkül: 1700x1100x24/8= B= 5,35MB A példából is látszik, hogy képeink meglehetősen nagy méretűek, amit különböző tömörítő algoritmusok tesznek kezelhetővé. Pl. JPG, BMP(LWZ). stb. 6 / 9 Az un. natív formátumok (pl. PSD, AI) képesek a kép kiegészítő információit is tárolni pl. rétegek, szűrők, stb.

7 32 bit (4 bájt) 2 32 Színmódok RGB A leggyakrabban az RGB színmódot használjuk. Általában ennél maradunk mindaddig, amíg képünk el nem nyeri végleges formáját a képszerkesztő programok szolgáltatásainak tekintélyes része csak ebben a színmódban használható. Ez a színtárolási mód három színcsatornát használ a képpontok színösszetevőinek eltárolására. Szürkeárnyalatos kép formájában meg is jeleníthetők ezek a csatornák. Ahol valamelyik szín erősen jelen van ott világos, ahol hiányzik ott sötétnek látjuk. CYMK A szubsztraktív színkeverés elvén négy szín: cián (Cyan) sárga (Yellow) bíbor (Magenta) és egy kulcs szín, -ami sok esetben fekete- (Key) jelenlétének %-os arányából rakja össze a képpontok színinformációit. Ennek megfelelően 4 színcsatornát használ (ez 8x4=32 bites színmélység) Ez nem jelent 2 32 féle színt mert a keverés során többször azonos színt kapunk. Színpalettás (Indexed Color) 8 bites színes képek színt tartalmazhatnak. Ez a 256 szín bármelyik RGB módon előállított szín lehet de egy képen csak 256 féle szín jelenhet meg. A képpont színének megadása az adott szín színtáblában elfoglalt helyének sorszámával történik. Szürkeárnyalatos (Grayscale) : Képpontonként 8 biten (1 bájton) a szürke 256 árnyalatát képes tárolni palettát használ.. A fekete fehér fényképhez hasonló képek Vonalas, vagy fekete-fehér: 1 biten tárolja a képpontok információit, így csak két szín megjelenítésére képes: fehér, vagy fekete. A Photoshop ezt a színmódot nevezi bitmapnek nem szabad összetéveszteni a Windows által kedvelt BMP képekkel (azok 24 bites színmélységet ismernek) A képfeldolgozás mindig nagy mennyiségű adat feldolgozását jelenti, ezért szükség lehet adattömörítésre. A tömörítés történhet veszteségmentesen, ilyenkor az eredeti képről minden információt megtartunk - ilyen tömörítési eljárással találkozhatunk például a.gif vagy.png formátumú képeknél. Használunk veszteséges tömörítést is, ilyenkor a kép egyes információi elvesznek, a cél az, hogy ez ne járjon együtt lényeges látványbeli változással Ezeknél az eljárásoknál a tömörítés mértékét mi magunk is meghatározhatjuk, így a legjobb minőségben vagy a legjobb tömörítéssel is elmenthetjük állományainkat. Mivel érzékszerveink bizonyos határokon belül nem érzékelik a különbséget az eredeti és tömörített állomány között, bátran használhatjuk ezt a tömörítési eljárást is. A.JPG formátumú állományok is veszteséges tömörítési eljárást használnak. Hangok: A hang rögzítése mind analóg, mind digitális formában elterjedt technika. Az analóg technikában a hangot állandóan változó, folyamatos, hullámkarakterisztikájú jelekkel tárolják. Ellenben a számítógép csupán csak az 1 és a 0 sorozatait tudja tárolni. Ebből következik, hogy a tárolás jellege nem folyamatos. Ebben az esetben az információ csomagok formájában tárolódnak. Természetesen ezekkel a diszkrét jelekkel információkat veszítünk a folytonos jelekhez képest, de szerencsére a fül kevésbé érzékeny az ilyen adatveszteségekre. Digitalizáláskor a két információtípus közti konverziót hajtjuk végre megfelelő digitalizálási 7 / 9

8 paraméterek beállítása mellett. A hanghullám frekvenciája határozza meg a hangmagasságot. Az alacsony frekvenciájú hullám alacsony, míg a nagy frekvenciájú magas hangnak felel meg. Mintavétel Ha egy analóg jelet digitálisan szeretne tárolni, úgy a hanghullámból megfelelő időközönként mintát kell venni, majd ezen mintát tárolni kell. A kérdés az, hogy mekkora legyen ez az időköz? Alapszabály, hogy ha egy adott frekvenciájú szinuszos hullámból akarunk mintát venni úgy, hogy a vett minták alapján bármikor vissza tudjuk állítani a hanghullámot, akkor legalább a hullám frekvenciájának a kétszeresével kell dolgozni. A visszaalakítás technikai okai miatt célszerű az adott frekvencia sokszorosával mintát venni. Ebből következik, hogy amikor egy legnagyobb 11 KHz-es hanghullámot tartalmazó hangot szeretne digitalizálni, legalább 22KHz-es mintavételt kell alkalmaznia. A jobb hangkártyák már képesek 44KHz-es vagy akár 48KHz-es mintavételezésre is, mellyel CD minőségű hangjeleket lehet tárolni. Hasonlóan fontos a mintavételezés mellett a kvantálás minősége is. A kvantálás során állítjuk elő a mintavételezés során nyert értékből az ábrázolt értéket. Minél több értéket különböztetünk meg, annál pontosabban közelítjük meg a mért értéket. A WAV - a digitalizált hang A hangok digitalizálása a hullámokból vett diszkrét adatok tárolásából, majd visszajátszás ezen adatok alapján megkísérelt hullám visszaállításából áll. Tehát tulajdon képpen magát a teljes hanganyag hanghullámát tároljuk lehetőségeinknek megfelelő pontossággal, digitális formában. Hanganyagok ilyen módon történő tárolására a WAV fájlformátumot használjuk, melyet minden jelentősebb számítógéprendszer és multimédiás fejlesztőrendszer ismer és támogat. Ezzel a formátummal bármilyen hanganyag (beszéd, zene, zaj-zörej) tárolható és kiváló minőségben visszajátszható. Ha helyes mintavételezést használt a WAV-állományból kiindulva ugyanazt a hanghullámot kapja vissza, amit digitalizált. Egy CD-re bő egy óra (74 perc) WAV-formátumú tömörítetlen hanganyag rögzíthető. A MIDI - a leírt hang Manapság egyre divatosabb a számítógéppel előállított zene, melynek alapvető követelménye a MIDI-technika. A lényege az, hogy a számítógépben tároljék a különböző hangszerek hangjait a lehetséges hangmagasságokban. Minden egyes hangszernek külön csatornán lehet parancsokat adni, hogy milyen hangszínen szólaljon meg. A MIDI fájlban pusztán üzeneteket tárolnak, melyekben az áll, hogy melyik csatornán milyen hang milyen hosszan szólaljon meg. A fájl egy megfelelő MIDI-lejátszó és szerkesztő programba töltése után bármely csatornának megváltoztathatja a hozzárendelt hangszerét. Megjegyzem, hogy a MIDI világa kevésbé lényeges multimédiás fejlesztés szempontjából, hisz ez elsősorban zenészek számára, speciális hardver-szoftver környezetre készült eszközrendszer. A legtöbb multimédiás anyagszerkesztő egyébként nem támogatja ezt az eszközt. A hang fájloknál is fontossá vált, hogy ne foglaljanak túl nagy helyet, hiszen ha nagyon sűrű a mintavétel és a kvantálás minősége is nagy, akkor nagy lesz a hangfájl is. Ezért erre is van jó pár ismert és kevésbé ismert tömörítési eljárás, aminek két alfaja van: Veszteségmentes: itt nincs adatvesztés, viszont nem annyira hatékony a tömörítés. (pl.: flac,alac, WMA) Veszteséges: van adatvesztés, amit mi határozhatunk meg, hogy mekkora, viszont rendkívül hatékonyan tömörít.( pl.: AAC, mp3) Mozgóképek: 8 / 9

9 A mozgóképek tárolása valójában a képek és a hangok szinkronizált tárolásával egyezik meg. Ezek a fájlok lényegében nagy mennyiségű állóképekből állnak össze, és ezért itt nagyon fontos a tömörítés. Ezért használnak úgynevezett kódekeket (Kóder/dekóder szóból származik), amik olyan algoritmus, amely kódolásnál és dekódolásnál is jelen kell lennie. A képek gyors egymás utáni váltását (képkockaváltás) sebességét fps(frame Per Second) értékkel fejezzük ki. Akár felvételnél, akár lejátszásnál alacsony ez az érték, akkor darabos lesz az eredmény. Szemünk a 24 fpst (azaz 24 kép másodpercenként) nár folyamatos mozgásnak érzékeli. A XXI. században már nagyon sok multimédiás megjelenítés van, ezek között szerepel a 3D technológiai is, egyre jobb megjelenítő eszközöket, felvevőket lehet kapni. 9 / 9

Képek kódolása. Vektorgrafika. Bittérképes grafika (raszter/pixelgrafika)

Képek kódolása. Vektorgrafika. Bittérképes grafika (raszter/pixelgrafika) Képek kódolása A számítógépes grafika körébe soroljuk a grafikus objektumok (képek, rajzok, diagramok) előállítását, tárolását, a számítógép számára feldolgozható formává alakítását (képdigitalizálás),

Részletesebben

Képszerkesztés elméleti kérdések

Képszerkesztés elméleti kérdések Képszerkesztés elméleti kérdések 1. A... egyedi alkotó elemek, amelyek együttesen formálnak egy képet.(pixelek) a. Pixelek b. Paletták c. Grafikák d. Gammák 2. Az alábbiak közül melyik nem színmodell?

Részletesebben

Képszerkesztés elméleti feladatainak kérdései és válaszai

Képszerkesztés elméleti feladatainak kérdései és válaszai Képszerkesztés elméleti feladatainak kérdései és válaszai 1. A... egyedi alkotóelemek, amelyek együttesen formálnak egy képet. Helyettesítse be a pixelek paletták grafikák gammák Helyes válasz: pixelek

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

Számítógépes grafika. Készítette: Farkas Ildikó 2006.Január 12.

Számítógépes grafika. Készítette: Farkas Ildikó 2006.Január 12. Számítógépes grafika Készítette: Farkas Ildikó 2006.Január 12. Az emberi látás Jellegzetességei: az emberi látás térlátás A multimédia alkalmazások az emberi érzékszervek összetett használatára építenek.

Részletesebben

JELÁTALAKÍTÁS ÉS KÓDOLÁS I.

JELÁTALAKÍTÁS ÉS KÓDOLÁS I. JELÁTALAKÍTÁS ÉS KÓDOLÁS I. Jel Kódolt formában információt hordoz. Fajtái informatikai szempontból: Analóg jel Digitális jel Analóg jel Az analóg jel két érték között bármilyen tetszőleges értéket felvehet,

Részletesebben

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2.

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2. Témakörök 1. Digitális írástudás: a kőtáblától a számítógépig ( a kommunikáció fejlődése napjainkig) 2. Szedjük szét a számítógépet 1. ( a hardver architektúra elemei) 3. Szedjük szét a számítógépet 2.

Részletesebben

GRAFIKA. elméleti tudnivalók

GRAFIKA. elméleti tudnivalók GRAFIKA elméleti tudnivalók 1. A digitális képalkotás - bevezető A "digitális" szó egyik jelentése: számjegyet használó. A digitális adatrögzítés mindent számmal próbál meg leírni. Mivel a természet végtelen,

Részletesebben

Képszerkesztés. Letölthető mintafeladatok gyakorláshoz: Minta teszt 1 Minta teszt 2. A modul célja

Képszerkesztés. Letölthető mintafeladatok gyakorláshoz: Minta teszt 1 Minta teszt 2. A modul célja Képszerkesztés Letölthető mintafeladatok gyakorláshoz: Minta teszt 1 Minta teszt 2 A modul célja Az ECDL Képszerkesztés alapfokú követelményrendszerben (Syllabus 1.0) a vizsgázónak értenie kell a digitális

Részletesebben

Számrendszerek és az informatika

Számrendszerek és az informatika Informatika tehetséggondozás 2012-2013 3. levél Az első levélben megismertétek a számrendszereket. A másodikban ízelítőt kaptatok az algoritmusos feladatokból. A harmadik levélben először megnézünk néhány

Részletesebben

Számítógépes grafika

Számítógépes grafika Számítógépes grafika HEFOP 3.5.1 Korszerű felnőttképzési módszerek kifejlesztése és alkalmazása EMIR azonosító: HEFOP-3.5.1-K-2004-10-0001/2.0 Tananyagfejlesztő: Máté István Lektorálta: Brückler Tamás

Részletesebben

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

Számítógépes Grafika SZIE YMÉK

Számítógépes Grafika SZIE YMÉK Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

Digitális képek, használatuk

Digitális képek, használatuk Grafikai alapismeretek ALAPFOGALMAK 2 Digitális képek, használatuk Digitális kép => képpontokból épül fel. A digitális képek pontjait rácsként képzelhetjük el. A digitális képek fő tulajdonságai: Pixelekből

Részletesebben

Színek 2013.10.20. 1

Színek 2013.10.20. 1 Színek 2013.10.20. 1 Képek osztályozása Álló vagy mozgó (animált) kép Fekete-fehér vagy színes kép 2013.10.20. 2 A színes kép Az emberi szem kb. 380-760 nm hullámhosszúságú fénytartományra érzékeny. (Ez

Részletesebben

A számítógépes grafika alapjai

A számítógépes grafika alapjai A számítógépes grafika alapjai ELTE IK Helfenbein Henrik hehe@elte.hu Grafika kép keletkezése A számítógépes grafikák, képek létrehozása: egy perifériával egy képet digitalizálunk lapolvasó (scanner),

Részletesebben

A digitális képfeldolgozás alapjai

A digitális képfeldolgozás alapjai A digitális képfeldolgozás alapjai Digitális képfeldolgozás A digit szó jelentése szám. A digitális jelentése, számszerű. A digitális információ számokká alakított információt jelent. A számítógép a képi

Részletesebben

2.1. Jelátalakítás és kódolás

2.1. Jelátalakítás és kódolás 2.1. Jelátalakítás és kódolás Digitalizálás Az információ hordozója a jel, amely más-más formában kell, hogy megjelenjen az ember illetve a számítógép számára. Az ember alapvetően en a természetes környezetéből

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Mi a különbség? Az eredeti kép 100%- os minőséggel. Ugyanaz a kép tömörítve, jpg formátumban. (méret: 1,2 KB)

Mi a különbség? Az eredeti kép 100%- os minőséggel. Ugyanaz a kép tömörítve, jpg formátumban. (méret: 1,2 KB) Mi a különbség? Mi a különbség? Az eredeti kép 100%- os minőséggel. Ugyanaz a kép tömörítve, jpg formátumban. (méret: 39 KB) (méret: 6 KB) (méret: 1,2 KB) Mi a különbség? Melyek a mai óra fő kérdései?

Részletesebben

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák)

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák) 1. tétel A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei Ismertesse a kommunikáció általános modelljét! Mutassa be egy példán a kommunikációs

Részletesebben

72-74. Képernyő. monitor

72-74. Képernyő. monitor 72-74 Képernyő monitor Monitorok. A monitorok szöveg és grafika megjelenítésére alkalmas kimeneti (output) eszközök. A képet képpontok (pixel) alkotják. Általános jellemzők (LCD) Képátló Képarány Felbontás

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással .. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás

Részletesebben

A színérzetünk három összetevőre bontható:

A színérzetünk három összetevőre bontható: Színelméleti alapok Fény A fény nem más, mint egy elektromágneses sugárzás. Ennek a sugárzásnak egy meghatározott spektrumát képes a szemünk érzékelni, ezt nevezzük látható fénynek. Ez az intervallum személyenként

Részletesebben

ÉRETTSÉGI TÉTELCÍMEK 2012 Informatika

ÉRETTSÉGI TÉTELCÍMEK 2012 Informatika Budapesti Egyetemi Katolikus Gimnázium és Kollégium ÉRETTSÉGI TÉTELCÍMEK 2012 Informatika Reischlné Rajzó Zsuzsanna Szaktanár Endrédi Józsefné Igazgató Kelt: Budapest, 2012 március 1. tétel A kommunikáció

Részletesebben

Informatika elméleti alapjai. January 17, 2014

Informatika elméleti alapjai. January 17, 2014 Szám- és kódrendszerek Informatika elméleti alapjai Horváth Árpád January 17, 2014 Contents 1 Számok és ábrázolásuk Számrendszerek Helyiérték nélküliek, pl római számok (MMVIIII) Helyiértékesek a nulla

Részletesebben

A digitális képfeldolgozás alapjai

A digitális képfeldolgozás alapjai A digitális képfeldolgozás alapjai Digitális képfeldolgozás A digit szó jelentése szám. A digitális jelentése, számszerű. A digitális információ számokká alakított információt jelent. A számítógép a képi

Részletesebben

KÉPSZERKESZTÉS. GIMP GNU Image Manipulation Program szabad, ingyenes szoftver, képszerkesztő program. A Gimp natív fájlformátuma az XCF.

KÉPSZERKESZTÉS. GIMP GNU Image Manipulation Program szabad, ingyenes szoftver, képszerkesztő program. A Gimp natív fájlformátuma az XCF. KÉPSZERKESZTÉS GIMP GNU Image Manipulation Program szabad, ingyenes szoftver, képszerkesztő program. A Gimp natív fájlformátuma az XCF. Photoshop Adobe Photoshop pénzért megvásárolható képszerkesztő program,

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

Informatika Rendszerek Alapjai

Informatika Rendszerek Alapjai Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának

Részletesebben

INFO1 Számok és karakterek

INFO1 Számok és karakterek INFO1 Számok és karakterek Wettl Ferenc 2015. szeptember 29. Wettl Ferenc INFO1 Számok és karakterek 2015. szeptember 29. 1 / 22 Tartalom 1 Bináris számok, kettes komplemens számábrázolás Kettes számrendszer

Részletesebben

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kódolások Adatok kódolása Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kilo K 1 000 Kibi Ki 1 024 Mega

Részletesebben

OPTIKA. Szín. Dr. Seres István

OPTIKA. Szín. Dr. Seres István OPTIKA Szín Dr. Seres István Additív színrendszer Seres István 2 http://fft.szie.hu RGB (vagy 24 Bit Color): Egy képpont a piros, a kék és a zöld 256-256-256 féle árnyalatából áll össze, összesen 16 millió

Részletesebben

Multimédiás alkalmazások

Multimédiás alkalmazások Multimédiás alkalmazások A multimédia olyan általános célú alkalmazások összessége, amelyek az információ valamennyi megjelenési formáját integrált módon kezelik. Tágabb értelemben ide soroljuk a hangés

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1

Részletesebben

Tervezőgrafika 4. A kiadványszerkesztői számítógépes programok

Tervezőgrafika 4. A kiadványszerkesztői számítógépes programok Tervezőgrafika 4. A kiadványszerkesztői számítógépes programok A grafika - a sok évszázados művészeti ág - a 20. században nagyot változott, mind fogalma mind művelőinek tárgyköre kibővült. Ahogy az ősember

Részletesebben

INFORMATIKA MATEMATIKAI ALAPJAI

INFORMATIKA MATEMATIKAI ALAPJAI INFORMATIKA MATEMATIKAI ALAPJAI Készítette: Kiss Szilvia ZKISZ informatikai szakcsoport Az információ 1. Az információ fogalma Az érzékszerveinken keresztül megszerzett új ismereteket információnak nevezzük.

Részletesebben

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció 1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága

Részletesebben

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése Analóg és digitális jelek Analóg mennyiség: Értéke tetszõleges lehet. Pl.:tömeg magasság,idõ Digitális mennyiség: Csak véges sok, elõre meghatározott értéket vehet fel. Pl.: gyerekek, feleségek száma Speciális

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

Készítette: Nagy Tibor István

Készítette: Nagy Tibor István Készítette: Nagy Tibor István A változó Egy memóriában elhelyezkedő rekesz Egy értéket tárol Van azonosítója (vagyis neve) Van típusa (milyen értéket tárolhat) Az értéke értékadással módosítható Az értéke

Részletesebben

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási

Részletesebben

A számítógépek felépítése. A számítógép felépítése

A számítógépek felépítése. A számítógép felépítése A számítógépek felépítése A számítógépek felépítése A számítógépek felépítése a mai napig is megfelel a Neumann elvnek, vagyis rendelkezik számoló egységgel, tárolóval, perifériákkal. Tápegység 1. Tápegység:

Részletesebben

JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár:

JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: JELENTKEZÉSI LAP Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: Második fordulóba jutás esetén Windows 7 operációs rendszert, és Office 2007 programcsomagot fogsz

Részletesebben

Elemek a kiadványban. Tervez grafika számítógépen. A képek feldolgozásának fejl dése ICC. Kép. Szöveg. Grafika

Elemek a kiadványban. Tervez grafika számítógépen. A képek feldolgozásának fejl dése ICC. Kép. Szöveg. Grafika Elemek a kiadványban Kép Tervez grafika számítógépen Szöveg Grafika A képek feldolgozásának fejl dése Fekete fehér fotók autotípiai rács Színes képek megjelenése nyomtatásban: CMYK színkivonatok készítése

Részletesebben

Multimédiás adatbázisok

Multimédiás adatbázisok Multimédiás adatbázisok Multimédiás adatbázis kezelő Olyan adatbázis kezelő, mely támogatja multimédiás adatok (dokumentum, kép, hang, videó) tárolását, módosítását és visszakeresését Minimális elvárás

Részletesebben

Az összetett munkához szükséges eszközkészlet kiválasztása és a digitalizáló eszközök megismerése

Az összetett munkához szükséges eszközkészlet kiválasztása és a digitalizáló eszközök megismerése Az összetett munkához szükséges eszközkészlet kiválasztása és a digitalizáló eszközök megismerése I. Számítógép kiválasztásának célja, meghatározói és problémái 1. Célok Először azt kell meghatároznunk,

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Törtszámok bináris ábrázolása, Az információ értelmezése és mérése http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF NIK

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

18. Szövegszerkesztők

18. Szövegszerkesztők 18. Szövegszerkesztők A szövegszerkesztés olyan számítógépes művelet, amelynek során később nyomtatásban megjelenő szövegegységeket, dokumentumokat hozunk létre, majd azokat papírra kinyomtatjuk. A különböző

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

Informatika SZTE 2014/15 tavaszi félév

Informatika SZTE 2014/15 tavaszi félév Informatika SZTE 2014/15 tavaszi félév dr. Németh Tamás egyetemi adjunktus SZTE TTIK, Informatikai Tanszékcsoport, Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszék Tematika Informatikai alapfogalmak,

Részletesebben

Anyagleadási feltételek (széles formátum) Technikai paraméterek: Tisztelt Partnerünk!

Anyagleadási feltételek (széles formátum) Technikai paraméterek: Tisztelt Partnerünk! Anyagleadási feltételek (széles formátum) Tisztelt Partnerünk! Rövid tájékoztatónk azt a célt szolgálja, hogy a megadott információk alapján, az alábbi paraméterek segítségükre legyenek a gördülékeny gyártásban.

Részletesebben

19. Fővárosi Informatikai Alkalmazói Tanulmányi Verseny 2009/2010 Komplex I. kategória Elméleti feladatlap 2010. március 22. Versenyző neve: Megoldás

19. Fővárosi Informatikai Alkalmazói Tanulmányi Verseny 2009/2010 Komplex I. kategória Elméleti feladatlap 2010. március 22. Versenyző neve: Megoldás 19. Fővárosi Informatikai Alkalmazói Tanulmányi Verseny 2009/2010 Komplex I. kategória Elméleti feladatlap 2010. március 22. Versenyző neve: Megoldás Elért pontszáma:... / 75 pont Beszámított pontszáma:...

Részletesebben

I. Internetes keresési feladatok (ajánlott idő: 20 perc)

I. Internetes keresési feladatok (ajánlott idő: 20 perc) I. Internetes keresési feladatok (ajánlott idő: 20 perc) A talált oldalak internet címét (URL) másold ki egy szöveges dokumentumba és mentsd Csapatnev_internet néven! A konkrét válaszokat ide a papírra

Részletesebben

Máté: Számítógépes grafika alapjai

Máté: Számítógépes grafika alapjai Történeti áttekintés Interaktív grafikai rendszerek A számítógépes grafika osztályozása Valós és képzeletbeli objektumok (pl. tárgyak képei, függvények) szintézise számítógépes modelljeikből (pl. pontok,

Részletesebben

SZAKKÖZÉPISKOLAI VERSENYEK SZAKMAI ALAPISMERETEK TÉTEL

SZAKKÖZÉPISKOLAI VERSENYEK SZAKMAI ALAPISMERETEK TÉTEL FŐVÁROSI SZAKMAI TANULMÁNYI VERSENY SZAKKÖZÉPISKOLAI VERSENYEK INFORMATIKAI SZAKMACSOPORT SZAKMAI ALAPISMERETEK TÉTEL Rendelkezésre álló idő: 90 perc Elérhető pontszám: 60 pont 2007-2008. FŐVÁROSI PEDAGÓGIAI

Részletesebben

Koós Dorián 9.B INFORMATIKA

Koós Dorián 9.B INFORMATIKA 9.B INFORMATIKA Számítástechnika rövid története. Az elektronikus számítógép kifejlesztése. A Neumann-elv. Információ és adat. A jel. A jelek fajtái (analóg- és digitális jel). Jelhalmazok adatmennyisége.

Részletesebben

Új műveletek egy háromértékű logikában

Új műveletek egy háromértékű logikában A Magyar Tudomány Napja 2012. Új műveletek egy háromértékű logikában Dr. Szász Gábor és Dr. Gubán Miklós Tartalom A probléma előzményei A hagyományos műveletek Az új műveletek koncepciója Alkalmazási példák

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Bevezetés a programozásba

Bevezetés a programozásba Bevezetés a programozásba 1. Előadás Bevezetés, kifejezések http://digitus.itk.ppke.hu/~flugi/ Egyre precízebb A programozás természete Hozzál krumplit! Hozzál egy kiló krumplit! Hozzál egy kiló krumplit

Részletesebben

Jelátalakítás és kódolás

Jelátalakítás és kódolás Jelátalakítás és kódolás Információ, adat, kódolás Az információ valamely jelenségre vonatkozó értelmes közlés, amely új ismereteket szolgáltat az információ felhasználójának. Valójában információnak tekinthető

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

ELŐADÁS VÁZLATOK. Multimédia eszközök és szoftver II. Vezetőtanár: Csánky Lajos Dr. Nádasi András

ELŐADÁS VÁZLATOK. Multimédia eszközök és szoftver II. Vezetőtanár: Csánky Lajos Dr. Nádasi András 126 ELŐADÁS VÁZLATOK Multimédia eszközök és szoftver II. Vezetőtanár: Csánky Lajos Dr. Nádasi András GDF MULTIMÉDIA VEZETŐTANÁR: CSÁNKY LAJOS és DR: NÁDASI ANDRÁS 128 Hang, hangmagasság A hang anyagi közegben

Részletesebben

A számítógépi grafika elemei. 2012/2013, I. félév

A számítógépi grafika elemei. 2012/2013, I. félév A számítógépi grafika elemei 2012/2013, I. félév Bevezető Grafika görög eredetű, a vésni szóból származik. Manapság a rajzművészet összefoglaló elnevezéseként ismert. Számítógépi grafika Két- és háromdimenziós

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 7. Digitális térképezés, georeferálás, vektorizálás Digitális térkép Fogalma Jellemzői Georeferálás

Részletesebben

elektronikus adattárolást memóriacím

elektronikus adattárolást memóriacím MEMÓRIA Feladata A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása

Részletesebben

IT - Alapismeretek. Feladatgyűjtemény

IT - Alapismeretek. Feladatgyűjtemény IT - Alapismeretek Feladatgyűjtemény Feladatok PowerPoint 2000 1. FELADAT TÖRTÉNETI ÁTTEKINTÉS Pótolja a hiányzó neveket, kifejezéseket! Az első négyműveletes számológépet... készítette. A tárolt program

Részletesebben

QGIS tanfolyam (ver.2.0)

QGIS tanfolyam (ver.2.0) QGIS tanfolyam (ver.2.0) I. Rétegkezelés, stílusbeállítás 2014. január-február Összeállította: Bércesné Mocskonyi Zsófia Duna-Ipoly Nemzeti Park Igazgatóság A QGIS a legnépszerűbb nyílt forráskódú asztali

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

Multimédia alapú fejlesztéseknél gyakran használt veszteséges képtömörítő eljárások pszichovizuális összehasonlítása

Multimédia alapú fejlesztéseknél gyakran használt veszteséges képtömörítő eljárások pszichovizuális összehasonlítása Multimédia alapú fejlesztéseknél gyakran használt veszteséges képtömörítő eljárások pszichovizuális összehasonlítása Berke József 1 - Kocsis Péter 2 - Kovács József 2 1 - Pannon Agrártudományi Egyetem,

Részletesebben

MONITOROK ÉS A SZÁMÍTÓGÉP KAPCSOLATA A A MONITOROKON MEGJELENÍTETT KÉP MINŐSÉGE FÜGG:

MONITOROK ÉS A SZÁMÍTÓGÉP KAPCSOLATA A A MONITOROKON MEGJELENÍTETT KÉP MINŐSÉGE FÜGG: MONITOROK ÉS A SZÁMÍTÓGÉP KAPCSOLATA A mikroprocesszor a videókártyán (videó adapteren) keresztül küldi a jeleket a monitor felé. A videókártya a monitor kábelen keresztül csatlakozik a monitorhoz. Régebben

Részletesebben

Digitális tárolós oszcilloszkópok

Digitális tárolós oszcilloszkópok 1 Az analóg oszcilloszkópok elsősorban periodikus jelek megjelenítésére alkalmasak, tehát nem teszik lehetővé a nem periodikusan ismétlődő vagy csak egyszeri alkalommal bekövetkező jelváltozások megjelenítését.

Részletesebben

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél 5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris

Részletesebben

openbve járműkészítés Leírás az openbve-hez kapcsolódó extensions.cfg fájl elkészítéséhez

openbve járműkészítés Leírás az openbve-hez kapcsolódó extensions.cfg fájl elkészítéséhez Leírás az openbve-hez kapcsolódó extensions.cfg fájl elkészítéséhez 1. oldal openbve járműkészítés Leírás az openbve-hez kapcsolódó extensions.cfg fájl elkészítéséhez A leírás az openbve-hez készített

Részletesebben

Nyomtatandó anyagát a következő módon szerkessze meg

Nyomtatandó anyagát a következő módon szerkessze meg Nyomtatandó anyagát a következő módon szerkessze meg Nyomtatandó anyagát a következő módon szerkessze meg Kedves Megrendelőnk, nyomtatandó állományát a következő előírások alapján szerkessze meg. Ha ezeket

Részletesebben

SZÁMÍTÁSOK A TÁBLÁZATBAN

SZÁMÍTÁSOK A TÁBLÁZATBAN SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon

Részletesebben

Az ErdaGIS térinformatikai keretrendszer

Az ErdaGIS térinformatikai keretrendszer Az ErdaGIS térinformatikai keretrendszer Két évtized tapasztalatát sűrítettük ErdaGIS térinformatikai keretrendszerünkbe, mely moduláris felépítésével széleskörű felhasználói réteget céloz, és felépítését

Részletesebben

6. Alkalom. Kép ClipArt WordArt Szimbólum Körlevél. K é p

6. Alkalom. Kép ClipArt WordArt Szimbólum Körlevél. K é p 6. Alkalom Kép ClipArt WordArt Szimbólum Körlevél K é p Képet már létezı képállományból vagy a Word beépített CLIPART képtárgyőjteményébıl illeszthetünk be. Képállományból kép beillesztése A szövegkurzort

Részletesebben

MESTERMUNKA VEKTORKÉP ÉS BITKÉP

MESTERMUNKA VEKTORKÉP ÉS BITKÉP MESTERMUNKA VEKTORKÉP ÉS BITKÉP A gobók nagyon nagy felbontással készülnek, mivel a vetítés után a nagyméretű vetített képnek is élesnek, kontúrosnak és a megjelenő szövegnek olvashatónak kell lennie.

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben

A színkezelés alapjai a GIMP programban

A színkezelés alapjai a GIMP programban A színkezelés alapjai a GIMP programban Alapok.Előtér és háttér színek.klikk, hogy alapbeállítás legyen ( d és x használata).hozzunk létre egy 640x400 pixeles képet! 4.Ecset eszköz választása 5.Ecset kiválasztása

Részletesebben

Informatikai alapismeretek II.

Informatikai alapismeretek II. Informatikai alapismeretek II. (PF30IF211) Kérdések és válaszok 1. Milyen veszteségmentes kódolási lehetıségeket ismersz? Különbségi kódolás, határoló vonal kódolás, homogén foltok kódolása, entrópia kódolás.

Részletesebben

Objektumok és osztályok. Az objektumorientált programozás alapjai. Rajzolás tollal, festés ecsettel. A koordinátarendszer

Objektumok és osztályok. Az objektumorientált programozás alapjai. Rajzolás tollal, festés ecsettel. A koordinátarendszer Objektumok és osztályok Az objektumorientált programozás alapjai Rajzolás tollal, festés ecsettel A koordinátarendszer A vektorgrafikában az egyes grafikus elemeket (pontokat, szakaszokat, köröket, stb.)

Részletesebben

Újdonságok 2013 Budapest

Újdonságok 2013 Budapest Újdonságok 2013 Budapest Tartalom 1. Általános 3 2. Szerkesztés 7 3. Elemek 9 4. Terhek 10 5. Számítás 12 6. Eredmények 13 7. Méretezés 14 8. Dokumentáció 15 2. oldal 1. Általános A 64 bites változat lehetőséget

Részletesebben

Színes kültéri. Reklámtábla installáció

Színes kültéri. Reklámtábla installáció Színes kültéri LED Reklámtábla installáció JU-JO Engineering Bt LED Specialista www.illur.hu Email: illur@illur.hu Tartalom Áttekintés Technikai leírás Tulajdonságok Rendszer csatlakozások Szerkezeti rajz

Részletesebben

Nemzeti Alaptanterv Informatika műveltségterület Munkaanyag. 2011. március

Nemzeti Alaptanterv Informatika műveltségterület Munkaanyag. 2011. március Nemzeti Alaptanterv Informatika műveltségterület Munkaanyag 2011. március 1 Informatika Alapelvek, célok Az információ megszerzése, megértése, feldolgozása és felhasználása, vagyis az információs műveltség

Részletesebben

Egyéb 2D eszközök. Kitöltés. 5. gyakorlat. Kitöltés, Szöveg, Kép

Egyéb 2D eszközök. Kitöltés. 5. gyakorlat. Kitöltés, Szöveg, Kép 5. gyakorlat Egyéb 2D eszközök Kitöltés, Szöveg, Kép Kitöltés A kitöltés önálló 2D-s elemtípus, amely egy meghatározott felület sraffozására, vagy egyéb jellegű kitöltésére használható. Felület típusú

Részletesebben

Ablakok. Fájl- és mappaműveletek. Paint

Ablakok. Fájl- és mappaműveletek. Paint Ablakok. Fájl- és mappaműveletek. Paint I. Ablakok I.1. Ablak fogalma Windows = ablak, rövidítése: win Program indítás kinyílik az ablaka I.2. Ablak részei A programablak rendszerint az alábbi részekre

Részletesebben

Molnár Mátyás. Bevezetés a PowerPoint 2013 használatába magyar nyelvű programváltozat. Csak a lényeg érthetően! www.csakalenyeg.hu

Molnár Mátyás. Bevezetés a PowerPoint 2013 használatába magyar nyelvű programváltozat. Csak a lényeg érthetően! www.csakalenyeg.hu Molnár Mátyás Bevezetés a PowerPoint 2013 használatába magyar nyelvű programváltozat Csak a lényeg érthetően! www.csakalenyeg.hu TÉMÁK HASZNÁLTA A téma meghatározza bemutató színeit, a betűtípusokat, a

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

Dr. Pétery Kristóf: Adobe Photoshop CS Képmanipuláció

Dr. Pétery Kristóf: Adobe Photoshop CS Képmanipuláció 2 Minden jog fenntartva, beleértve bárminemű sokszorosítás, másolás és közlés jogát is. Kiadja a Mercator Stúdió Felelős kiadó a Mercator Stúdió vezetője Lektor: Gál Veronika Szerkesztő: Pétery István

Részletesebben