2. TÉTEL. Információ: Adatok összessége. Értelmezett adat, mely számunkra új és fontos.
|
|
- Endre Papp
- 10 évvel ezelőtt
- Látták:
Átírás
1 INFORMÁCIÓ ÁBRÁZOLÁS 02. tétel (SZÁM, LOGIKAI ÉRTÉK, SZÖVEG, KÉP, HANG, FILM STB). 2. TÉTEL Adat: A bennünket körülvevő mérhető és nem mérhető jellemzők a világban. - mérhető: hőmérséklet, távolság, idő, szín - nem mérhető: Minden, ami szubjektív(szépség, érzelmek). Információ: Adatok összessége. Értelmezett adat, mely számunkra új és fontos. Informatika: Az adatok tárolásával, feldolgozásával foglalkozó tudományág. Típus: Az adat tulajdonsága, mely egyértelműen meghatározza az - felvehető értékek halmazát, - a számára lefoglalt memóriaterület szerkezetét és méretét, - a rajta elvégezhető műveleteket. Számok ábrázolása: Értékhalmaz: o Egész számok o Valós számok Szerkezet: Függ az értékhalmaztól. o történhet 1,2,4, de akár több bájton is. o Előjel nélkül a tartomány n biten: 0..2 n -1 (1B 255-ig, 2B ig) o Előjelesen a tartomány n biten: -2 n n-1-1 (1B ig, 2B ) Műveletek: Minden műveletet az összeadásra vezet vissza. o Összeadás o Kivonás o Szorzás 1 / 9
2 o Osztás Ábrázolási módok: Egész számok Tört számok Fixpontos számábrázolás: Fixpontos szám ábrázolás során az ábrázolás előre rögzített kettedes jegy pontos, azaz a kettedes és egész jegyek száma adott. Ezt általában egész számok ábrázolását jelenti, mikor a kettedes jegyek száma nulla. Nem negatív egész számok: A bináris számot tároljuk, a megadott méretű területen. Ha nem töltjük ki az adott bájtot, akkor ki kell pótolni 0-kal. A legkisebb ábrázolható szám a 0. A legnagyobb ábrázolható szám n biten 2 n -1. Egész számok: Az eljárás hasonló, mint az előzőnél, csak itt a legfelső bitet beáldozzuk, és attól függően, hogy az értéke 1 vagy 0, értelmezzük negatív vagy pozitív számként. ha a legfelső bit 0, akkor a szám pozitívként értelmezendő ha 1, akkor a szám negatív. Lebegőpontos számábrázolás: Alapja a számok kettes számrendszerbeli normál alakja. m*2 k, ahol m-et mantisszának, a k-t pedig karakterisztikának hívjuk. Példán levezetve könnyebb: Emelt szint: Váltsuk át a számot kettes számrendszerbe ,majd az így kapott számot alakítsuk át normálalakba * merthogy 7 jegyet csúszott balra a kettedespont. Ebből következik a karakterisztika: és a mantissza: , itt lehagytuk a szám elején lévő 0-át, mert az mindig 0 lesz, ezért felesleges a tárolása. Így a teljes ábrázolt szám: Ami nem lett teljesen pontos esetünkben, mert csak 8 bitet hagytunk a mantisszának, de az igazából 9 biten fért volna el, levágtuk az utolsó számjegyet ( ). Megegyezés szerint lehet több-kevesebb helyet hagyni a mantisszának és a karakterisztikának, de értelemszerűen az egyik növelése, a másik rovására megy. Manapság ez a fajta számábrázolás az elterjedt. 2 / 9
3 Műveletek: Összeadás: Fogjunk két számot: 42 és = 2 ; = Ezeket összeadjuk: Szorzás: * Kivonás: a példa itt is. o Komplemens képzése: A 23-ból(= ) k(23)= , majd ehhez 1-et hozzá kell adni k 2 (23) , és ezután ezt a számot kell hozzá adni a 42-höz, majd a túlcsordult 1-et lehúzzuk Szövegek ábrázolása: Jel: jelentéssel bíró egyszerű ábra. Karakter: számítógépen ábrázolt (kóddal ellátott) jel. Karakternek nevezzük a szöveget alkotó betűket, számjegyeket, írásjeleket és az egyéb speciális jeleket is. Értéke: Lehet a megadott táblázatban tárolt bármely karakter. A szöveg szerkezete: 3 / 9
4 o Lehet végjeles, ahol a memóriából addig olvassuk ki a karaktereket, amíg végjelbe nem ütközünk. Végjel Extrementális elem. Olyan karakter (pl. vezérlőkarakter), Ami a szövegben agyébként nem fordulhat elő. Pl. sorvégjel. o Lehet megadott tárhelyen kitöltött szöveg is. PL: Ha megvan adva, hogy 255 karakter hosszú lehet egy szöveges változó, akkor nem léphetem túl a 256-ot, de nem feltétlen fogom felhasználni mind a 255 helyet. (Általában 1B-on tároljuk a szöveg hosszát) Művelet: o pl. Összefűzés: Két karaktersorozatot összefűz. o Kivágás: Megadott szempont szerint a karaktersorozatból valamennyi karaktert eltávolítunk. 1. A számítógép a karakterek tárolásához kódtáblákat használ, ami alapján visszafejthető, hogy melyik bináris szám melyik karaktert jelöli. Az első ilyen kódtábla angol nyelven született, és 7 bites volt, mivel az amerikaiak 95 karaktere elfért 7 biten is. 2. Később született meg az ASCII (American Standard Code for Information Interchange) szabvány amely már 8 bites volt, így kétszer annyi karakter kódolására volt képes, mint az előző, így megfelelt már a nemzetközi elvárásoknak. A különböző nemzeti nyelvek miatt jöttek létre az úgynevezett kódlapok (code pages), amelyek sorszámot kaptak, és az arra jellemző nyelvi sajátosságokat tartalmazták, pl: magyar: A további fejlődés következtében jött létre az UNICODE, amit az ISO hozott létre. Ez a kódtábla már 16 bites volt, azaz a Föld minden nyelvének minden karakterét meg tudta jeleníteni. A számítógép egy szöveget karaktersorozatként jelenít meg, így egy szöveget bájtok tartalmának összeolvasásaként fogunk fel. Általában a szöveget ritkán tárolódnak így. Többnyire alkalmaznak különféle technikákat, tömörítéseket. Logikai adatok ábrázolása: A George Bool által létrehozott Bool algebrán alapszik. Értékhalmaz: Igaz/Hamis, True/False, 1/0, / Szerkezet: 1 bájton tárolódik, mert ez a legkisebb megcímezhető egység a memóriában. 4 / 9
5 Műveletek: A,B:Logikai érték(ill. kifejezés) A Negáció (Nem) B Negáció (Nem) És Vagy Kizáró vagy Következtetés A B &, ^ v x i i h h i i h i h i i h h i i i i h h i h i i h h h i i h h h i A matematikai logikában egy állítás kizárólag egy értéket vehet fel egyszerre, Igaz vagy Hamis, a két állítás kizárja egymást. Számítógépes megvalósításban az igaz illetve a hamis értékekhez egy feszültségértéket, vagy egyéb jól megkülönböztethető jellemzőt rendelünk. A számítógép kapuáramkörökkel dolgozik. Műveleti sorrend (precedencia): o Zárójel o A Nem művelet(ek) o És művelet(ek) o Vagy művelet(ek) Néhány fontosabb azonosság: o De Morgan azonosság: (A v B) = A & B ; (A&B) = A v B o Negációs tétel: A v A = True ; A & A = False ; ( A) = A 5 / 9
6 Képábrázolás: A számítógépes grafika körébe soroljuk a grafikus objektumok (képek, rajzok, diagramok) előállítását, tárolását, a számítógép számára feldolgozható formává alakítását (képdigitalizálás), valamint megjelenítését (képernyőn, papíron) A számítástechnikában a képeket kétféleképpen írhatjuk le: vektorgrafikusan: ekkor a kép elemeit adjuk meg, például egy egyenes kezdés végpontjának koordinátáit, vastagságát, stílusát, színét. Alapvetően így működik például a CorelDraw, Adobe Illustrator és a Macromedia Flash (animációs). Jellemzői: A kép egymástól független vonalakból és területekből áll. Minden objektum önállóan szerkeszthető utólag is bármikor. Az objektumok takarhatják egymást, ill. átlátszók/áttetszők lehetnek Torzítás nélkül lehet nagyítani, kicsinyíteni Az egyszerűbb alakzatokból álló grafikus ábrák kicsi méretű fájlokat adnak. A bonyolult ábrák, fényképek igen nagyméretűek, lassú a megjelenítésük a sok számolás miatt, és nem képes a fénykép minőség visszaadására A vektorgrafikát a főleg vonalakból és egyszerű mértani alakzatokból álló rajzok, pl. betűtípusok, műszaki rajzok, építési és termék tervek, üzleti ábrák, grafikonok elkészítésére használjuk. Raszter grafikaként (bittérképes vagy pixelgrafikusnak is nevezik): A képet függőleges és vízszintes irányokban pontokra (pixelekre- kis négyzet alakú területekre) osztja fel, és minden egyes pontnak tárolja a színinformációit. Megjelenítéskor a képernyő egy-egy képpontjában jeleníti meg a tárolt kép egyes pontjait a megfelelő színben. Jellemzői: A bitképek adott számú pixelt tartalmaznak, emiatt a kép átméretezéskor torzulhat. (nagyításkor a képpontok mérete változik, emiatt homályos, ill. raszteres lehet a kép..) Igen jó minőségű képek készíthetők (fényképekről is). A nagy felbontás (sok képpont) és a sok szín tárolása igen nagy méretűvé teheti a bitképes a fájlokat (még akkor is, ha viszonylag egyszerűbb rajzokat tartalmaznak.) A kép méretét (szélesség, magasság) megadhatjuk a képpontok számával. Felbontáson az egységnyi hosszúságú szakaszon (1 cm-en, 1 inch-en[~2,54 cm]) elhelyezett képpontok számát értjük. Mértékegység: DPI (Dot/Inch) Egy képponton megjeleníthető színek számát színmélységnek nevezzük és a tároló bitek számával adjuk meg. Színmélység megjeleníthető színek száma 4 bit 2 4 =16 8 bit(1 bájt) 2 8 = bit (2 bájt) 2 16 = bit(3 bájt) 2 24 ~16 Millió Egy kép méretét megbecsülhetjük, ha a kép vízszintes méretét (képpontok száma) szorozzuk a függőleges irányú pontokban mért méretével, majd ezt megszorozzuk a színmélységgel. Pl.: Egy digitális géppel készült képnek (szélesség:1700 pixel, magasság: 1100 pixel, színmélység 24 bit) fájlmérete tömörítés nélkül: 1700x1100x24/8= B= 5,35MB A példából is látszik, hogy képeink meglehetősen nagy méretűek, amit különböző tömörítő algoritmusok tesznek kezelhetővé. Pl. JPG, BMP(LWZ). stb. 6 / 9 Az un. natív formátumok (pl. PSD, AI) képesek a kép kiegészítő információit is tárolni pl. rétegek, szűrők, stb.
7 32 bit (4 bájt) 2 32 Színmódok RGB A leggyakrabban az RGB színmódot használjuk. Általában ennél maradunk mindaddig, amíg képünk el nem nyeri végleges formáját a képszerkesztő programok szolgáltatásainak tekintélyes része csak ebben a színmódban használható. Ez a színtárolási mód három színcsatornát használ a képpontok színösszetevőinek eltárolására. Szürkeárnyalatos kép formájában meg is jeleníthetők ezek a csatornák. Ahol valamelyik szín erősen jelen van ott világos, ahol hiányzik ott sötétnek látjuk. CYMK A szubsztraktív színkeverés elvén négy szín: cián (Cyan) sárga (Yellow) bíbor (Magenta) és egy kulcs szín, -ami sok esetben fekete- (Key) jelenlétének %-os arányából rakja össze a képpontok színinformációit. Ennek megfelelően 4 színcsatornát használ (ez 8x4=32 bites színmélység) Ez nem jelent 2 32 féle színt mert a keverés során többször azonos színt kapunk. Színpalettás (Indexed Color) 8 bites színes képek színt tartalmazhatnak. Ez a 256 szín bármelyik RGB módon előállított szín lehet de egy képen csak 256 féle szín jelenhet meg. A képpont színének megadása az adott szín színtáblában elfoglalt helyének sorszámával történik. Szürkeárnyalatos (Grayscale) : Képpontonként 8 biten (1 bájton) a szürke 256 árnyalatát képes tárolni palettát használ.. A fekete fehér fényképhez hasonló képek Vonalas, vagy fekete-fehér: 1 biten tárolja a képpontok információit, így csak két szín megjelenítésére képes: fehér, vagy fekete. A Photoshop ezt a színmódot nevezi bitmapnek nem szabad összetéveszteni a Windows által kedvelt BMP képekkel (azok 24 bites színmélységet ismernek) A képfeldolgozás mindig nagy mennyiségű adat feldolgozását jelenti, ezért szükség lehet adattömörítésre. A tömörítés történhet veszteségmentesen, ilyenkor az eredeti képről minden információt megtartunk - ilyen tömörítési eljárással találkozhatunk például a.gif vagy.png formátumú képeknél. Használunk veszteséges tömörítést is, ilyenkor a kép egyes információi elvesznek, a cél az, hogy ez ne járjon együtt lényeges látványbeli változással Ezeknél az eljárásoknál a tömörítés mértékét mi magunk is meghatározhatjuk, így a legjobb minőségben vagy a legjobb tömörítéssel is elmenthetjük állományainkat. Mivel érzékszerveink bizonyos határokon belül nem érzékelik a különbséget az eredeti és tömörített állomány között, bátran használhatjuk ezt a tömörítési eljárást is. A.JPG formátumú állományok is veszteséges tömörítési eljárást használnak. Hangok: A hang rögzítése mind analóg, mind digitális formában elterjedt technika. Az analóg technikában a hangot állandóan változó, folyamatos, hullámkarakterisztikájú jelekkel tárolják. Ellenben a számítógép csupán csak az 1 és a 0 sorozatait tudja tárolni. Ebből következik, hogy a tárolás jellege nem folyamatos. Ebben az esetben az információ csomagok formájában tárolódnak. Természetesen ezekkel a diszkrét jelekkel információkat veszítünk a folytonos jelekhez képest, de szerencsére a fül kevésbé érzékeny az ilyen adatveszteségekre. Digitalizáláskor a két információtípus közti konverziót hajtjuk végre megfelelő digitalizálási 7 / 9
8 paraméterek beállítása mellett. A hanghullám frekvenciája határozza meg a hangmagasságot. Az alacsony frekvenciájú hullám alacsony, míg a nagy frekvenciájú magas hangnak felel meg. Mintavétel Ha egy analóg jelet digitálisan szeretne tárolni, úgy a hanghullámból megfelelő időközönként mintát kell venni, majd ezen mintát tárolni kell. A kérdés az, hogy mekkora legyen ez az időköz? Alapszabály, hogy ha egy adott frekvenciájú szinuszos hullámból akarunk mintát venni úgy, hogy a vett minták alapján bármikor vissza tudjuk állítani a hanghullámot, akkor legalább a hullám frekvenciájának a kétszeresével kell dolgozni. A visszaalakítás technikai okai miatt célszerű az adott frekvencia sokszorosával mintát venni. Ebből következik, hogy amikor egy legnagyobb 11 KHz-es hanghullámot tartalmazó hangot szeretne digitalizálni, legalább 22KHz-es mintavételt kell alkalmaznia. A jobb hangkártyák már képesek 44KHz-es vagy akár 48KHz-es mintavételezésre is, mellyel CD minőségű hangjeleket lehet tárolni. Hasonlóan fontos a mintavételezés mellett a kvantálás minősége is. A kvantálás során állítjuk elő a mintavételezés során nyert értékből az ábrázolt értéket. Minél több értéket különböztetünk meg, annál pontosabban közelítjük meg a mért értéket. A WAV - a digitalizált hang A hangok digitalizálása a hullámokból vett diszkrét adatok tárolásából, majd visszajátszás ezen adatok alapján megkísérelt hullám visszaállításából áll. Tehát tulajdon képpen magát a teljes hanganyag hanghullámát tároljuk lehetőségeinknek megfelelő pontossággal, digitális formában. Hanganyagok ilyen módon történő tárolására a WAV fájlformátumot használjuk, melyet minden jelentősebb számítógéprendszer és multimédiás fejlesztőrendszer ismer és támogat. Ezzel a formátummal bármilyen hanganyag (beszéd, zene, zaj-zörej) tárolható és kiváló minőségben visszajátszható. Ha helyes mintavételezést használt a WAV-állományból kiindulva ugyanazt a hanghullámot kapja vissza, amit digitalizált. Egy CD-re bő egy óra (74 perc) WAV-formátumú tömörítetlen hanganyag rögzíthető. A MIDI - a leírt hang Manapság egyre divatosabb a számítógéppel előállított zene, melynek alapvető követelménye a MIDI-technika. A lényege az, hogy a számítógépben tároljék a különböző hangszerek hangjait a lehetséges hangmagasságokban. Minden egyes hangszernek külön csatornán lehet parancsokat adni, hogy milyen hangszínen szólaljon meg. A MIDI fájlban pusztán üzeneteket tárolnak, melyekben az áll, hogy melyik csatornán milyen hang milyen hosszan szólaljon meg. A fájl egy megfelelő MIDI-lejátszó és szerkesztő programba töltése után bármely csatornának megváltoztathatja a hozzárendelt hangszerét. Megjegyzem, hogy a MIDI világa kevésbé lényeges multimédiás fejlesztés szempontjából, hisz ez elsősorban zenészek számára, speciális hardver-szoftver környezetre készült eszközrendszer. A legtöbb multimédiás anyagszerkesztő egyébként nem támogatja ezt az eszközt. A hang fájloknál is fontossá vált, hogy ne foglaljanak túl nagy helyet, hiszen ha nagyon sűrű a mintavétel és a kvantálás minősége is nagy, akkor nagy lesz a hangfájl is. Ezért erre is van jó pár ismert és kevésbé ismert tömörítési eljárás, aminek két alfaja van: Veszteségmentes: itt nincs adatvesztés, viszont nem annyira hatékony a tömörítés. (pl.: flac,alac, WMA) Veszteséges: van adatvesztés, amit mi határozhatunk meg, hogy mekkora, viszont rendkívül hatékonyan tömörít.( pl.: AAC, mp3) Mozgóképek: 8 / 9
9 A mozgóképek tárolása valójában a képek és a hangok szinkronizált tárolásával egyezik meg. Ezek a fájlok lényegében nagy mennyiségű állóképekből állnak össze, és ezért itt nagyon fontos a tömörítés. Ezért használnak úgynevezett kódekeket (Kóder/dekóder szóból származik), amik olyan algoritmus, amely kódolásnál és dekódolásnál is jelen kell lennie. A képek gyors egymás utáni váltását (képkockaváltás) sebességét fps(frame Per Second) értékkel fejezzük ki. Akár felvételnél, akár lejátszásnál alacsony ez az érték, akkor darabos lesz az eredmény. Szemünk a 24 fpst (azaz 24 kép másodpercenként) nár folyamatos mozgásnak érzékeli. A XXI. században már nagyon sok multimédiás megjelenítés van, ezek között szerepel a 3D technológiai is, egyre jobb megjelenítő eszközöket, felvevőket lehet kapni. 9 / 9
Képek kódolása. Vektorgrafika. Bittérképes grafika (raszter/pixelgrafika)
Képek kódolása A számítógépes grafika körébe soroljuk a grafikus objektumok (képek, rajzok, diagramok) előállítását, tárolását, a számítógép számára feldolgozható formává alakítását (képdigitalizálás),
Képszerkesztés elméleti kérdések
Képszerkesztés elméleti kérdések 1. A... egyedi alkotó elemek, amelyek együttesen formálnak egy képet.(pixelek) a. Pixelek b. Paletták c. Grafikák d. Gammák 2. Az alábbiak közül melyik nem színmodell?
Képszerkesztés elméleti feladatainak kérdései és válaszai
Képszerkesztés elméleti feladatainak kérdései és válaszai 1. A... egyedi alkotóelemek, amelyek együttesen formálnak egy képet. Helyettesítse be a pixelek paletták grafikák gammák Helyes válasz: pixelek
Jel, adat, információ
Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.
Tömörítés, csomagolás, kicsomagolás. Letöltve: lenartpeter.uw.hu
Tömörítés, csomagolás, kicsomagolás Letöltve: lenartpeter.uw.hu Tömörítők Tömörítők kialakulásának főbb okai: - kis tárkapacitás - hálózaton továbbítandó adatok mérete nagy Tömörítés: olyan folyamat, mely
Számítógépes grafika. Készítette: Farkas Ildikó 2006.Január 12.
Számítógépes grafika Készítette: Farkas Ildikó 2006.Január 12. Az emberi látás Jellegzetességei: az emberi látás térlátás A multimédia alkalmazások az emberi érzékszervek összetett használatára építenek.
JELÁTALAKÍTÁS ÉS KÓDOLÁS I.
JELÁTALAKÍTÁS ÉS KÓDOLÁS I. Jel Kódolt formában információt hordoz. Fajtái informatikai szempontból: Analóg jel Digitális jel Analóg jel Az analóg jel két érték között bármilyen tetszőleges értéket felvehet,
1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2.
Témakörök 1. Digitális írástudás: a kőtáblától a számítógépig ( a kommunikáció fejlődése napjainkig) 2. Szedjük szét a számítógépet 1. ( a hardver architektúra elemei) 3. Szedjük szét a számítógépet 2.
GRAFIKA. elméleti tudnivalók
GRAFIKA elméleti tudnivalók 1. A digitális képalkotás - bevezető A "digitális" szó egyik jelentése: számjegyet használó. A digitális adatrögzítés mindent számmal próbál meg leírni. Mivel a természet végtelen,
Tömörítés. I. Fogalma: A tömörítés egy olyan eljárás, amelynek segítségével egy fájlból egy kisebb fájl állítható elő.
Tömörítés Tömörítés I. Fogalma: A tömörítés egy olyan eljárás, amelynek segítségével egy fájlból egy kisebb fájl állítható elő. Történeti áttekintés A tömörítés igénye nem elsődlegesen a számítógépek adattárolása
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 10 3.1. Megoldások... 12 A gyakorlósor lektorálatlan,
Képszerkesztés. Letölthető mintafeladatok gyakorláshoz: Minta teszt 1 Minta teszt 2. A modul célja
Képszerkesztés Letölthető mintafeladatok gyakorláshoz: Minta teszt 1 Minta teszt 2 A modul célja Az ECDL Képszerkesztés alapfokú követelményrendszerben (Syllabus 1.0) a vizsgázónak értenie kell a digitális
Jel, adat, információ
Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.
Számrendszerek és az informatika
Informatika tehetséggondozás 2012-2013 3. levél Az első levélben megismertétek a számrendszereket. A másodikban ízelítőt kaptatok az algoritmusos feladatokból. A harmadik levélben először megnézünk néhány
A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.
Szeretettel üdvözlünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással az a célunk,
Tömörítés, kép ábrázolás A tömörítés célja: hogy információt kisebb helyen lehessen tárolni (ill. gyorsabban lehessen kommunikációs csatornán átvinni
Tömörítés, kép ábrázolás A tömörítés célja: hogy információt kisebb helyen lehessen tárolni (ill. gyorsabban lehessen kommunikációs csatornán átvinni A tömörítés lehet: veszteségmentes nincs információ
I+K technológiák. Számrendszerek, kódolás
I+K technológiák Számrendszerek, kódolás A tárgyak egymásra épülése Magas szintű programozás ( számítástechnika) Alacsony szintű programozás (jelfeldolgozás) I+K technológiák Gépi aritmetika Számítógép
Informatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant
SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA
1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.
Készítette: Szűcs Tamás
2016 Készítette: Szűcs Tamás A számítógép képpontok (pixelek) formájában tárolja a képeket. Rengeteg - megfelelően kicsi - képpontot a szemünk egy összefüggő formának lát. Minden képpont másmilyen színű
Számítógépes Grafika SZIE YMÉK
Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév
Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika
Dr. Oniga István DIGITÁLIS TECHNIKA 2
Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8
2. Fejezet : Számrendszerek
2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College
Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:
Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,
Számítógépes grafika
Számítógépes grafika HEFOP 3.5.1 Korszerű felnőttképzési módszerek kifejlesztése és alkalmazása EMIR azonosító: HEFOP-3.5.1-K-2004-10-0001/2.0 Tananyagfejlesztő: Máté István Lektorálta: Brückler Tamás
Assembly programozás: 2. gyakorlat
Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális
Informatika érettségi vizsga
Informatika 11/L/BJ Informatika érettségi vizsga ÍRÁSBELI GYAKORLATI VIZSGA (180 PERC - 120 PONT) SZÓBELI SZÓBELI VIZSGA (30 PERC FELKÉSZÜLÉS 10 PERC FELELET - 30 PONT) Szövegszerkesztés (40 pont) Prezentáció-készítés
ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA
1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk
Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.
Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással
Digitális képek, használatuk
Grafikai alapismeretek ALAPFOGALMAK 2 Digitális képek, használatuk Digitális kép => képpontokból épül fel. A digitális képek pontjait rácsként képzelhetjük el. A digitális képek fő tulajdonságai: Pixelekből
The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003
. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,
Színek 2013.10.20. 1
Színek 2013.10.20. 1 Képek osztályozása Álló vagy mozgó (animált) kép Fekete-fehér vagy színes kép 2013.10.20. 2 A színes kép Az emberi szem kb. 380-760 nm hullámhosszúságú fénytartományra érzékeny. (Ez
2.1. Jelátalakítás és kódolás
2.1. Jelátalakítás és kódolás Digitalizálás Az információ hordozója a jel, amely más-más formában kell, hogy megjelenjen az ember illetve a számítógép számára. Az ember alapvetően en a természetes környezetéből
3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}
3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez
Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu
Szín számokkal Képábrázolás
2. foglalkozás Szín számokkal Képábrázolás Összegzés A számítógépek a rajzokat, fényképeket és más képeket pusztán számokat használva tárolják. A következő foglalkozás bemutatja, hogyan tudják ezt csinálni.
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
A digitális képfeldolgozás alapjai
A digitális képfeldolgozás alapjai Digitális képfeldolgozás A digit szó jelentése szám. A digitális jelentése, számszerű. A digitális információ számokká alakított információt jelent. A számítógép a képi
A számítógépes grafika alapjai
A számítógépes grafika alapjai ELTE IK Helfenbein Henrik hehe@elte.hu Grafika kép keletkezése A számítógépes grafikák, képek létrehozása: egy perifériával egy képet digitalizálunk lapolvasó (scanner),
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA
SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a
Harmadik gyakorlat. Számrendszerek
Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes
Mi a különbség? Az eredeti kép 100%- os minőséggel. Ugyanaz a kép tömörítve, jpg formátumban. (méret: 1,2 KB)
Mi a különbség? Mi a különbség? Az eredeti kép 100%- os minőséggel. Ugyanaz a kép tömörítve, jpg formátumban. (méret: 39 KB) (méret: 6 KB) (méret: 1,2 KB) Mi a különbség? Melyek a mai óra fő kérdései?
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
Bevezetés a számítástechnikába
Bevezetés a számítástechnikába Beadandó feladat, kódrendszerek Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 október 12.
4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
A digitális képfeldolgozás alapjai
A digitális képfeldolgozás alapjai Digitális képfeldolgozás A digit szó jelentése szám. A digitális jelentése, számszerű. A digitális információ számokká alakított információt jelent. A számítógép a képi
Informatika elméleti alapjai. January 17, 2014
Szám- és kódrendszerek Informatika elméleti alapjai Horváth Árpád January 17, 2014 Contents 1 Számok és ábrázolásuk Számrendszerek Helyiérték nélküliek, pl római számok (MMVIIII) Helyiértékesek a nulla
ÉRETTSÉGI TÉTELCÍMEK 2012 Informatika
Budapesti Egyetemi Katolikus Gimnázium és Kollégium ÉRETTSÉGI TÉTELCÍMEK 2012 Informatika Reischlné Rajzó Zsuzsanna Szaktanár Endrédi Józsefné Igazgató Kelt: Budapest, 2012 március 1. tétel A kommunikáció
72-74. Képernyő. monitor
72-74 Képernyő monitor Monitorok. A monitorok szöveg és grafika megjelenítésére alkalmas kimeneti (output) eszközök. A képet képpontok (pixel) alkotják. Általános jellemzők (LCD) Képátló Képarány Felbontás
5. Fejezet : Lebegőpontos számok. Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
I. el adás, A számítógép belseje
2008. október 8. Követelmények Félévközi jegy feltétele két ZH teljesítése. Ha egy ZH nem sikerült, akkor lehetséges a pótlása. Mindkét ZH-hoz van pótlás. A pótzh körülbelül egy héttel az eredeti után
5. Fejezet : Lebegőpontos számok
5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda
A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással
.. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás
OOP I. Egyszerő algoritmusok és leírásuk. Készítette: Dr. Kotsis Domokos
OOP I. Egyszerő algoritmusok és leírásuk Készítette: Dr. Kotsis Domokos Hallgatói tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a számonkérendı anyag vázlatát képezik. Ismeretük
Hatodik gyakorlat. Rendszer, adat, információ
Hatodik gyakorlat Rendszer, adat, információ Alapfogalmak Rendszer: A rendszer egymással kapcsolatban álló elemek összessége, amelyek adott cél érdekében együttmőködnek egymással, és mőködésük során erıforrásokat
KÉPSZERKESZTÉS. GIMP GNU Image Manipulation Program szabad, ingyenes szoftver, képszerkesztő program. A Gimp natív fájlformátuma az XCF.
KÉPSZERKESZTÉS GIMP GNU Image Manipulation Program szabad, ingyenes szoftver, képszerkesztő program. A Gimp natív fájlformátuma az XCF. Photoshop Adobe Photoshop pénzért megvásárolható képszerkesztő program,
Informatika Rendszerek Alapjai
Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának
1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák)
1. tétel A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei Ismertesse a kommunikáció általános modelljét! Mutassa be egy példán a kommunikációs
A tanulók gyűjtsenek saját tapasztalatot az adott szenzorral mérhető tartomány határairól.
A távolságszenzorral kapcsolatos kísérlet, megfigyelés és mérések célkitűzése: A diákok ismerjék meg az ultrahangos távolságérzékelő használatát. Szerezzenek jártasságot a kezelőszoftver használatában,
Fixpontos és lebegőpontos DSP Számrendszerek
Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos
5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix
2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.
Máté: Számítógép architektúrák
Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós
Feladat: Indítsd el a Jegyzettömböt (vagy Word programot)! Alt + számok a numerikus billentyűzeten!
Jelek JEL: információs értékkel bír Csatorna: Az információ eljuttatásához szükséges közeg, ami a jeleket továbbítja a vevőhöz, Jelek típusai 1. érzékszervekkel felfogható o vizuális (látható) jelek 1D,
A színérzetünk három összetevőre bontható:
Színelméleti alapok Fény A fény nem más, mint egy elektromágneses sugárzás. Ennek a sugárzásnak egy meghatározott spektrumát képes a szemünk érzékelni, ezt nevezzük látható fénynek. Ez az intervallum személyenként
INFO1 Számok és karakterek
INFO1 Számok és karakterek Wettl Ferenc 2015. szeptember 29. Wettl Ferenc INFO1 Számok és karakterek 2015. szeptember 29. 1 / 22 Tartalom 1 Bináris számok, kettes komplemens számábrázolás Kettes számrendszer
Webdesign II Oldaltervezés 3. Tipográfiai alapismeretek
Webdesign II Oldaltervezés 3. Tipográfiai alapismeretek Tipográfia Tipográfia: kép és szöveg együttes elrendezésével foglalkozik. A tipográfiát hagyományosan a grafikai tervezéssel, főként a nyomdai termékek
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1
Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése
Analóg és digitális jelek Analóg mennyiség: Értéke tetszõleges lehet. Pl.:tömeg magasság,idõ Digitális mennyiség: Csak véges sok, elõre meghatározott értéket vehet fel. Pl.: gyerekek, feleségek száma Speciális
Multimédiás alkalmazások
Multimédiás alkalmazások A multimédia olyan általános célú alkalmazások összessége, amelyek az információ valamennyi megjelenési formáját integrált módon kezelik. Tágabb értelemben ide soroljuk a hangés
LEBEGŐPONTOS SZÁMÁBRÁZOLÁS
LEBEGŐPONTOS SZÁMÁBRÁZOLÁS A fixpontos operandusoknak azt a hátrányát, hogy az ábrázolás adott hossza miatt csak korlátozott nagyságú és csak egész számok ábrázolhatók, a lebegőpontos számábrázolás küszöböli
INFORMATIKA MATEMATIKAI ALAPJAI
INFORMATIKA MATEMATIKAI ALAPJAI Készítette: Kiss Szilvia ZKISZ informatikai szakcsoport Az információ 1. Az információ fogalma Az érzékszerveinken keresztül megszerzett új ismereteket információnak nevezzük.
Tervezőgrafika 4. A kiadványszerkesztői számítógépes programok
Tervezőgrafika 4. A kiadványszerkesztői számítógépes programok A grafika - a sok évszázados művészeti ág - a 20. században nagyot változott, mind fogalma mind művelőinek tárgyköre kibővült. Ahogy az ősember
Függőleges. Vízszintes
1. Fejtsd meg a rejtvényt! A főmegfejtés bizonyos karakterei a többi meghatározás egyes betűi alapján lesznek megfejthetőek. A meghatározásokat a lenti táblázatba írd, a megfelelő sorba. (10 pont a meghatározásokért
Készítette: Nagy Tibor István
Készítette: Nagy Tibor István A változó Egy memóriában elhelyezkedő rekesz Egy értéket tárol Van azonosítója (vagyis neve) Van típusa (milyen értéket tárolhat) Az értéke értékadással módosítható Az értéke
Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke
Kódolások Adatok kódolása Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kilo K 1 000 Kibi Ki 1 024 Mega
Logókészítés és képszerkesztés alapjai Január 14.
Logókészítés és képszerkesztés alapjai 2016. Január 14. Logótörténet Eredete: logosz = szó, beszéd üzenettel, jelentéssel bíró kell, hogy legyen a logó ősi népek ikonjai, hieroglifái, piktogramjai = kép
1. ábra. Repülő eszköz matematikai modellje ( fekete doboz )
Wührl Tibor DIGITÁLIS SZABÁLYZÓ KÖRÖK NEMLINEARITÁSI PROBLÉMÁI FIXPONTOS SZÁMÁBRÁZOLÁS ESETÉN RENDSZERMODELL A pilóta nélküli repülő eszközök szabályzó körének tervezése során első lépésben a repülő eszköz
Számítógép felépítése
Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége
BMP = BitMaP (Bittérkép)
BMP = BitMaP (Bittérkép) Az egyik legegyszerűbben használható, (valaha) legnépszerűbb pixeles képformátum. Eredeti kifejlesztő: Microsoft. Eredeti alkalmazási területe: Windows legrégebbi verziótól kezdve
Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék
Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás
A Gray-kód Bináris-kóddá alakításának leírása
A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül
Programozott soros szinkron adatátvitel
Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.
OPTIKA. Hullámoptika Színek, szem működése. Dr. Seres István
OPTIKA Színek, szem működése Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu Színrendszerek: Additív színrendszer Seres István 3 http://fft.szie.hu
Bevezetés a programozásba. 5. Előadás: Tömbök
Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és
Könyvtári ajánlások. A kétdimenziós könyvtári dokumentumokról készült digitális állókép másolatok követelményei. Aggregációs ajánlás OSZK szabályzat
Könyvtári ajánlások A kétdimenziós könyvtári ról készült digitális állókép ok követelményei Aggregációs ajánlás OSZK szabályzat v011 Országos Széchényi Könyvtár 2019.07.17 1 / 18 Tartalom A dokumentum
Követelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.
Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1
Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn
Analóg digitális átalakítók ELEKTRONIKA_2
Analóg digitális átalakítók ELEKTRONIKA_2 TEMATIKA Analóg vs. Digital Analóg/Digital átalakítás Mintavételezés Kvantálás Kódolás A/D átalakítók csoportosítása A közvetlen átalakítás A szukcesszív approximációs
Jelek és adatok. A jelek csoportosítása:
Jelek és adatok A jel fogalma: Érzékszerveinkkel vagy műszereinkkel felfogható, mérhető jelenség, amelynek jelentése van. A jelek elemi jelekre bonthatók. Pl.: egy szó (jel) betűkből (elemi jelekből) áll,
Multimédiás adatbázisok
Multimédiás adatbázisok Multimédiás adatbázis kezelő Olyan adatbázis kezelő, mely támogatja multimédiás adatok (dokumentum, kép, hang, videó) tárolását, módosítását és visszakeresését Minimális elvárás
1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció
1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága
Iványi László ARM programozás. Szabó Béla 6. Óra ADC és DAC elmélete és használata
ARM programozás 6. Óra ADC és DAC elmélete és használata Iványi László ivanyi.laszlo@stud.uni-obuda.hu Szabó Béla szabo.bela@stud.uni-obuda.hu Mi az ADC? ADC -> Analog Digital Converter Analóg jelek mintavételezéssel
OPTIKA. Szín. Dr. Seres István
OPTIKA Szín Dr. Seres István Additív színrendszer Seres István 2 http://fft.szie.hu RGB (vagy 24 Bit Color): Egy képpont a piros, a kék és a zöld 256-256-256 féle árnyalatából áll össze, összesen 16 millió
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF
Komputeralgebrai Algoritmusok
Komputeralgebrai Algoritmusok Adatábrázolás Czirbusz Sándor, Komputeralgebra Tanszék 2015-2016 Ősz Többszörös pontosságú egészek Helyiértékes tárolás: l 1 s d i B i i=0 ahol B a számrendszer alapszáma,
C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi
C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási
Képformátumok: GIF. Írta: TFeri.hu. GIF fájlformátum:
GIF fájlformátum: GIF= Graphics Interchange Format. Magát a formátumot a CompuServe cég hozta létre 1987ben. Alapvetően bittérképes, tömörítetlen formátum. Elterjedését az internet forgalmának hihetetlen
Pixel vs. Vektor. Pixelgrafikus: Vektorgrafikus:
Grafika Pixel vs. Vektor Pixelgrafikus: Pixelt (képpontot használ, ehhez tartozik színkód Inkább fotók Pl.: GIMP, PhotoShop, Paint Shop Pro, Paint Vektorgrafikus: Objektumokból építkezik, ezek tulajdonságát