Temporális epilepszia. felismerése EEG-jelekből

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Temporális epilepszia. felismerése EEG-jelekből"

Átírás

1 Villamosmérnöki és Informatikai Kar Tudományos Diákköri Konferencia Temporális epilepszia felismerése EEG-jelekből Készítették: Konzulensek: Tóth Krisztián Weiss Béla Dr. Kollár István Somogyvári Zoltán Budapest, 2004

2 Tartalomjegyzék Tartalomjegyzék... 1 Előszó... 2 Bevezetés Szükséges előismeretek Az agyról Idegszövet Idegsejt Szinapszis Akciós potenciál EEG Epilepszia A betegség patomechanizmusa Az epilepsziák osztályozása Temporális lebeny epilepszia Hippocampus Vizsgálati módszerek Problémák, célok tárgyalása Módszerek Osztályozó algoritmus megválasztása A mérések körülményei Előfeldolgozás Spike-O-Matic Eredmények Értékelés Köszönetnyilvánítás Szómagyarázat Irodalomjegyzék

3 Előszó Az embert már évezredek óta foglalkoztatja önmaga megismerése, a szellem, a tudat, a tudatalatti megfejtése. A központi idegrendszer pathológiás viselkedése folyamatosan nagy érdeklődésnek örvendhetett a történelem során. Az agyi rendellenességek közül az egyik legelterjedtebb morbus sacer, azaz szent betegség néven volt közismert a középkorban. A betegség misztifikálására az epileptikus rohamok tünetegyüttesei (generalizált rohamok esetén megnyilvánuló rángatózás, eszméletvesztés, szájhabzás, stb.) adnak magyarázatot. Az agyi működés ismeretének hiányában az akarattól független cselekvéseket produkáló betegről azt gondolták természetfeletti erők, gonosz vagy jó szellemek irányítják a roham alatt. Ezért gyakran a betegség elnevezésével ellentmondóan ördögűzésre, az érintettek kiközösítésére került sor. Korántsem mondhatjuk azt, hogy mára már ez a probléma megoldódott. A betegek többsége még ma is többet szenved az előítéletektől, mint a rohamoktól. Azonban a technika, az informatika robbanásszerű fejlődése jelentősen hozzájárult az agy működésének, és egyben a kóros tünetek természetének feltérképezéséhez, új módszereket bocsátva az orvosok rendelkezésére (gondolunk itt főleg az új képalkotási eljárásokra mint a PET, MRI, fmri, CT, SPECT továbbá az EEG, MEG elterjedésére, valamint a nagy tárolási kapacitás, és processzálási sebesség által kínált kép- és jelfeldolgozási lehetőségekre) a minél pontosabb diagnózis megállapításához, a legmegfelelőbb gyógyszeres kezelés, és az esetleges műtéti beavatkozás megválasztásához, így biztosítva a betegek mielőbbi rehabilitációját, be- illetve visszailleszkedését a társadalomba. A dolgozat a megfelelő előismeretek, a problémák és célok rövid ismertetése után betekintést próbál nyújtani az MTA KFKI RMKI Biofizika osztály Idegrendszeri Modellezés csoportjának, és az Országos Pszichiátriai és Neurológiai Intézet (OPNI) Epilepszia Centrumának együttműködése révén létrejött kutatás eddig elért eredményeibe. Budapest, A szerzők 2

4 Bevezetés Interdiszciplináris kutatásról lévén szó nélkülözhetetlen a problémák, és a lehetőségek megértéséhez a határterületeknek az adott témakörhöz kapcsolódó fejezeteinek elsajátítása. Az agyi tevékenységek regisztrálása, feldolgozása, elemzése megköveteli az agy strukturális, morfológiai valamint funkcionális tulajdonságainak ismertetését. Mivel nem egy neurológia könyv szerkesztése a cél, a dolgozat terjedelmi korlátai miatt természetesen nem is bocsátkozhatunk a részletekbe, hanem csak nagy vonalakban közöljük a legfontosabb tényeket. Röviden ismertetjük az egyik legelterjedtebb regisztrálási módszer, az EEG fizikai alapjait valamint a legleterjedtebb as szabványt. Különös fontossággal bír az agyi tevékenységek EEG regisztrátumbeli reprezentálása, hiszen csak így adatik igazán lehetőség a kóros aktivitások nyomon követésére. Terítékre kerül röviden a vizsgált betegség szindrómáinak valamint patomechanizmusának tárgyalása is. A fentiek ismeretében már rátérhetünk a felmerülő problémák, és a kitűzött célok megfogalmazására. Az orvosi nomenklatúra mellőzése szinte lehetetlen, mivel az évek során már az orvosbiológiai szakterület is átvette. A dolgozat írása során törekedtünk a latin kifejezések mellőzésére. A tisztelt Olvasó segítségére a dolgozat végén szómagyarázat áll rendelkezésre. 3

5 1. Szükséges előismeretek 1.1. Az agyról Az emlősök szervezetének legfontosabb információ -tároló, és feldolgozó szerve és ebből kifolyólag az élettani folyamatok központi szabályozó egységének tekinthető. A kifejlett emberi agy körülbelül gramm tömegű. Érzelmeink, gondolataink, személyiségünk, cselekedeteink, vágyaink forrása, és egyben az alapvető életfunkciók összehangolásáért is felelős. Ezért sérülései katasztrofális kimenetelűek lehetnek. Legérzékenyebb szervünk az agyvízben helyezkedik el, mely kitölti üregeit, védi az ütődésektől. Az agyvelőt topológiai szempontok alapján a következő részekre tagoljuk (1.1 ábra): Nagyagy: Végagy Köztiagy Agytörzs: Középagy Nyúltvelő Híd Kisagy Végagy Köztiagy Középagy Híd Nyúltvelő Kisagy 1.1 ábra Az agy sagittalis metszete 4

6 A nagyagyban helyezkednek el a "magasabb" funkciókat ellátó idegsejtek, melyek többek között a gondolkodásért vagy a beszédért felelősek. Az egyes összetettebb mechanizmusok pontos kialakulása, a résztvevő régiók bonyolult kapcsolatai, az agy nagy redundanciája, plaszticitása miatt még ma sem teljesen ismert. A nyúltagyvelőt, a hidat, a kisagyat a nagyaggyal "kapcsolóállomásként" a középagy köti össze. A hídban a rágás és nyálelválasztást szabályozása, valamint a hangok és az egyensúllyal kapcsolatos információk alapszintű feldolgozása történik. A biológiai fejlődést tekintve az agy "legkorábbi" részében, a nyúltagyvelőben található idegsejtek többek között a légzés és a vérnyomás szabályozásáért felelősek. A fenti ábrán is jól látható, hogy a központi idegrendszer két nagy összetevőjének, a gerincvelő és az agyvelő összeköttetéséért is a nyúltvelő felelős. A kisagyban a test különböző részeiről érkező, testhelyzetváltozásra és a környezettel való kapcsolatra vonatkozó információk kerülnek feldolgozásra. Látható, hogy az egyes régiókhoz kitüntetett szerep rendelhető, azonban az agy integratív működése csak az egyes részek nagyszámú, bonyolult kapcsolatai révén valósulhat meg [2], [3] Idegszövet Mikroszkopikus szinten vizsgálva az agyat az idegszövettel találkozunk, mely specifikus idegi és nem specifikus általános szöveti elemekből épül fel: 1. Specifikus szövetelemek A specifikus ingerlékenységi és ingerületvezetési működésben kizárólag csak az idegsejtek vesznek részt. A neuronokról bővebben a következő alfejezetben lesz szó. Az idegszövet nagy mennyiségben tartalmaz az ingerületi működésekben közvetlenül részt nem vevő, de specifikus idegszöveti elemeket is: a) Ependymasejtek: a gerincvelő és az agyvelő belső falait bélelő sejtek. Vastagabb agyállomány esetén nyúlványaik hosszabb-rövidebb lefutás után elvesznek. Ahol viszont az agyállomány vékonyabb, elérik az agy felszínét. b) Gliasejtek: Az idegsejtek működésükből kifolyólag anyagcseréjükkel szemben speciális igényeket támasztanak. Ezek nem csak az anyagcsere különleges mechanizmusait jelentik, hanem azt is biztosítják, hogy e folyamatok védve legyenek a szervezet többi részét érő zavaroktól. Feltehetőleg ennek érdekében differenciálódtak a specifikus ingerületi elemek mellett a gliasejtek, melyek az 5

7 ependymasejtek nyúlványaival közösen a neuronoknak szinte minden részét körülveszik. Az elhalt sejteket is a gliasejtek emésztik meg. 2. Nem specifikus elemek Nem specifikus szöveti elemként az idegszövetekben bőséges érhálózat fordul elő. A kapillárisok szinte sohasem érintkeznek közvetlenül a neuronokkal, hanem a fent említett gliasejteken keresztül szolgáltatják a szükséges anyagcsere termékeket. Az idegszövetben nincs igazán sejt közötti állomány. Az idegsejtek és nyúlványaik, valamint a gliasejtek és nyúlványaik majdnem tökéletesen kitöltik az idegszövet terét. Kivételt képeznek a szomszédos elemek közt fennmaradó nm vastagságú résrendszerek. Az idegingerület membránelmélete elsősorban Na + -ionokat tételez fel ebben a térben. Legújabb kutatások szerint úgy tűnik, hogy a sejt közti tér elégséges a membránelméletnek megfelelő ionvándorlásoknak [1], [4] Idegsejt A neuron az idegrendszer elemi funkcionális egysége. A megfelelő ingerlékenységi (fizikai vagy kémiai változásokra való érzékenységük), ingerületvezetési paraméterek eléréséhez specifikus morfológiai tulajdonságokkal rendelkeznek. Az idegsejt alaktani felépítését az 1.2. ábrán követhetjük végig. A magtartalmú, tömegesebb plazmával rendelkező sejttestet más néven szómának vagy perikaryonnak nevezzük. Az idegsejt magva rendszerint aránylag nagy, hólyagszerű, erős maghártyával bír. A sejttest nagyon sokféle mind nagyság, mind alak tekintetében. A szómak az agyban magvakba tömörülnek. Ezt az agy szürke állományának nevezzük ábra Neuron általános alakja forrás: átdolgozva 6

8 Az információ nagy sebességű (emberben maximum 150m/s), és nagy távolságokra történő továbbítását az axon vagy más néven neurit végzi. A terjedési sebesség növeléséhez a már említett gliasejtek is hozzájárulnak oly módon, hogy a neuronok nyúlványaira tekerednek, és ily módon hüvelyeket alkotva csökkentik a terjedő információ csillapítását, térbeli szóródását. Az axon kezdeti szakasza, az úgynevezett axondomb vékony, sejthártyája vastagabb, mint a sejttestté, és itt található egyben a neuron speciálisan alacsony ingerküszöbű része. Sok idegsejtben itt keletkezik az ingerületi hullám, és innen indul el a neurit mentén. Az axonok vastagsága széles skálán mozog. Lehetnek 0.1 µm-nél vékonyabb átmérőjűek, de 15 µm vastagságúak is. Szoros törvényszerű kapcsolat a sejt nagysága, és az axon vastagsága között nincsen. A neuritek elágazódása szempontjából a neuronokat két csoportba soroljuk: I. Az idegsejtek többségének axonja hosszabb lefutás után bomlik végágaira. A lefutás hossza néhány cm-től 1 m-en felül (ezek főleg a motoros, mozgató neuronok) is lehet. Előfordul, hogy a neurit kezdeti szakaszán vagy lefutása közben mellékágakat, úgynevezett collateralisokat ad. Ebben az esetben a főág viselkedése a mérvadó. II. A második csoportba azok a neuronok sorolhatók melyek axonjai néhány száz mikron vagy még ennél is kisebb távolságok után hirtelen csokorszerűen eloszlanak. Ez főleg a magasabb rendű idegközpontok idegsejtjeire jellemző. A neuritek elágazódását végfácskának vagy telodendrionnak nevezzük. Elenyészően ritkán fordul elő, hogy az axonhoz egy végződés tartozik. Általában a végfácska több száz végződésből áll. A többi neuron felől érkező információ befogadására főleg a dendritek szolgálnak. Felépítésükben nem térnek el lényegesen a sejttest plazmától, ezért plazmanyúlványoknak is nevezik őket. Hosszuk általában néhány mikrontól 2-3 mm-ig terjed. Sok neuronfajta jellegzetes dendrit elágazással rendelkezik. Számos idegsejt dendritjeire jellemző, hogy a fenyőgallyak tűszerű leveleire emlékeztető töviseik vannak melyek vége bunkószerűen megvastagodik. Nagyobb neuronok dendritfája akár 10 5 tövissel is bírhat. Az idegsejtek alakját elsősorban a nyúlványainak száma határozza meg. A neuronok többsége multipoláris, három- vagy többnyúlványú sejt. Ezekben az esetekben általában egy axon és két vagy több dendrit indul el a sejtből. A szürke állomány magjait összekötő neuritek pályákat alkotnak, ezt nevezzük az agy fehér állományának. Az ember idegrendszere hozzávetőleges becslés alapján neuront tartalmaz. Ezeknek csak kis hányada áll receptorral összefüggésben, és még ennél is kevesebb a motoros idegsejtek száma. Az összes többi neuron-neuron kapcsolatokat alakít ki. Magasabb 7

9 központokban egyetlen idegsejt akár hozzávezető kapcsolattal rendelkezhet, és nyúlványaival is sok ezer másik neuront érhet el. Óvatos becslések alapján is az emberi idegrendszerben lévő kapcsolatok száma nagyságrendbe helyezhető. Ily módon lehetőség adódik bonyolult hálózatok kialakulására. E hálózatok segítségével az idegszövet a külső világ, valamint a test belső környezetéből érkező temérdeknyi mennyiségű információt képes feldolgozni, elemezni, eltárolni, és szükség esetén raktáraiból előhívni [1] Szinapszis Szinapszisnak nevezzük a két idegsejt közötti morfológiai és funkcionális kapcsolatot. A neuron-neuron kapcsolatok, nem csak egyszerűen összekapcsolják az idegsejteket, hanem megszabják az ingerületek terjedési irányát is. Rajtuk keresztül az ingerület csak bizonyos feltételek teljesülése mellett terjedhet át. Tehát, egy axonon végighaladó ingerület nem terjed át a vele érintkező valamennyi neuronra, hanem csak azokra, amelyekkel alkotott interneuronális kapcsolatai az adott feltételek mellett éppen átjárhatóak. A szinapszis egy preszinaptikus, és egy posztszinaptikus komponensből, valamint a szinaptikus résből tevődik össze. A preszinaptikus elem rendszerint axon, még a posztszinaptikus egység lehet sejttest, dendrit (dendrittörzs vagy dendritikus tüske) vagy egy másik axon (axon eredő része vagy a bunkószerű végződése). A szinapszisok csoportosíthatók a résztvevő komponensek morfológiája, száma, és az ingerületáttevődés mechanizmusa szerint. A legutóbbi szerint megkülönböztetünk elektrotónikus, és kémiai transzmisszióval működő szinapszisokat. Elektrotónikus transzmisszió csak akkor jöhet létre, ha a két sejthártya szoros kontaktusú. Ebben az esetben az ingerület átvitelére nincsen szükség semmilyen közvetítő anyagra. A második csoport esetében a preszinaptikus elemből valamilyen anyag (neurotranszmitter) kerül ki a szinaptikus résbe, majd a posztszinaptikus komponens receptoraira hatva, sejthártyájának molekuláris szerkezetét fogja megváltoztatni az ionok átjárhatóságának szempontjából. Az ingerlő neurotranszmitterek depolarizálják a posztszinaptikus sejtmembránt (EPSP), és így elősegítik a posztszinaptikus neuronok aktív állapotát jelző akciós potenciál kialakulását. Gátló neurotranszmitterek hiperpolarizálva a posztszinaptikus membránt (IPSP) értelemszerűen ellenkező hatást fejtenek ki. A posztszinaptikus idegsejt csak abban az esetben fog aktív állapotba kerülni, ha az axondombon a depolarizálódás eléri az adott neuronra jellemző küszöbértéket [1], [4], [5]. Ha a neurotranszmitterek kibocsátását és hatását szabályozó bonyolult mechanizmusoktól eltekintünk az idegsejt működése egy nagyon leegyszerűsített fekete doboz modell alapján is 8

10 vizsgálható. A neuron működése a következőképpen értelmezhető: a bemenetekre érkező jelek előjelesen, súlyozva összegződnek, és a kimenet akkor és csak akkor lesz aktív (jelenik meg az idegsejtre jellemző akciós potenciál), ha a kapott érték elér egy küszöbértéket. A már megjelenő akciós potenciál amplitúdója független lesz a kiváltó inger nagyságától. Ezt a működést mindent vagy semmi természetűnek hívják. Matematikai, mérnöki megközelítésben a kimenetet binárisnak is nevezhetjük. Az előjelezés a bemenetek serkentő, valamint gátló hatását jelképezi. A súlyozás arra utal, hogy az egyes szinapszisok nem egyforma mértékben depolarizálják, hiperpolarizálják a postszinaptikus neuronokat. Az összegzés a hatások térbeli szummációját takarja Akciós potenciál Hogy a későbbiekben megérthessük a betegség kialakulásához vezető rendellenességeket, közelebbről is meg kell ismernünk a sejt aktív állapotát jelző akciós potenciált kiváltó mechanizmusokat. Egy általános akciós potenciál jelalakja az 1.3.-es ábrán látható ábra Tipikus akciós potenciál A neuron sejthártyáján nyugalmi állapotában nyugalmi membránpotenciál mérhető. Amennyiben a rá ható idegsejtek által kiváltott EPSP, valamint IPSP hatások összegezve eltérnek a nullától, a nyugalmi potenciáltól pozitívabb (depolarizáció) vagy negatívabb (hiperpolarizáció) érték lesz jelen a membránon. Depolarizáció esetén a neuronra jellemző küszöböt elérve megnyílnak a membránon található gyors, feszültségfüggő Na + csatornák, és így akár százszorosára megnövekedik a membrán Na + ionokra vonatkozó permeabilitása. Az 9

11 extracelluláris térből az elektrokémiai gradiensnek megfelelően a pozitív Na + ionok beáramlanak a sejtbe, 0V értékig hirtelen depolarizálják, majd megváltoztatják a sejtmembrán polaritását. Így jön létre az akciós potenciál meredeken felfutó éle. A csúcshoz közeledve ezek az Na + csatornák inaktiválódnak még mielőtt az Na + ionok elérnék egyensúlyi koncentrációjukat. Az inaktiválódásnak köszönhetően a csúcspotenciál lezajlása után az axon rövid időszakra (ms nagyságrend) ingerelhetetlenné válik. Ezt az időszakot refrakter periódusnak nevezzük. A Na + csatornák záródásával majdnem egy időben nyílnak a késői K + csatornák melyeken keresztül a K + ionok az elektrokémiai potenciáljuknak megfelelően a sejtből kifelé fognak áramlani. Ez a jelenség a membránpotenciált ismét negatív irányba fogja megváltoztatni (repolarizáció), majd a nyugalmi értéket meg is haladja (hiperpolarizáció), mivel az akciós potenciál lezajlása miatt a K + ionokra vonatkozó permeabilitás nagyobb mint nyugalmi állapotban. A nyugalmi membránpotenciál az átmeneti hiperpolarizálódás után áll helyre. Hosszú akciós potenciál sorozatok alkalmával az inonok áramlása miatt a nyugalmi potenciál folyamatosan csökkenne, a membrán depolarizálódna. Az ionok koncentrációjának állandó értéken tartását az úgynevezett Na-K pumpa, valamint a szivárgó (feszültség független ) csatornák végzik [4], [5]. A nátrium és kálium ionokon kívül más elemek is részt vesznek a membrán potenciál kialakításában. Ezek közül a legjelentősebb a Ca 2+ ion. Normál körülmények között is előfordul, hogy a neuriten gyors egymás utáni kisülések jelentkeznek, ezt burst-nek nevezzük. Előidézőjük általában a Ca 2+ áramok [5]. Az akciós potenciálokat általában három jellemzőjük segítségével írjuk le: amplitúdó, időtartam, jelalak. A neuronok azonosítása könnyen elvégezhető a kibocsátott akciós potenciál vizsgálata alapján. Erre az ad lehetőséget, hogy minden idegsejt specifikus, csak rá jellemző alakú akciós potenciállal rendelkezik, mely az idő multával csak nagyon kis mértékben változik EEG A kezdetekben a központi idegrendszeren belüli működés lokalizációját specifikus tünetek, és halál utáni boncolási vizsgálatok alapján határozták meg. Ma már rendelkezésünkre áll a képalkotási technikák széles tárháza, lehetőség van az agyi aktivitások által kísért elektromos és mágneses jelenségek követésére. A CT, SPECT, MRI, fmri, PET, technikák időbeli (fmri esetén például 4-8 másodperc), térbeli (mm körüli) felbontása azonban még ma sem minden esetben kielégítő. Az említett eljárások széleskörű használatát 10

12 továbbá magas költségük, méretük valamint a pácienssel való kapcsolatteremtés módja korlátozza. Ezért ezeket a módszereket általában a ma már hagyományosnak mondható EEG (elektroencefalográfia), és MEG (magnetoencefalográfia) módszerekkel kombinálva, azok kiegészítőjeként használják. A továbbiakban az EEG-t ismertetjük részletesen. Már 1875-ben R. Caton angol fiziológus megfigyelte, hogy az agyvelőbe helyezett elektródról áramingadozás vezethető el ben Hans Berger pszichiáternek sikerült először fejbőrről elvezetett elektromos változásokat regisztrálnia, és ő adta az eljárásnak az elektroencefalográfia elnevezést is. Ezeket az agy felszínén mérhető jeleket a sejtszintű biokémiai változások következtében kialakuló ionáramok hozzák létre. Ezek két formája a szinaptikus tevékenység és az akciós potenciál. A koponya alatt, az agykérgi részen elhelyezkedő corticalis neuronok nyúlványaikkal a kéreg felszínére merőlegesen rendeződnek, méghozzá oly módon, hogy a dendritek a kéreg felszíne felé, az axonok viszont az agy mélyébe irányulnak. A posztszinaptikus membránon beáramló pozitív töltések negatív potenciált hoznak létre az extracelluláris térben, miközben a sejttest pozitív marad. Ennek következtében a dendritek és a sejttest között elektromos dipólus alakul ki. Az áram a pozitív forrás felöl a negatív süllyesztő felé folyik extracellulárisan. Ez az áram aránylag kis ellenállású folyadékon keresztül folyik, ezért a forrás és a süllyesztő között aránylag kicsiny, µv nagyságrendű feszültségkülönbség keletkezik, ami térpotenciálok formájában terjed a környező szövetekre. Ezt a kis feszültségkülönbséget detektálja a fejbőrön keresztül az elektroencefalográf. Az EEG-ben csak azon dipólusok hatása jelenik meg melyek a koponya görbületére merőlegesek. Erre az irányra merőleges hatásokat viszont az MEG tudja regisztrálni. Fontos kihangsúlyozni még egyszer, hogy az EEG-vel nem az akciós potenciálok mérjük közvetlenül. Erre a célra a sejtbe beültetett mikroelektródok szolgálnak. A patch-clamp technika lehetőséget nyújt az ion-csatornák működésének egyenkénti vizsgálatára [4], [5], [6]. Az agyi tevékenységek EEG-beli manifesztációja (különböző normál agyi aktivitásokra mutat példát az 1.4. ábra) szempontjából az EEG hullámokat frekvenciájuk és amplitúdójuk szerint szokták osztályozni. 11

13 Felosztás frekvencia alapján: Delta-hullámok: 0.5-4Hz-ig Théta-hullámok: 4-8Hz Alfa-hullámok: 8-13Hz Béta-hullámok: 13-30Hz Gamma-hullámok: 30-80Hz, de átlagosan 40Hz 1.4. ábra Jellegzetes normál agyi tevékenységek. Forrás: Fernando H. Lopes ad Silva and Pieter Pin: EEG and MEG Analysis,

14 Az ép agy viselkedésének EEG regisztrátumbeli reprezentációját ismerve a kóros aktivitások könnyen beazonosíthatók még annak ellenére is, hogy minden agy egy kicsit más módon működik. Az idők folyamán az elektródák elhelyezésére a fejbőr felszínén legjobbnak tűnt a szabványos as elrendezés. Eszerint az elektródokat a homlok és a nyakszirt között, valamint keresztirányban is %-os távolságokon helyezik el. Jasper javasolta elsőként 1958-ban, hogy a koponya formájától és nagyságától való függetlenség biztosítása szempontjából az elektródok helyét százalékosan határozzák meg [7]. Az elektródok elhelyezésére, elnevezésére a következő ábra mutat példát. 1.5.ábra 19 elektród elhelyezése a szabvány szerint forrás: A jelek regisztrálására Ag-AgCl elektródák használatosak melyeknek az az előnyös tulajdonságuk, hogy nem polarizálódnak, vagyis az áram átfolyása nem befolyásolja az elektród átmeneti feszültéségét. A jobb vezetés eléréséhez a fejbőrre, az elektródák alá vezető gélt kennek. Speciális alkalmazások esetén rozsdamentes acél elektródok is használatosak, melyeket általában az agyhártya alá vagy akár mélyen az agyban helyeznek el. A regisztrátum készítése során unipoláris vagy bipoláris elvezetéseket használnak. Az első esetben referenciaként egy különálló (leggyakrabban a fülcimpán elhelyezett) elektróda szolgál. Bipoláris elvezetéskor a koponyára helyezett elektródák egymáshoz vannak viszonyítva. Ezt a módszert választva, az elektródák jó kombinálásával kimutatható a jelek terjedése az agy felszínén. 13

15 1.3. Epilepszia Ezen a néven mindazokat a tünetegyütteseket foglaljuk össze, melyekre specifikus epileptiform EEG jelenségek, és visszatérő, viszonylag hirtelen kezdődő és múló rohamok jellemzők. Az epilepsziák egy része genetikusan öröklődő, másik részük külső ártalom által kiváltott. Az ártalom elszenvedése és az epilepsziás működészavar között néha jelentős idő is eltelhet. Az emberi agynak törzsfejlődésből eredő tulajdonsága, hogy bizonyos behatásokra epilepsziás rohammal reagál. Mindannyian rendelkezünk epilepsziás görcskészséggel és ehhez tartozó görcsküszöbbel. Amennyiben a görcsküszöb csökken, görcskészség fokozódik spontán epilepsziás rohamok alakulhatnak ki. Mindazok a tényezők melyek az ingerület gátlást megváltoztatva teret adnak sejtpopulációk nagymértékű szinkronizált kisülésének, epileptogén hatásúak. Az etilológiai tényezők a következők lehetnek: - Génrendellenességek - Infectiosus ártalmak - Craniocerebralis traumák - Cerebrovascularis megbetegedések - Agytumorok - Metabolikus és toxikus ártalmak A genetikai tényezőknek kiemelt szerepük van. Egyrészt önmaguk lehetnek kórnemző tényezők, másrészt pedig meghatározzák az agyra ható epileptogén hatásokra való görcskészséget [8], [9]. Az epilepsziás szindrómáknak rengeteg befolyásoló tényezőjük van. Ezek közül a legmeghatározóbbak: A rohamok klinikai tünetei és jelentkezésük körülményei Interictalis és ictalis EEG-tünetek Életkor és rohamok indulásakor Neurológiai deficittünetek Intellektus Pszihopatológiai tünetek Gyógyszeres befolyásolhatóság 14

16 A betegség patomechanizmusa Az epilepszia kialakulása éppen az agy legfontosabb tulajdonságát, a tanulóképességét, neuronális plaszticitását használja ki. Ebből kifolyólag érthető, hogy leggyakrabban azokban a szerkezetekben (kéreg, hippocampus) alakul ki, melyek fő szerepe az adaptáció. Az epilepsziás neuronok ugyanúgy működnek, mint a normális idegsejtek, csak megnő az ingerlékenységük, mivel a normál működést szabályozó mechanizmusok károsulnak. Tehát, a rohamok kialakulását a preszinaptikus neuronok neurotranszmitter kibocsátásának szabályozásában, valamint a posztszinaptikus idegsejteken a neurotranszmittereket fogadó receptorok működésének megváltozásában kell keresnünk. A feszültségfüggő Na + ioncsatornák gyors repetatív kisülésre való hajlamossága (rövid refrakteridőnek tudható be) különösen kritikus az epilepsziás szinkronizált működészavarok kialakulásának szempontjából. A kezdeti kóros működést pozitív visszacsatolások erősítik fel. A fokozott kisülések olyan irreverzíbilis változásokat idéznek elő a sejtműködésben, melyek elősegítik az izgalmi állapotok fennmaradását, továbbá egyes esetekben maradandó funkcionális elváltozásokat válthatnak ki. A nagy sejtkárosító hatást valószínüleg a sejtbe beáramló Ca + ionok nagy koncetrációja váltja ki. A rohamok általában nem koncentrálódnak az őket kiváltó gócpontok köré, a szinkronizált kisülések átterjednek a szomszédos szövetekre és folyamatos igénybevétel után ezek a régiók is az ictális állapot kiindulópontjává válhatnak [8] Az epilepsziák osztályozása Az epilepsziákat több szempont szerint szokás csoportosítani. Ezek közül a legfontosabb paraméterek a kiváltott élettani hatások (ez szinte majdnem minden esetben megegyezik a rohamokat kiváltó régiók szerinti felosztással, kivételt képeznek azok az esetek mikor a kiváltó gócpontok pontos funkciója nem ismert), a kóros régiók kiterjedése, az életkor, stb. Itt csak a leggyakoribb, kéttengelyű besorolást ismertetjük. Az egyik tengelyen a lokalizáció, a másikon pedig az etiológiai szempontok alapján vannak felosztva a leggyakoribb szindrómák (1.1. táblázat) [8]. A szimptómás epilepsziák szerzett epilepsziák, még az idiopátiásak genetikai eredetűek. Parciális szindrómákról akkor beszélünk mikor a működészavar az agy jól körülírható területéhez köthető. Amennyiben ez a feltétel nem teljesül általánosított, generalizált epilepsziáról van szó. 15

17 Szimptómás Idiopátiás Generalizált West szindróma Lennox-Gastaut szindróma Absence epilepszia Juvenilis myoclonusos epilepszia Egyéb idiopátiás generalizált epilepszia Parciális Temporalislebenyepilepszia Frontálislebeny-epilepszia Parieto-occipitalis epilepszia Benignus centrotemporalis gyermekkori epilepszia Benignus occipitalis gyermekkori epilepszia 1.1. táblázat Szindrómák kéttengelyű csoportosítása forrás: Halász Péter: Epilepsziás tünetegyüttesek, Temporális lebeny epilepszia A temporális lebeny epilepszia rendkívül gyakori forma. A felnőttkori epilepsziák %-át teszi ki. Nagyrészt a fiatal felnőttkor, illetve a meglett felnőttkor periódusában jelentkezik. Amennyiben gyermekkorban indul, többéves tünetmentes periódus után serdülőkorban újra manifesztálódik. A fenti táblázatból látszik, hogy a szimptómás szindrómák közé tartozik, azonban teljes mértékben a genetikai tényezőket sem zárhatjuk ki. Parciális mivoltából kifolyólag általában csak a kóros régióhoz tartozó funkciók hiányaként jelentkezik, bizonyos esetekben viszont a parciális rohamok generalizáltakba torkollhatnak. Gyakori tünetek: szenzomotoros tünetek, elsápadás-elpirulás, szívritmusváltozás, izzadás, pupillatágulat, illúziók, hallucinációk, álomállapot, félelem, harag, tudatzavar, amnézia, automatizmus (akaratlan-motoros tevékenység melyet általában amnézia fed), kifejezéstelen arc, az éppen folyó tevékenység abbahagyása, stb. [8], [9]. Reprodukálható rohamkiváltó tünetekről ezekben az esetekben nem beszélhetünk, habár újra meg újra felmerül az a gyanú, hogy az emocionális igénybevétel rohamkeltő lehet. A betegség gyógyszeres kezelése az esetek többségében sikerrel járhat. Amennyiben viszont a modern farmakokinetikai elvek alkalmazása sem vezet pozitív eredményre, felmerül a műtéti beavatkozás szükségessége [8]. 16

18 Hippocampus A temporális lebeny epilepszia kiváltói a temporális lebeny alatt elhelyezkedő limbicus rendszer struktúrái, ezért az adott epilepszia típust gyakran temporolimbicus epilepsziának is nevezik. A leggyakoribb rohamkiváltó egység a hippocampus. Hogy ez miért is van így, magyarázatot ad a hippocampus funkciója (ez alapján a felsorolt szindrómák is érthetőek már), valamint az agyban lévő elhelyezkedése. Ez az egység a deklaratív memóriáért, az emléknyomok rövid és hosszú távú memóriák közötti átviteléért, valamint az emóciók kialakulásáért felelős. Ehhez nélkülözhetetlen, hogy a terület nagy adaptivitással rendelkezzen. A betegség patomechanizmusának tárgyalásánál leírtak függvényében így már érthető, hogy ez az epilepszia típus miért is olyan gyakori. Az öngerjesztő, szinkronizált intenzív kisülések kialakulási mechanizmusának magyarázatát hivatott az alábbi ábra segíteni. A limbicus rendszer valamint a hippocampus bonyolult morfológiáját, összetett működését nem részletezzük. A kedves Olvasó az irodalomjegyzékben feltűntetett [2], [3], [4], [10], [11], [13] irodalmakban tájékozódhat ezekről ábra A hippocampus modellje forrás: Neil burgess and John O Keefe: Hippocampus: Spatial Models, 2002 Az 1.6. ábra a hippocampus egyes régiói között fellépő kapcsolatokat, valamint az egyes régiókhoz tartozó neuronok számát szemlélteti. Az adaptivitás, és egyben az öngerjesztő mechanizmusok létrejötte a megfigyelhető irányított zárt láncokkal magyarázható. Kutatások szerint a rohamok kialakulásának szempontjából kiemelkedő jelentőséggel bír a CA3-as régió közvetlen pozitív visszacsatolása. A hippocampus elhelyezkedésének következtében gyakran fizikai behatásoknak van kitéve, annak ellenére, hogy az agy mélyebb régióiban fekszik. Erre a koponya halántéki részének sérülékenysége ad magyarázatot. 17

19 Vizsgálati módszerek Amennyiben gyógyszeres kezeléssel nem sikerül a rohamokat megszüntetni, vagy legalább a kívánt gyakoriságot elérni, sebészeti beavatkozásra van szükség. A kóros területek eltávolítása funkciókieséssel járhat, ezért ebből a szempontból az eltávolítandó régiók minimalizálására kell törekedni. Azonban a hátrahagyott, már károsult struktúrák bizonyos lappangási idő elteltével kiújíthatják a rohamokat, valamint új régiókat vonhatnak be a kóros aktivitásba, és így a műtét megismétlésére lehet szükség. A rohamokat kiváltó struktúrák pontos beazonosítására EEG-t, valamint képalkotó technikákat alkalmaznak. A megfelelő FO elektróda Temporális lebeny Hippocampus 1.7. ábra Foramen ovale elektróda és a hippocampus lokalizációhoz egyaránt ictális és interictalis megfigyelésekre is szükség van. A gyógyszeres kezelés következtében előfordulhat, hogy a rohamokra napokig, akár hetekig is várni kell, ezért a kezelést a vizsgálatok idejére felfüggesztik. A folyamatos monitorozás szempontjából egyértelműen az EEG bizonyul előnyösebbnek, hiszen el sem képzelhető, hogy a páciens folyamatos sugárzásnak legyen kitéve, valamint, hogy a készülékhez legyen kötve több mint egy héten keresztül. Természetesen EEG esetén is a páciens a műszerhez van láncolva, azonban az elektródák elég hosszú elvezetése esetén nyugodtan mozoghat, fekhet, ülhet, még a képalkotó eljárásoknál mozdulatlan pozíciót kellene, hogy felvegyen. Nagyon fontos továbbá az időbeli felbontás is, mivel csak így állapítható meg a kóros működés terjedése, a 18

20 rohamot kiváltó gócpont (jobb vagy bal oldali, legrosszabb esetben mindkét oldali hippocampus) lokalizálása. Az EEG azon hátrányát, hogy a mélyben lévő régiók tevékenysége csak minimálisan vagy egyáltalán nem detektálható a fejbőrről elvezetett jelekben az orvosi diagnosztikában alkalmazott szemrevételezéssel, mélyagyi vagy más néven foramen ovale (FO) elektródák beültetésével küszöbölik ki. Ezt a módszert 1985-ben alkalmazták először [12]. A tűszerű, rozsdamentes acél elektródákat az arcüregeken, továbbá az ékcsontban található névadó foramen ovale nyílásokon keresztül helyezik el bilaterálisan a hippocampusok közvetlen közelében. A temporális lebeny, a hippocampus és a mélyagyi elektródák elrendezését az 1.7. ábra szemlélteti. Mivel az EEG az agy struktúrájáról nem ad pontos információt, az EEG vizsgálat után a már sérült területek pontos beazonosítását főleg MRI és PET eljárásokkal végzik. 19

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben

Transzportfolyamatok a biológiai rendszerekben

Transzportfolyamatok a biológiai rendszerekben A nyugalmi potenciál jelentősége Transzportfolyamatok a biológiai rendszerekben Transzportfolyamatok a sejt nyugalmi állapotában a sejt homeosztázisának (sejttérfogat, ph) fenntartása ingerlékenység érzékelés

Részletesebben

Az akciós potenciál (AP) 2.rész. Szentandrássy Norbert

Az akciós potenciál (AP) 2.rész. Szentandrássy Norbert Az akciós potenciál (AP) 2.rész Szentandrássy Norbert Ismétlés Az akciós potenciált küszöböt meghaladó nagyságú depolarizáció váltja ki Mert a feszültségvezérelt Na + -csatornákat a depolarizáció aktiválja,

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék DIPLOMATERV

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék DIPLOMATERV Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék DIPLOMATERV ROHAMPREDIKCIÓ LEHETŐSÉGÉNEK VIZSGÁLATA EPILEPSZIÁS BETEGEKNÉL

Részletesebben

Gyógyszerészeti neurobiológia. Idegélettan

Gyógyszerészeti neurobiológia. Idegélettan Az idegrendszert felépítő sejtek szerepe Gyógyszerészeti neurobiológia. Idegélettan Neuronok, gliasejtek és a kémiai szinapszisok működési sajátságai Neuronok Információkezelés Felvétel Továbbítás Feldolgozás

Részletesebben

Egy idegsejt működése

Egy idegsejt működése 2a. Nyugalmi potenciál Egy idegsejt működése A nyugalmi potenciál (feszültség) egy nem stimulált ingerelhető sejt (neuron, izom, vagy szívizom sejt) membrán potenciálját jelenti. A membránpotenciál a plazmamembrán

Részletesebben

Orvosi fizika laboratóriumi gyakorlatok 1 EKG

Orvosi fizika laboratóriumi gyakorlatok 1 EKG ELEKTROKARDIOGRÁFIA I. Háttér A szívműködést kísérő elektromos változások a szív körül egy változó irányú és erősségű elektromos erőteret hoznak létre. A szívizomsejtek depolarizációja majd repolarizációja

Részletesebben

Kiváltott agyi jelek informatikai feldolgozása. Artefact ( műtermék )

Kiváltott agyi jelek informatikai feldolgozása. Artefact ( műtermék ) Kiváltott agyi jelek informatikai feldolgozása Artefact ( műtermék ) 1 Agyi hullámok csoportjai Ritmikus agyi hullámok (agyi ritmusok) Széles frekvencia spektrumú, vagy impulzus-szerű hullámok (pl. k-komplex)

Részletesebben

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv Jelkondicionálás Elvezetés 2/12 a bioelektromos jelek kis amplitúdójúak extracelluláris spike: néhányszor 10 uv EEG hajas fejbőrről: max 50 uv EKG: 1 mv membránpotenciál: max. 100 mv az amplitúdó növelésére,

Részletesebben

Neurális hálózatok bemutató

Neurális hálózatok bemutató Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:

Részletesebben

Orvosi Fizika és Statisztika

Orvosi Fizika és Statisztika Orvosi Fizika és Statisztika Szegedi Tudományegyetem Általános Orvostudományi Kar Természettudományi és Informatikai Kar Orvosi Fizikai és Orvosi Informatikai Intézet www.szote.u-szeged.hu/dmi Orvosi fizika

Részletesebben

Membránpotenciál. Nyugalmi membránpotenciál. Akciós potenciál

Membránpotenciál. Nyugalmi membránpotenciál. Akciós potenciál Membránpotenciál Vig Andrea 2014.10.29. Nyugalmi membránpotenciál http://quizlet.com/8062024/ap-11-nervous-system-part-5-electrical-flash-cards/ Akciós potenciál http://cognitiveconsonance.info/2013/03/21/neuroscience-the-action-potential/

Részletesebben

Mikroelektródás képalkotó eljárások Somogyvári Zoltán

Mikroelektródás képalkotó eljárások Somogyvári Zoltán Somogyvári Zoltán Magyar Tudományos Akadémia Wigner Fizikai Kutatóközpont Részecske és Magfizikai Intézet Elméleti Osztály Elméleti Idegtudomány és Komplex Rendszerek Kutatócsoport Az agy szürkeállománya

Részletesebben

Az egyedi neuronoktól az EEG hullámokig Somogyvári Zoltán

Az egyedi neuronoktól az EEG hullámokig Somogyvári Zoltán Az egyedi neuronoktól az EEG hullámokig Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az állati elektromosság felfedezése 1792 Galvani, De Viribus - Electricitatis in Motu

Részletesebben

A gyermekkori epilepsziák felismerése

A gyermekkori epilepsziák felismerése A gyermekkori epilepsziák felismerése Dr. med. habil. Fogarasi András Tudományos igazgató Bethesda Gyermekkórház, Budapest fogarasi@bethesda.hu Tel: 4222-875 Fıbb lépések Felismerés Diagnózis Klasszifikáció

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban

A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban 17. Központi idegrendszeri neuronok ingerületi folyamatai és szinaptikus összeköttetései 18. A kalciumháztartás zavaraira

Részletesebben

Vérnyomásmérés, elektrokardiográfia. A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. A mérési adatok elemzése és értékelése

Vérnyomásmérés, elektrokardiográfia. A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. A mérési adatok elemzése és értékelése Vérnyomásmérés, elektrokardiográfia A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. A mérési adatok elemzése és értékelése Pszichológia BA gyakorlat A mérést és kiértékelést végezték:............

Részletesebben

II. félév, 8. ANATÓMIA elıadás JGYTFK, Testnevelési és Sporttudományi Intézet. Idegrendszer SYSTEMA NERVOSUM

II. félév, 8. ANATÓMIA elıadás JGYTFK, Testnevelési és Sporttudományi Intézet. Idegrendszer SYSTEMA NERVOSUM II. félév, 8. ANATÓMIA elıadás JGYTFK, Testnevelési és Sporttudományi Intézet Idegrendszer SYSTEMA NERVOSUM Mit tanulunk? Megismerkedünk idegrendszerünk alapvetı felépítésével. Hallunk az idegrendszer

Részletesebben

Hibadetektáló rendszer légtechnikai berendezések számára

Hibadetektáló rendszer légtechnikai berendezések számára Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő

Részletesebben

Minden leendő szülő számára a legfontosabb, hogy születendő gyermeke egészséges legyen. A súlyosan beteg gyermek komoly terheket ró a családra.

Minden leendő szülő számára a legfontosabb, hogy születendő gyermeke egészséges legyen. A súlyosan beteg gyermek komoly terheket ró a családra. Egészséges magzat, biztonságos jövő Minden leendő szülő számára a legfontosabb, hogy születendő gyermeke egészséges legyen. A súlyosan beteg gyermek komoly terheket ró a családra. A veleszületett fejlődési

Részletesebben

Idegrendszer egyedfejlődése. Az idegszövet jellemzése

Idegrendszer egyedfejlődése. Az idegszövet jellemzése Idegrendszer egyedfejlődése. Az idegszövet jellemzése Központi idegrendszer egyedfejlődése: Ektoderma dorsális részéből velőcső Velőcső középső és hátsó részéből: gerincvelő Velőcső elülső részéből 3 agyhólyag:

Részletesebben

-Két fő korlát: - asztrogliák rendkívüli morfológiája -Ca szignálok értelmezési nehézségei

-Két fő korlát: - asztrogliák rendkívüli morfológiája -Ca szignálok értelmezési nehézségei Nature reviewes 2015 - ellentmondás: az asztrociták relatív lassú és térben elkent Ca 2+ hullámokkal kommunikálnak a gyors és pontos neuronális körökkel - minőségi ugrás kell a kísérleti és analitikai

Részletesebben

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt.

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális jel esetében?

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

IONCSATORNÁK. I. Szelektivitás és kapuzás. III. Szabályozás enzimek és alegységek által. IV. Akciós potenciál és szinaptikus átvitel

IONCSATORNÁK. I. Szelektivitás és kapuzás. III. Szabályozás enzimek és alegységek által. IV. Akciós potenciál és szinaptikus átvitel IONCSATORNÁK I. Szelektivitás és kapuzás II. Struktúra és funkció III. Szabályozás enzimek és alegységek által IV. Akciós potenciál és szinaptikus átvitel V. Ioncsatornák és betegségek VI. Ioncsatornák

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

Nyugalmi potenciál, akciós potenciál és elektromos ingerelhetőség. A membránpotenciál mérése. Panyi György

Nyugalmi potenciál, akciós potenciál és elektromos ingerelhetőség. A membránpotenciál mérése. Panyi György Nyugalmi potenciál, akciós potenciál és elektromos ingerelhetőség. A membránpotenciál mérése. Panyi György Nyugalmi membránpotenciál: TK. 284-285. Akciós potenciál: TK. 294-301. Elektromos ingerelhetőség:

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Clemens Béla. Epileptiform potenciálok és azokat utánzó jelenségek. Kenézy Kórház Kft., Neurológia, Debrecen

Clemens Béla. Epileptiform potenciálok és azokat utánzó jelenségek. Kenézy Kórház Kft., Neurológia, Debrecen Clemens Béla Epileptiform potenciálok és azokat utánzó jelenségek Kenézy Kórház Kft., Neurológia, Debrecen 1. Elektromorfológia Egyszerű grafoelemek - tüske (20-70 msec) - meredek hullám (70-200 msec)

Részletesebben

Teljesítményerősítők ELEKTRONIKA_2

Teljesítményerősítők ELEKTRONIKA_2 Teljesítményerősítők ELEKTRONIKA_2 TEMATIKA Az emitterkövető kapcsolás. Az A osztályú üzemmód. A komplementer emitterkövető. A B osztályú üzemmód. AB osztályú erősítő. D osztályú erősítő. 2012.04.18. Dr.

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

Markov modellek 2015.03.19.

Markov modellek 2015.03.19. Markov modellek 2015.03.19. Markov-láncok Markov-tulajdonság: egy folyamat korábbi állapotai a későbbiekre csak a jelen állapoton keresztül gyakorolnak befolyást. Semmi, ami a múltban történt, nem ad előrejelzést

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Mérési struktúrák

Mérési struktúrák Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

1. számú ábra. Kísérleti kályha járattal

1. számú ábra. Kísérleti kályha járattal Kísérleti kályha tesztelése A tesztsorozat célja egy járatos, egy kitöltött harang és egy üres harang hőtároló összehasonlítása. A lehető legkisebb méretű, élére állított téglából épített héjba hagyományos,

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Szívbetegségek hátterében álló folyamatok megismerése a ciklusosan változó szívélettani paraméterek elemzésén keresztül

Szívbetegségek hátterében álló folyamatok megismerése a ciklusosan változó szívélettani paraméterek elemzésén keresztül Dr. Miklós Zsuzsanna Semmelweis Egyetem, ÁOK Klinikai Kísérleti Kutató- és Humán Élettani Intézet Szívbetegségek hátterében álló folyamatok megismerése a ciklusosan változó szívélettani paraméterek elemzésén

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

A MAGSAT MESTERSÉGES HOLD MÁGNESES ADATAINAK FELDOLGOZÁSA AZ

A MAGSAT MESTERSÉGES HOLD MÁGNESES ADATAINAK FELDOLGOZÁSA AZ A MAGSAT MESTERSÉGES HOLD MÁGNESES M ADATAINAK FELDOLGOZÁSA AZ EURÓPAI RÉGIR GIÓRA Wittmann Géza, Ph.D. PhD eredmények a magyar geofizikában Magyar Tudományos Akadémia 2005. október 28. Mesterséges holdak

Részletesebben

Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai

Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai Az áramlási citométer és sejtszorter felépítése és működése Kereskedelmi forgalomban kapható készülékek 1 Fogalmak

Részletesebben

Digitális mérőműszerek

Digitális mérőműszerek KTE Szakmai nap, Tihany Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt KT-Electronic MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális TV jel esetében? Milyen paraméterekkel

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Brüel & Kjaer 2238 Mediátor zajszintmérő

Brüel & Kjaer 2238 Mediátor zajszintmérő Brüel & Kjaer 2238 Mediátor zajszintmérő A leírást készítette: Deákvári József, intézeti mérnök Az FVM MGI zajszintméréseihez a Brüel & Kjaer gyártmányú 2238 Mediátor zajszintmérőt és frekvenciaanalizálót

Részletesebben

2006 1. Nemszinaptikus receptorok és szubmikronos Ca2+ válaszok: A két-foton lézermikroszkópia felhasználása a farmakológiai vizsgálatokra.

2006 1. Nemszinaptikus receptorok és szubmikronos Ca2+ válaszok: A két-foton lézermikroszkópia felhasználása a farmakológiai vizsgálatokra. 2006 1. Nemszinaptikus receptorok és szubmikronos Ca 2+ válaszok: A két-foton lézermikroszkópia felhasználása a farmakológiai vizsgálatokra. A kutatócsoportunkban Közép Európában elsőként bevezetett két-foton

Részletesebben

Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika

Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika Panyi György 2014. November 12. Mesterséges membránok ionok számára átjárhatatlanok Iontranszport a membránon keresztül:

Részletesebben

AZ IDEGSEJTEK KÖZTI SZINAPTIKUS KOMMUNIKÁCIÓ Hájos Norbert. Összefoglaló

AZ IDEGSEJTEK KÖZTI SZINAPTIKUS KOMMUNIKÁCIÓ Hájos Norbert. Összefoglaló AZ IDEGSEJTEK KÖZTI SZINAPTIKUS KOMMUNIKÁCIÓ Hájos Norbert Összefoglaló Az idegsejtek közt az ingerületátvitel döntően kémiai természetű, míg az idegsejten belül az elektromos jelterjedés a jellemző. A

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:

Részletesebben

Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok Az akusztikus emisszió vizsgálata a műszaki diagnosztikában Anyagvizsgálati módszerek Roncsolásos metallográfia, kémia, szakító,

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

A köztiagy (dienchephalon)

A köztiagy (dienchephalon) A köztiagy, nagyagy, kisagy Szerk.: Vizkievicz András A köztiagy (dienchephalon) Állománya a III. agykamra körül szerveződik. Részei: Epitalamusz Talamusz Hipotalamusz Legfontosabb kéregalatti érző- és

Részletesebben

Az idegsejtek diverzitása

Az idegsejtek diverzitása Az idegsejtek diverzitása Készítette Dr. Nusser Zoltán előadása és megadott szakirodalma alapján Walter Fruzsina II. éves PhD hallgató A neurobiológia hajnalán az első idegtudománnyal foglalkozó kutatók

Részletesebben

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

Sarkadi Margit1, Mezősi Emese2, Bajnok László2, Schmidt Erzsébet1, Szabó Zsuzsanna1, Szekeres Sarolta1, Dérczy Katalin3, Molnár Krisztián3,

Sarkadi Margit1, Mezősi Emese2, Bajnok László2, Schmidt Erzsébet1, Szabó Zsuzsanna1, Szekeres Sarolta1, Dérczy Katalin3, Molnár Krisztián3, Sarkadi Margit1, Mezősi Emese2, Bajnok László2, Schmidt Erzsébet1, Szabó Zsuzsanna1, Szekeres Sarolta1, Dérczy Katalin3, Molnár Krisztián3, Rostás Tamás3, Ritter Zsombor4, Zámbó Katalin1 Pécsi Tudományegyetem

Részletesebben

1. A hang, mint akusztikus jel

1. A hang, mint akusztikus jel 1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem

Részletesebben

Teremakusztikai méréstechnika

Teremakusztikai méréstechnika Teremakusztikai méréstechnika Tantermek akusztikája Fürjes Andor Tamás 1 Tartalomjegyzék 1. A teremakusztikai mérések célja 2. Teremakusztikai paraméterek 3. Mérési módszerek 4. ISO 3382 szabvány 5. Méréstechnika

Részletesebben

A membránpotenciál. A membránpotenciál mérése

A membránpotenciál. A membránpotenciál mérése A membránpotenciál Elektromos potenciál különbség a membrán két oldala közt, E m Cink Galvani (1791) Réz ideg izom A membránpotenciál mérése Mérési elv: feszültségmérő áramkör Erősítő (feszültségmérő műszer)

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

RITMUSOS DELTA AKTIVITÁSOK ÉS EPILEPSZIA

RITMUSOS DELTA AKTIVITÁSOK ÉS EPILEPSZIA RITMUSOS DELTA AKTIVITÁSOK ÉS EPILEPSZIA Dr. Dömötör Johanna Kenézy Gyula Kórház és Rendelőintézet Neurológia Osztály, Debrecen Magyar Epilepszia Liga XIII. Kongresszusa 2016. május 26-28. Szeged Bevezetés

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Epilepszia és epilepsziás rohamok. Janszky József Egyetemi adjunktus

Epilepszia és epilepsziás rohamok. Janszky József Egyetemi adjunktus Epilepszia és epilepsziás rohamok Janszky József Egyetemi adjunktus Epilepsziás roham definíciója Objektív vagy szubjektív klinikai tünetek Ok: agyi neuronpopuláció abnormálisan synchron aktivációja Epilepsziás

Részletesebben

CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens

CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens CARE Biztonságos CARE Biztonságos otthonok idős embereknek otthonok idős embereknek 2010-09-02 Dr. Vajda Ferenc Egyetemi docens 3D Érzékelés és Mobilrobotika kutatócsoport Budapesti Műszaki és Gazdaságtudományi

Részletesebben

Ex vivo elektrofiziológia. Élettani és Neurobiológiai Tanszék

Ex vivo elektrofiziológia. Élettani és Neurobiológiai Tanszék Ex vivo elektrofiziológia Élettani és Neurobiológiai Tanszék Bevezetés Def.: Élő sejtek vagy szövetek elektromos tulajdonságainak vizsgálata kontrollált körülmények között Módszerei: Klasszikus elektrofiziológia

Részletesebben

AMS Hereimplantátum Használati útmutató

AMS Hereimplantátum Használati útmutató AMS Hereimplantátum Használati útmutató Magyar Leírás Az AMS hereimplantátum szilikon elasztomerből készült, a férfi herezacskóban levő here alakját utánzó formában. Az implantátum steril állapotban kerül

Részletesebben

Esetbemutatás. Dr. Iván Mária Uzsoki Kórház 2013.11.07.

Esetbemutatás. Dr. Iván Mária Uzsoki Kórház 2013.11.07. Esetbemutatás Dr. Iván Mária Uzsoki Kórház 2013.11.07. Esetbemutatás I. 26 éves férfi 6 héttel korábban bal oldali herében elváltozást észlelt,majd 3 héttel később haemoptoe miatt kereste fel orvosát antibiotikumos

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elektronika 2. TFBE1302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3

Részletesebben

I. LABOR -Mesterséges neuron

I. LABOR -Mesterséges neuron I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,

Részletesebben

Idegrendszer 1. systema nervosum. Általános jellemzés, idegszövet

Idegrendszer 1. systema nervosum. Általános jellemzés, idegszövet Idegrendszer 1. systema nervosum Általános jellemzés, idegszövet Idegszövet (tela nervosa) Az idegrendszert építi fel. Sejttípusai: Idegsejt (neuron): ingerületvezetésre alkalmas Gliasejt: burkot képez

Részletesebben

22. Az idegrendszer működésének alapjai. Az idegszövet felépítése

22. Az idegrendszer működésének alapjai. Az idegszövet felépítése 22. Megtudhatod Hogyan lehetséges, hogy amikor étel kerül a szánkba, fokozódik a nyáltermelés? Az idegrendszer működésének alapjai Idegszövet Az idegsejtek nyúlványai behálózzák a testet, eljutnak minden

Részletesebben

Informatikai eszközök fizikai alapjai Lovász Béla

Informatikai eszközök fizikai alapjai Lovász Béla Informatikai eszközök fizikai alapjai Lovász Béla Kódolás Moduláció Morzekód Mágneses tárolás merevlemezeken Modulációs eljárások típusai Kódolás A kód megállapodás szerinti jelek vagy szimbólumok rendszere,

Részletesebben

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs

Részletesebben

Orvosi élettan. Bevezetés és szabályozáselmélet Tanulási támpontok: 1.

Orvosi élettan. Bevezetés és szabályozáselmélet Tanulási támpontok: 1. Orvosi élettan Bevezetés és szabályozáselmélet Tanulási támpontok: 1. Prof. Sáry Gyula 1 anyagcsere hőcsere Az élőlény és környezete nyitott rendszer inger hő kémiai mechanikai válasz mozgás alakváltoztatás

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei

Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei Dr. Gingl Zoltán SZTE, Kísérleti Fizikai Tanszék Szeged, 2000 Február e-mail : gingl@physx.u-szeged.hu 1 Az ember kapcsolata

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ

RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ Referencia útmutató laboratórium és műhely részére Magyar KIADÁS lr i = kiértékelési hossz Profilok és szűrők (EN ISO 4287 és EN ISO 16610-21) 01 A tényleges

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

A somatomotoros rendszer

A somatomotoros rendszer A somatomotoros rendszer Motoneuron 1 Neuromuscularis junctio (NMJ) Vázizom A somatomotoros rendszer 1 Neurotranszmitter: Acetil-kolin Mire hat: Nikotinos kolinerg-receptor (nachr) Izom altípus A parasympathicus

Részletesebben

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.

Részletesebben

KUTATÁSI JELENTÉS. Multilaterációs radarrendszer kutatása. Szüllő Ádám

KUTATÁSI JELENTÉS. Multilaterációs radarrendszer kutatása. Szüllő Ádám KUTATÁSI JELENTÉS Multilaterációs radarrendszer kutatása Szüllő Ádám 212 Bevezetés A Mikrohullámú Távérzékelés Laboratórium jelenlegi K+F tevékenységei közül ezen jelentés a multilaterációs radarrendszerek

Részletesebben

Mé diakommunika cio MintaZh 2011

Mé diakommunika cio MintaZh 2011 Mé diakommunika cio MintaZh 2011 Mekkorára kell választani R és B értékét, ha G=0,2 és azt akarjuk, hogy a szín telítettségtv=50% és színezettv=45 fok legyen! (gammával ne számoljon) 1. Mi a különbség

Részletesebben

AZ ESÉLY AZ ÖNÁLLÓ ÉLETKEZDÉSRE CÍMŰ, TÁMOP-3.3.8-12/2-2012-0089 AZONOSÍTÓSZÁMÚ PÁLYÁZAT. Szakmai Nap II. 2015. február 5.

AZ ESÉLY AZ ÖNÁLLÓ ÉLETKEZDÉSRE CÍMŰ, TÁMOP-3.3.8-12/2-2012-0089 AZONOSÍTÓSZÁMÚ PÁLYÁZAT. Szakmai Nap II. 2015. február 5. AZ ESÉLY AZ ÖNÁLLÓ ÉLETKEZDÉSRE CÍMŰ, TÁMOP-3.3.8-12/2-2012-0089 AZONOSÍTÓSZÁMÚ PÁLYÁZAT Szakmai Nap II. (rendezvény) 2015. február 5. (rendezvény dátuma) Orbán Róbert (előadó) Bemeneti mérés - természetismeret

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ ÖSSZEÁLLÍTOTTA: DEÁK KRISZTIÁN 2013 Az SPM BearingChecker

Részletesebben

AZ EPILEPSZIA DIAGNOSZTIKÁJA

AZ EPILEPSZIA DIAGNOSZTIKÁJA AZ EPILEPSZIA DIAGNOSZTIKÁJA PTE ÁOK, V. évfolyam Pécs, 2014.04.23. Gyimesi Csilla I. Az epilepszia betegség felismerése definíció klasszifikáció differenciáldiagnózis II. Kivizsgálásának lépései III.

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Figyelemhiány/Hiperaktivitás Zavar - ADHD TÁJÉKOZTATÓ FÜZET. ADHD-s gyermekek családjai részére

Figyelemhiány/Hiperaktivitás Zavar - ADHD TÁJÉKOZTATÓ FÜZET. ADHD-s gyermekek családjai részére Figyelemhiány/Hiperaktivitás Zavar - ADHD TÁJÉKOZTATÓ FÜZET ADHD-s gyermekek családjai részére KEZELÉSI TÁJÉKOZTATÓ FÜZET Ezt a tájékoztató füzetet azért készítettük, hogy segítsünk a FIGYELEMHIÁNY/HIPERAKTIVITÁS

Részletesebben

2. Az emberi hallásról

2. Az emberi hallásról 2. Az emberi hallásról Élettani folyamat. Valamilyen vivőközegben terjedő hanghullámok hatására, az élőlényben szubjektív hangérzet jön létre. A hangérzékelés részben fizikai, részben fiziológiai folyamat.

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben