Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék DIPLOMATERV

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék DIPLOMATERV"

Átírás

1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék DIPLOMATERV ROHAMPREDIKCIÓ LEHETŐSÉGÉNEK VIZSGÁLATA EPILEPSZIÁS BETEGEKNÉL Készítette: Weiss Bela Konzulensek: Dr. Horváth Gábor Dr. Halász Péter Budapest, 2005

2 HALLGATÓI NYILATKOZAT Alulírott, Weiss Bela, a Budapesti Műszaki és Gazdaságtudományi Egyetem hallgatója kijelentem, hogy ezt a diplomatervet meg nem engedett segítség nélkül, saját magam készítettem, és a diplomatervben csak a megadott forrásokat használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem. Kelt: Budapest, Weiss Bela

3 Tartalomjegyzék Tartalomjegyzék Tartalmi összefoglaló Summary Bevezetés Szükséges előismeretek Általánosan az agyról Az EEG Az epilepszia A betegség patomechanizmusa Az epilepsziák osztályozása Temporális lebeny epilepszia - TLE Vizsgálati módszerek Problémák, célok tárgyalása Problémák megfogalmazása Célok A feladat részletes specifikációja Mérések, feldolgozott regisztrátumok Mérési paraméterek Kiválasztott páciensek Előfeldolgozás Módszerek Energia vizsgálat Nemlineáris dinamikus rendszerek kaotikus viselkedése Elméleti bevetés Az agy kaotikus viselkedése Lyapunov exponens becslése nemstacionárius jelek esetében Az alkalmazott algoritmus ismertetése Paraméterek megválasztása Az implementáció ismertetése readin.m start.m

4 5.3 trcheaderreadertype2.m selectingfochannels.m avenergytest.m lyapunovtest.m acenergytest.m lyapunovconcat.m compare.m saving.m Eredmények Energia vizsgálat Átlagolt energia különböző állapotokra Akkumulált energia, csatornák egyben Akkumulált energia FO csatornánként Lyapunov exponensek Lyapunov exponens, 5. roham Lyapunov exponens, 4. roham Lyapunov exponens alapvonalakra Csatornák szinkronizálódása Összefoglalás Az elvégzett vizsgálatok értékelése Tervek Köszönetnyílvánítás Irodalomjegyzék Szómagyarázat

5 Tartalmi összefoglaló Az epilepszia a második leggyakoribb agyi rendellenesség, rögtön a sztrók után következik. Mintegy 60 millió ember érintett világszerte. Az eseteknek csak két harmadában rohammentesíthető a beteg gyógyszeres terápiával, további 7%-8% kezelhető műtéti beavatkozással. Az orvostudomány mai állása szerint a fennmaradó 25% (~15 millió ember) számára nincs megoldás. Az epilepsziás betegek műtét előtti vizsgálatának, kezelésének legfőbb kérdése a rohamok előrejelezhetősége. Sokáig az orvosi szemrevételezés alapján megállapított tény volt meghatározó, ami szerint a rohamok hirtelen következnek be, az EEG-ben nem figyelhetőek meg prekurzoraik. Az utóbbi években, interdiszciplináris kutatások ennek az ellenkezőjét bizonyították. Ma már lehetőség van a rohamok rövid távú előrejelzésére. Jelen dolgozat célja a rohamok hosszú távú előrejelezhetőségének vizsgálata volt foramen ovale elektródákkal kiegészített EEG felvételeken, temporális lebeny epilepszia esetén. A roham előtti szakaszok akkumulált energia elemzése, valamint az agy kaotikus viselkedésének vizsgálata foramen ovale jeleken pozitív előzetes eredményeket mutatott. A módszerek valós idejű megvalósítása és a levont következtetések jogosultságának ellenőrzése további vizsgálatokat igényel

6 Summary Epilepsy is the most common neurological disorder after stroke, and affects almost 60 million people worldwide. Medications control seizures in only 2/3 of those affected, and another 7%-8% are potentially curable by surgery. This leaves fully 25%, or ~15 million people whose seizures cannot be controlled by any available therapy. The most important question in the therapy and presurgical monitoring of these patients is the next: is there any way to predict epileptic seizures? For many years it was thought that there are not any precursors in EEG signals, but in last years new methods were proposed for a short time prediction. The aim of this research was to find features in foramen ovale electrodes for a long term prediction of seizures in case of temporal lobe epilepsy. Analysing the accumulated energy of foramen ovale signals in preictal states, and examination of chaotic behaviour of brain gave positive results. There is a need for further investigations for a real-time application of these methods

7 Bevezetés Az embert már évezredek óta foglalkoztatja önmaga megismerése, a szellem, a tudat, a tudatalatti megfejtése. A központi idegrendszer patológiás viselkedése folyamatosan nagy érdeklődésnek örvendhetett a történelem során. Az agyi rendellenességek közül az egyik legelterjedtebb morbus sacer, azaz szent betegség néven volt közismert a középkorban. A betegség misztifikálására az epileptiform rohamok tünetegyüttesei (generalizált rohamok esetén megnyilvánuló rángatózás, eszméletvesztés, szájhabzás, stb.) adnak magyarázatot. Az agyi működés ismeretének hiányában az akarattól független cselekvéseket produkáló betegről azt gondolták természetfeletti erők, gonosz vagy jó szellemek irányítják a roham alatt. Ezért gyakran a betegség elnevezésével ellentmondóan ördögűzésre, az érintettek kiközösítésére került sor. Korántsem mondhatjuk azt, hogy mára már ez a probléma megoldódott. A betegek többsége még ma is többet szenved az előítéletektől, mint a rohamoktól. A technika, az informatika robbanásszerű fejlődése azonban jelentősen hozzájárult az agy működésének, és egyben a kóros tünetek természetének feltérképezéséhez. Új módszerek állnak az orvosok rendelkezésére a minél pontosabb diagnózis megállapításához, a legmegfelelőbb gyógyszeres kezelés, és az esetleges műtéti beavatkozás megválasztásához. Így biztosított a betegek mielőbbi rehabilitációja, beilletve visszailleszkedése a társadalomba. Az új módszerek alatt főleg az új képalkotási technikákra (PET, MRI, fmri, CT, SPECT) továbbá az EEG, MEG, valamint a nagy tárolási kapacitás és processzálási sebesség által kínált kép- és jelfeldolgozási eljárásokra kell gondolnunk. Jelen munkát 2004-ben Mélyagyi és agyfelszíni villamos jelek összefüggéseinek vizsgálata címen futó kutatás előzte meg az MTA KFKI RMKI Biofizika Osztályának és az Országos Pszichiátriai és Neurológiai Intézet (OPNI) Epilepszia Centrumának közreműködésével. Az eredmények a Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Karának Tudományos Diákköri Konferenciáján lettek közölve [1]. A diplomamunkában szereplő orvosi bevezető rész az említett dolgozatból lett átvéve némi módosítással

8 Interdiszciplináris kutatásról lévén szó nélkülözhetetlen a problémák, és a lehetőségek megértéséhez a határterületeknek az adott témakörhöz kapcsolódó fejezeteinek elsajátítása. Az agyi tevékenységek regisztrálása, feldolgozása, elemzése megköveteli az agy strukturális, morfológiai valamint funkcionális tulajdonságainak ismertetését. A cél nem egy neurológia könyv szerkesztése, a dolgozat terjedelmi korlátai miatt természetesen nem bocsátkozhatunk a részletekbe, csak a legfontosabb tények lesznek ismertetve. A kedves Olvasó a feltüntetett irodalomban tájékozódhat bővebben. Röviden bemutatásra kerül az egyik leggyakrabban alkalmazott regisztrálási módszer, az EEG fizikai alapjai valamint a legelterjedtebb as szabvány. Terítékre kerül röviden a vizsgált betegség szindrómáinak valamint patomechanizmusának tárgyalása is. A fentiek ismeretében már rátérhetünk az epilepsziás betegek kezelése, vizsgálata alatt felmerülő problémák, a kitűzött célok megfogalmazására, a feladat specifikációjának pontosítására. A következő fejezetben szerepelnek a kiválasztott páciensekre vonatkozó adatok, a mérés körülményei és a regisztrátumok előfeldolgozásának megfontolásai, paraméterei. A Módszerek fejezet az átlagolt és akkumulált energia vizsgálat jogosultságának elemzése után tartalmaz egy rövid elméleti bevezetőt a nemlineáris dinamikus rendszerek kaotikus viselkedéséről, mivel ez a témakör az egyetemi tanulmányok alatt nem szerepelt tananyagként. Az elméleti rész után bemutatásra kerül az implementált algoritmus is. A vizsgálatok MATLAB környezetben lettek elvégezve. Az.m állományok röviden külön fejezetben vannak ismertetve. A kapott eredményeket egy páciens segítségével mutatom be, akinek rohamai általánosnak mondható jellemzőkkel bírnak, valamint felvételei teljesítették a regisztrátumokkal szemben támasztott szigorú követelményeket. Az orvosi nomenklatúra mellőzése szinte lehetetlen, mivel az évek során már az orvosbiológiai szakterület is átvette. A dolgozat írása során törekedtem a latin kifejezések mellőzésére. A tisztelt Olvasó segítségére a dolgozat végén szómagyarázat áll rendelkezésre. CD mellékleten megtalálható a Matlab 6.5 verzióra írt.m állományok kódja részletes magyarázattal, valamint a dolgozat.pdf,.htm és.mht formátumban

9 1 Szükséges előismeretek 1.1 Általánosan az agyról Az agy az emlősök szervezetének legfontosabb információ tároló, és feldolgozó szerve. Ebből kifolyólag az élettani folyamatok központi szabályozó egységének tekinthető. A kifejlett emberi agy körülbelül gramm tömegű. Érzelmeink, gondolataink, személyiségünk, cselekedeteink, vágyaink forrása. Sérülései katasztrofális kimenetelűek lehetnek. A nagyagyban helyezkednek el a "magasabb" funkciókat ellátó idegsejtek, melyek többek között a gondolkodásért vagy a beszédért felelősek. Az egyes összetettebb mechanizmusok pontos kialakulása, a résztvevő régiók bonyolult kapcsolatai, az agy nagy redundanciája, plaszticitása miatt még ma sem teljesen ismert. A nyúltagyvelőt, a hidat, a kisagyat a nagyaggyal "kapcsolóállomásként" a középagy köti össze. A hídban a rágás és nyálelválasztás szabályozása, valamint a hangok és az egyensúllyal kapcsolatos információk alapszintű feldolgozása történik. A biológiai fejlődést tekintve az agy "legkorábbi" részében, a nyúltagyvelőben található idegsejtek többek között a légzés és a vérnyomás szabályozásáért felelősek. A nyúltvelő a központi idegrendszer két nagy összetevőjének, a gerincvelőnek és az agyvelőnek az összeköttetéséért felelős. A kisagyban a test különböző részeiről érkező, testhelyzetváltozásra és a környezettel való kapcsolatra vonatkozó információk kerülnek feldolgozásra. A fenti leírásból látható, hogy makroszkópikus szinten vizsgálva az agyat az egyes régiókhoz kitüntetett szerep rendelhető, azonban e szerv integratív működése csak az egyes részek nagyszámú, bonyolult kapcsolatai révén valósulhat meg [2], [3]. Mikroszkopikus szinten az idegszövettel találkozunk, mely specifikus idegi és nem specifikus általános szöveti elemekből épül fel. A specifikus ingerlékenységi és ingerületvezetési működésben kizárólag csak az idegsejtek vesznek részt. Az idegsejtek működésükből kifolyólag anyagcseréjükkel szemben speciális igényeket támasztanak. Ezek nem csak az anyagcsere különleges mechanizmusait jelentik, hanem azt is biztosítják, hogy e folyamatok védve legyenek a szervezet többi részét érő zavaroktól. Feltehetőleg ennek érdekében differenciálódtak a specifikus ingerületi elemek mellett a gliasejtek, melyek a nyúlványaikkal a neuronoknak szinte minden részét körülveszik. Az elhalt sejteket is a gliasejtek emésztik meg. Nem specifikus szöveti elemként az

10 idegszövetekben bőséges érhálózat fordul elő. A kapillárisok szinte sohasem érintkeznek közvetlenül a neuronokkal, hanem a fent említett gliasejteken keresztül szolgáltatják a szükséges anyagcsere termékeket. Az idegsejtek és nyúlványaik, valamint a gliasejtek és nyúlványaik majdnem tökéletesen kitöltik az idegszövet terét. Kivételt képeznek a szomszédos elemek közt fennmaradó nm vastagságú résrendszerek. Az idegingerület membránelmélete elsősorban Na + -ionokat tételez fel ebben a térben. Legújabb kutatások szerint úgy tűnik, hogy a sejt közti tér elégséges a membránelméletnek megfelelő ionvándorlásoknak [4], [5]. A neuron az idegrendszer elemi funkcionális egysége. A megfelelő ingerlékenységi, ingerületvezetési paraméterek eléréséhez specifikus morfológiai tulajdonságokkal rendelkezik. Az idegsejt a sejttestből (szóma) valamint nyúlványokból (neuritek melyek lehetnek axonok vagy dendritek) épül fel. A neuron aktív állapotát az axonján megjelenő, sejtre jellemző alakú úgynevezett akciós potenciál létrejötte jelzi. Ez a potenciál bonyolult sejtmembrán mechanizmusok segítségével jön létre, különböző ionok ki- és beáramlásával. Akciós potenciál csak akkor keletkezik a kimeneten, ha a sejt bemeneteit jelképező dendriteken az adott sejttel kapcsolatban álló neuronok összhatása elér egy küszöbértéket. Az adott határérték elérése után a bemeneti hatások intenzitása a kimeneten megjelenő jelalak frekvenciájával lesz arányos. A neuronok szinapszisokon keresztül állnak egymással kapcsolatban. A szinapszisban a preszinaptikus neuron axonja és a posztszinaptikus idegsejt dendritje közötti kapcsolat lehet közvetlen vagy közvetett. Az első esetben a két neuron között direkt elektromos kapcsolat áll fent, az ingerek mindkét irányban haladhatnak. Közvetett esetben viszont a szinaptikus résben neurotranszmitterek biztosítják az információ továbbítását. Ezt nevezzük kémiai transzmissziónak. Ebben az esetben csak egyirányú terjedés van. A preszinaptikus neuronoknak serkentő (EPSP) és gátló (IPSP) hatása is lehet. Az ember idegrendszere hozzávetőleges becslés alapján neuront tartalmaz. Magasabb központokban egyetlen idegsejt akár hozzávezető kapcsolattal rendelkezhet, és nyúlványaival is sok ezer másik neuront érhet el. Óvatos becslések alapján is az emberi idegrendszerben lévő kapcsolatok száma a nagyságrendbe helyezhető. Ily módon lehetőség adódik bonyolult hálózatok kialakulására. E hálózatok segítségével az idegszövet a külső világ, valamint a test belső környezetéből érkező temérdeknyi mennyiségű információt képes feldolgozni, elemezni, eltárolni, és szükség esetén raktáraiból előhívni [4]. Mindezekből jól érzékelhető, hogy milyen nagy komplexitású, bonyolult rendszerrel állunk szemben

11 1.2 Az EEG A kezdetekben a központi idegrendszeren belüli működés lokalizációját specifikus tünetek, és halál utáni boncolási vizsgálatok alapján határozták meg. Ma már rendelkezésünkre áll a képalkotási technikák széles tárháza, lehetőség van az agyi aktivitások által kísért elektromos és mágneses jelenségek követésére. A CT, SPECT, MRI, fmri, PET, technikák időbeli (fmri esetén például 4-8 másodperc), térbeli (mm körüli) felbontása azonban még ma sem minden esetben kielégítő. Az említett eljárások széleskörű használatát továbbá magas költségük, méretük valamint a pácienssel való kapcsolatteremtés módja korlátozza. Ezért ezeket a módszereket általában a ma már hagyományosnak mondható EEG (elektroencefalográfia), és MEG (magnetoencefalográfia) módszerekkel kombinálva, azok kiegészítőjeként használják. A továbbiakban az EEG-t ismertetjük részletesen. Már 1875-ben R. Caton angol fiziológus megfigyelte, hogy az agyvelőbe helyezett elektródról áramingadozás vezethető el ben Hans Berger pszichiáternek sikerült először fejbőrről elvezetett elektromos változásokat regisztrálnia, és ő adta az eljárásnak az elektroencefalográfia elnevezést is. Ezeket az agy felszínén mérhető jeleket a sejtszintű biokémiai változások következtében kialakuló ionáramok hozzák létre. Ezek két formája a szinaptikus tevékenység és az akciós potenciál. A koponya alatt, az agykérgi részen elhelyezkedő corticalis neuronok nyúlványaikkal a kéreg felszínére merőlegesen rendeződnek. Dendritjeik a kéreg felszíne felé, axonjaik viszont az agy mélyébe irányulnak. A posztszinaptikus membránon beáramló pozitív töltések negatív potenciált hoznak létre az extracelluláris térben, miközben a sejttest pozitív marad. Ennek következtében a dendritek és a sejttest között elektromos dipólus alakul ki. Az áram a pozitív forrás felöl a negatív süllyesztő felé folyik extracellulárisan. Ez az áram aránylag kis ellenállású folyadékon keresztül folyik, ezért a forrás és a süllyesztő között aránylag kicsiny, µv nagyságrendű feszültségkülönbség keletkezik, ami térpotenciálok formájában terjed a környező szövetekre. Ezt a kis feszültségkülönbséget detektálja a fejbőrön keresztül az elektroencefalográf. Az EEG-ben csak azon dipólusok hatása jelenik meg melyek a koponya görbületére merőlegesek. Erre az irányra merőleges hatásokat viszont az MEG tudja regisztrálni. Az agyi tevékenységek EEG-beli manifesztációja (különböző normál agyi aktivitásokra mutat példát az 1.1 ábra) szempontjából az EEG hullámokat frekvenciájuk és amplitúdójuk szerint szokták osztályozni

12 Felosztás frekvencia alapján: Delta-hullámok: 0.5-4Hz-ig Théta-hullámok: 4-8Hz Alfa-hullámok: 8-13Hz Béta-hullámok: 13-30Hz Gamma-hullámok: 30-70Hz, de átlagosan 40Hz 1.1 Ábra Jellegzetes fiziológiás agyi tevékenységek [8]

13 Az ép agy viselkedésének EEG regisztrátumbeli reprezentációját ismerve a kóros aktivitások könnyen felismerhetők még annak ellenére is, hogy minden agy egy kicsit más módon működik. Az idők folyamán az elektródák elhelyezésére a fejbőr felszínén legjobbnak tűnt a szabványos as elrendezés. Eszerint az elektródokat az orrnyereg és a nyakszirt között, valamint keresztirányban is %-os távolságokon helyezik el. Jasper javasolta elsőként 1958-ban, hogy a koponya formájától és nagyságától való függetlenség biztosítása szempontjából az elektródok helyét százalékosan határozzák meg [6]. A jelek regisztrálására Ag-AgCl elektródák használatosak melyeknek az az előnyös tulajdonságuk, hogy nem polarizálódnak, vagyis az áram átfolyása nem befolyásolja az elektród átmeneti feszültéségét. A jobb vezetés eléréséhez a fejbőrre, az elektródák alá vezető gélt kennek. Speciális alkalmazások esetén rozsdamentes acél elektródok is használatosak, melyeket általában az agyhártya alá vagy akár mélyen az agyban helyeznek el. A regisztrátum felvétele során unipoláris vagy bipoláris elvezetéseket használnak. Az első esetben referenciaként egy különálló (leggyakrabban a fülcimpán elhelyezett) elektróda szolgál. Bipoláris elvezetéskor a koponyára helyezett elektródák egymáshoz vannak viszonyítva. Ezt a módszert választva, az elektródák jó kombinálásával kimutatható a jelek terjedése az agy felszínén. Fontos kihangsúlyozni még egyszer, hogy az EEG-vel nem az akciós potenciálokat mérjük közvetlenül. Erre a célra a sejtbe beültetett mikroelektródok szolgálnak. A patch-clamp technika lehetőséget nyújt az ion-csatornák működésének egyenkénti vizsgálatára is [5], [7], [8]. 1.3 Az epilepszia Ezen a néven mindazokat a tünetegyütteseket foglaljuk össze, melyekre specifikus epileptiform EEG jelenségek, és visszatérő, viszonylag hirtelen kezdődő és múló rohamok jellemzők. Az epilepsziák egy része genetikusan öröklődő, másik részük külső ártalom által kiváltott. Az ártalom elszenvedése és az epilepsziás működészavar között néha jelentős idő is eltelhet. Az emberi agynak törzsfejlődésből eredő tulajdonsága, hogy bizonyos behatásokra epilepsziás rohammal reagál. Mindannyian rendelkezünk epilepsziás görcskészséggel és ehhez tartozó görcsküszöbbel. Amennyiben a görcsküszöb csökken, görcskészség fokozódik spontán epilepsziás roham alakulhatnak ki. Mindazok a tényezők melyek az

14 ingerület gátlást megváltoztatva teret adnak sejtpopulációk nagymértékű szinkronizált kisülésének, epileptogén hatásúak. Az etilológiai tényezők a következők lehetnek: - Génrendellenességek - Infectiosus ártalmak - Craniocerebralis traumák - Cerebrovascularis megbetegedések - Agytumorok - Metabolikus és toxikus ártalmak A genetikai tényezőknek kiemelt szerepük van. Egyrészt önmaguk lehetnek kórnemző tényezők, másrészt pedig meghatározzák az agyra ható epileptogén hatásokra való görcskészséget [9], [10]. Az epilepsziás szindrómáknak rengeteg befolyásoló tényezőjük van. Ezek közül a legmeghatározóbbak: A rohamok klinikai tünetei és jelentkezésük körülményei Interictális és ictális EEG-tünetek Életkor és rohamok indulásakor Neurológiai deficittünetek Intellektus Pszihopatológiai tünetek Gyógyszeres befolyásolhatóság A rohamok függvényében a következő állapotokat szokás megkülönböztetni: - interictális (rohamok között, legalább egy órával az első roham után és legalább egy órával a következő roham előtt) - preictális (közvetlen roham előtt) - ictális (roham közben) - postictális (közvetlen roham után) Az EEG-beli jellemzőket az interictalis tüskehullám mintázatok, szubklinikai minirohamok és a rohamokra jellemző oszcillációk jelentik. Ezek részletesebben a Módszerek című fejezetben kerülnek bemutatásra. Az EEG vizsgálatok lehetővé teszik az elektromos rohamok detektálását is. Az elektromos rohamok EEG-beli

15 manifesztációja megegyezik a normál klinikai rohamokéval. A különbség az, hogy a klinikai rohamokkal szemben ebben az esetben nincsenek klinikai tünetek, így ezek a páciens viselkedése alapján videó megfigyeléssel nem detektálhatóak. Az EEG további nagy előnye, hogy elkülöníthetők a pszichogén rohamok az epilepsziás jellegűektől. Ezekben az esetekben éppen fordított a helyzet: az epilepsziás rohamokhoz hasonló klinikai tünetek jelentkeznek, de EEG-beli elváltozások nincsenek [9] A betegség patomechanizmusa Az epilepszia kialakulása éppen az agy legfontosabb tulajdonságát, a tanulóképességét, neuronális plaszticitását használja ki. Ebből kifolyólag érthető, hogy leggyakrabban azokban a szerkezetekben (kéreg, hippocampus) alakul ki, melyek fő szerepe az adaptáció. Az epilepsziás neuronok ugyanúgy működnek, mint a normális idegsejtek, csak megnő az ingerlékenységük, mivel a normál működést szabályozó mechanizmusok károsulnak. Tehát, a rohamok kialakulását a preszinaptikus neuronok neurotranszmitter kibocsátásának szabályozásában, valamint a posztszinaptikus idegsejteken a neurotranszmittereket fogadó receptorok működésének megváltozásában kell keresnünk. A feszültségfüggő Na + ioncsatornák gyors repetatív kisülésre való hajlamossága (rövid refrakteridőnek tudható be) különösen kritikus az epilepsziás szinkronizált működészavarok kialakulásának szempontjából. A kezdeti kóros működést pozitív visszacsatolások erősítik fel. A fokozott kisülések olyan irreverzíbilis változásokat idéznek elő a sejtműködésben, melyek elősegítik az izgalmi állapotok fennmaradását, továbbá egyes esetekben maradandó funkcionális elváltozásokat válthatnak ki. A nagy sejtkárosító hatást valószínűleg a sejtbe beáramló Ca + ionok nagy koncentrációja váltja ki. A rohamok általában nem koncentrálódnak az őket kiváltó gócpontok köré, a szinkronizált kisülések átterjednek a szomszédos szövetekre és folyamatos igénybevétel után ezek a régiók is az ictális állapot kiindulópontjává válhatnak [9] Az epilepsziák osztályozása Az epilepsziákat több szempont szerint szokás csoportosítani. Ezek közül a legfontosabb paraméterek a kiváltott élettani hatások, a kóros régiók kiterjedése, az életkor, stb. Itt csak a leggyakoribb, kéttengelyű besorolást ismertetjük. Az egyik

16 tengelyen a lokalizáció, a másikon pedig az etiológiai szempontok alapján vannak felosztva a leggyakoribb szindrómák (1.1 táblázat) [9]. A szimptómás epilepsziák szerzett epilepsziák, még az idiopátiásak genetikai eredetűek. Parciális szindrómákról akkor beszélünk mikor a működészavar az agy jól körülírható területéhez köthető. Amennyiben ez a feltétel nem teljesül általánosított, generalizált epilepsziáról van szó. 1.1 Táblázat Szindrómák kéttengelyű csoportosítása [9] Szimptómás Idiopátiás Generalizált West szindróma Lennox-Gastaut szindróma Absence epilepszia Juvenilis myoclonusos epilepszia Egyéb idiopátiás generalizált epilepszia Parciális Temporalislebenyepilepszia Frontálislebeny-epilepszia Parieto-occipitalis epilepszia Benignus centrotemporalis gyermekkori epilepszia Benignus occipitalis gyermekkori epilepszia Temporális lebeny epilepszia - TLE A vizsgált betegeink mind temporális lebeny epilepsziában szenvedtek, ezért a következőkben csak ezt az epilepszia csoportot ismertetem röviden. A temporális lebeny epilepszia rendkívül gyakori forma. A felnőttkori epilepsziák %-át teszi ki. Nagyrészt a fiatal felnőttkor, illetve a meglett felnőttkor periódusában jelentkezik. Amennyiben gyermekkorban indul, többéves tünetmentes periódus után serdülőkorban újra manifesztálódik. A fenti táblázatból látszik, hogy a szimptómás szindrómák közé tartozik, azonban teljes mértékben a genetikai tényezőket sem zárhatjuk ki. Parciális mivoltából kifolyólag általában csak a kóros régióhoz tartozó funkciók hiányaként jelentkezik, bizonyos esetekben viszont a parciális rohamok generalizáltakba torkollhatnak. Gyakori tünetek: szenzomotoros tünetek, elsápadás-elpirulás, szívritmus változás, izzadás, pupillatágulat, illúziók, hallucinációk, álomállapot, félelem, harag, tudatzavar, amnézia, automatizmus (akaratlan-motoros tevékenység melyet általában amnézia fed), kifejezéstelen arc, az éppen folyó tevékenység abbahagyása, stb. [9], [10]

17 A temporális lebeny epilepszia kiváltói a temporális lebeny alatt elhelyezkedő limbicus rendszer struktúrái. A leggyakoribb rohamkiváltó egység a hippocampus. Erre a hippocampus funkciója ad magyarázatot. Ez a struktúra a deklaratív memóriáért, az emléknyomok rövid és hosszú távú memóriák közötti átviteléért, az emóciók kialakulásáért felelős. Ehhez nélkülözhetetlen, hogy a terület nagy adaptivitással rendelkezzen. A betegség patomechanizmusának tárgyalásánál leírtak függvényében így már érthető, hogy ez az epilepszia típus miért is olyan gyakori. A hippocampus strukturális, funkcionális felépítésének valamint ennek a hátterében rejlő öngerjesztő, szinkronizált oszcillációk kialakulási mechanizmusának leírását a kedves Olvasó a [1], [2], [3], [5], [11], [12], [13] irodalmakban találja meg. Reprodukálható rohamkiváltó tünetekről ezekben az esetekben nem beszélhetünk, habár újra meg újra felmerül az a gyanú, hogy az emocionális igénybevétel rohamkeltő lehet. A gyógyszeres kezelés az esetek 70-80%-ban rohammentesít. Amennyiben viszont a modern farmakokinetikai elvek alkalmazása sem vezet pozitív eredményre, felmerül a műtéti beavatkozás szükségessége [9] Vizsgálati módszerek A diagnózis felállításában, a betegség időbeli alakulásának nyomon követésében, de legfőbbképpen a műtét előtti vizsgálatokban különös szerepe van az EEG vizsgálatoknak. A gyógyszerrezisztens páciensek számára az egyedüli megoldás a műtéti beavatkozás. A kóros területek eltávolítása funkciókieséssel járhat (mint például mindkét oldali hippocampus eltávolítása), ezért ebből a szempontból az eltávolítandó régiók minimalizálására kell törekedni. Azonban a hátrahagyott, már károsult struktúrák bizonyos lappangási idő elteltével kiújíthatják a rohamokat, valamint új régiókat vonhatnak be a kóros aktivitásba, és így a műtét megismétlésére lehet szükség. A rohamokat kiváltó gócpontok pontos lokalizálására EEG-t, valamint képalkotó technikákat alkalmaznak. Az agy morfológia, strukturális elváltozásai MRI-vel, még a funkcionális deviációk PET-es képalkotással követhetők nyomon. Amennyiben az előzetes EEG vizsgálatok és a képalkotó eljárások által nyert eredmények nem konzisztensek vagy nem elegendőek a gócpontok beazonosításához foramen ovale (FO) elektródák alkalmazására van szükség. Evvel a módszerrel az EEG azon hátrányát tudjuk kiküszöbölni, hogy a mélyben lévő régiók tevékenysége csak minimálisan vagy egyáltalán nem detektálható a fejbőrről elvezetett jelekben az orvosi diagnosztikában

18 alkalmazott szemrevételezéssel a köztes régiók szűrő hatása valamint a külső zavarok miatt. FO elvezetéseket 1985-ben alkalmaztak először [14]. A tűszerű, rozsdamentes acél elektródákat az arcüregeken, továbbá az ékcsontban található névadó foramen ovale nyílásokon keresztül helyezik fel bilaterálisan a gyrus hippocampalis közvetlen közelében a cisterna ambiensben. A temporális lebeny, a hippocampus és a mélyagyi elektródák elrendezését szemlélteti az alábbi ábra oldalnézetből. FO elektróda Temporális lebeny Hippocampus 1.2 Ábra FO elektróda és a hippocampus A pontos diagnózis felállításának érdekében a monitorozás során interictális és ictális vizsgálatokat is kell végezni. A vizsgálati idő érdekében a páciensektől megvonják a gyógyszeres kezelést, hogy minél rövidebb időn belül minél több rohamot produkáljanak. Ennek ellenére bizonyos esetekben a procedúra több mint egy hétig is eltarthat. A folyamatos monitorozás szempontjából egyértelműen az EEG bizonyul előnyösebbnek az FO elvezetések kiegészítőjeként, hiszen el sem képzelhető, hogy a páciens folyamatos sugárzásnak legyen kitéve, valamint, hogy a készülékhez legyen kötve több mint egy héten keresztül. Az EEG felvételek Holter típusú készülékkel is készíthetőek kisebb időszakaszokra több szabadságot biztosítva a páciens számára

19 2 Problémák, célok tárgyalása 2.1 Problémák megfogalmazása Röviden áttekintve az epilepsziás betegek vizsgálati és kezelési módszereit belebocsátkozhatunk a felmerülő problémák megfogalmazásába. A kezeléssel kapcsolatos legnagyobb gond azon gyógyszerrezisztens páciensek rehabilitációja, akiknél a műtéti beavatkozás sem végezhető el. Szintén problémát jelent azon betegek kezelése is melyek esetében a gyógyszerrel vagy gyógyszerek kombinációjával történő terápia sikeres az epilepsziás rohamokat illetőleg, de jelentős mellékhatásokkal jár (legtöbb esetben ez a máj funkcióinak károsodását jelenti). Ezen problémák megoldását jelentené egy új alternatív gyógymód kifejlesztése. A műtét előtti monitorozás alatt az ictális állapotok vizsgálata kulcsfontosságú a pontos diagnózis megállapításánál, mivel a rohamok között bekövetkező epileptiform jelenségek alapján nem minden esetben dönthető el, hogy melyek a rohamokat kiváltó gócpontok. Például hogy, TLE esetében a rohamokat a jobb vagy baloldali hippocampus generálja. Egyes irodalmak szerint az interictális tüskehullám mintázatok gyakorisága direkt összefüggésben van a rohamok genézisével, még mások épen az ellenkezőjéről számolnak be [15]. Előfordulhat, hogy az egyik oldal interictális aktivitása sokkal intenzívebb, de a rohamok az EEG alapján mégis a másik oldalról indulnak. Ezért amennyiben a monitorozást éppen roham idejére megszakítjuk bizonyos okból, veszélyeztetjük az egész vizsgálatot, hiszen lehet, hogy a következő ictális állapotra további pár napot kell várni, de ez már a fertőzési veszélyek (a páciens mondhatni nyílt sebbel rendelkezik) miatt nem engedhető meg. A huzamos, 24 órás felvételek esetén nem minden esetben tartózkodik a beteg mellett az asszisztens. Amennyiben pont ilyen esetben következik be roham nincs mód elvégezni a szükséges teszteket, melyek alapján megállapítható lenne, hogy az adott páciensnél a rohamok milyen funkciók változásával jár. A funkciók hiányából vagy éppen jelenlétéből következtetni lehet, hogy mely régiók érintettek az adott roham alatt. Ezért nagy szükség lenne egy előrejelző rendszerre, mely jelezne, ha az elkövetkező percekben nagy valószínűséggel roham következik be, így az orvos vagy orvos távollétében az asszisztens jelen lehetne a roham bekövetkeztekor

20 További jelentősége lenne a predikciónak, hogy nagy mértékben javítaná a képalkotó technikák roham közbeni alkalmazását. A rohamok bekövetkezési idejének ismeretében megfelelő időben tudnánk a páciensnek beadni a megfelelő jelzőanyagot, és így nyomon követni pl. PET-el, hogy ictális állapot közben mely régiókban milyen anyagcserezavarok lépnek fel. Amennyiben a szükséges jelzőanyagot túl korán adjuk be fenn áll a veszélye annak, hogy a felezési idejének megfelelően eltávozik a szervezetből a roham bekövetkeztéig. Ha viszont későn juttatjuk be a szervezetbe, nem tudjuk detektálni a roham kialakulását. A rohampredikció segítségével új távlatok nyílnának meg a kezelés terén is. Mindmáig a gyógyszeres kezelés oly módon történik, hogy az orvos visszamenőleg több évre elemzi a beteg rohamainak gyakoriságát az alkalmazott terápia függvényében. A páciensnek gyakran be kell vennie gyógyszerét, ha arra valójában nem is lenne szüksége, ez nagy mértékben hozzájárul a káros mellékhatások és az adott gyógyszer szembeni rezisztencia kialakulásában. Amennyiben modellezni tudnánk az agy dinamikai viselkedését, az EEG elvezetésekben olyan jellemzőket találnánk melyek alapján jól definiálható lenne, hogy az agy éppen milyen állapotban tartózkodik időszerű real-time terápiát valósíthatnánk meg. Ebben az esetben beavatkozás csak akkor történne meg, ha arra valójában szükség van. A pácienseknek csak kis hányada érez bizonyos előjeleket, melyeket auráknak nevezünk. A betegek számára nagy gondot jelent, hogy a rohamok hirtelen következnek be. Ez szinte lehetetlenné teszi a normális hétköznapi tevékenységek végzését. Ezek az emberek nem vezethetnek, nem sportolhatnak, csak bizonyos munkakörben alkalmazhatók, gyerekek esetében gyakoriak a huzamos kimaradások az oktatásból. Ezen túlmenően talán a legnagyobb gond a társadalom tartózkodó viselkedése, a betegek kiközösítése a betegség meg nem értése miatt. Amennyiben a roham kialakulását nem is tudjuk megakadályozni, nagy segítség lenne már az is, ha figyelmeztetni tudnánk a beteget, hogy rohama következik. Ennek következtében félbe tudná szakítani az éppen végzett tevékenységet megőrizvén így a saját és mások biztonságát is. 2.2 Célok A felmerülő problémák alapján három főbb cél tűzhető ki, melyek megvalósítása nagy mértékben javítana az epilepsziában szenvedő betegek életkörülményein:

Temporális epilepszia. felismerése EEG-jelekből

Temporális epilepszia. felismerése EEG-jelekből Villamosmérnöki és Informatikai Kar Tudományos Diákköri Konferencia Temporális epilepszia felismerése EEG-jelekből Készítették: Konzulensek: Tóth Krisztián Weiss Béla Dr. Kollár István Somogyvári Zoltán

Részletesebben

Gyógyszerészeti neurobiológia. Idegélettan

Gyógyszerészeti neurobiológia. Idegélettan Az idegrendszert felépítő sejtek szerepe Gyógyszerészeti neurobiológia. Idegélettan Neuronok, gliasejtek és a kémiai szinapszisok működési sajátságai Neuronok Információkezelés Felvétel Továbbítás Feldolgozás

Részletesebben

Epilepszia és görcsállapotok gyermekkorban. Fogarasi András. Bethesda Gyermekkórház, Budapest. Gyermekgyógyászati kötelező szinten tartó tanfolyam

Epilepszia és görcsállapotok gyermekkorban. Fogarasi András. Bethesda Gyermekkórház, Budapest. Gyermekgyógyászati kötelező szinten tartó tanfolyam Epilepszia és görcsállapotok gyermekkorban Fogarasi András Bethesda Gyermekkórház, Budapest Gyermekgyógyászati kötelező szinten tartó tanfolyam Budapest, 2013. november 22. fog.andras@gmail.com Tel: 4222-875

Részletesebben

Transzportfolyamatok a biológiai rendszerekben

Transzportfolyamatok a biológiai rendszerekben A nyugalmi potenciál jelentősége Transzportfolyamatok a biológiai rendszerekben Transzportfolyamatok a sejt nyugalmi állapotában a sejt homeosztázisának (sejttérfogat, ph) fenntartása ingerlékenység érzékelés

Részletesebben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben

A gyermekkori epilepsziák felismerése

A gyermekkori epilepsziák felismerése A gyermekkori epilepsziák felismerése Dr. med. habil. Fogarasi András Tudományos igazgató Bethesda Gyermekkórház, Budapest fogarasi@bethesda.hu Tel: 4222-875 Fıbb lépések Felismerés Diagnózis Klasszifikáció

Részletesebben

Vérnyomásmérés, elektrokardiográfia. A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. A mérési adatok elemzése és értékelése

Vérnyomásmérés, elektrokardiográfia. A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. A mérési adatok elemzése és értékelése Vérnyomásmérés, elektrokardiográfia A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. A mérési adatok elemzése és értékelése Pszichológia BA gyakorlat A mérést és kiértékelést végezték:............

Részletesebben

Újszülöttkori görcsök. Dr Szabó Miklós PhD egyetemi docens Április 7. Bókay délután

Újszülöttkori görcsök. Dr Szabó Miklós PhD egyetemi docens Április 7. Bókay délután Újszülöttkori görcsök Dr Szabó Miklós PhD egyetemi docens 2016. Április 7. Bókay délután BNO-kód : P90H0 Hivatalos név: Újszülöttkori görcsök Csoport: Újszülöttkori görcsök, A perinatális szakban keletkező

Részletesebben

FEJEZETEK AZ ÉLETTAN TANTÁRGYBÓL

FEJEZETEK AZ ÉLETTAN TANTÁRGYBÓL Eke András, Kollai Márk FEJEZETEK AZ ÉLETTAN TANTÁRGYBÓL Szerkesztette: Ivanics Tamás Semmelweis Kiadó www.semmelweiskiado.hu B u d a p e s t, 2 0 0 7 Szerkesztette: Ivanics Tamás egyetemi docens, Semmelweis

Részletesebben

Az agyi jelek adaptív feldolgozása MENTÁ LIS FÁ R A DT S ÁG MÉRÉSE

Az agyi jelek adaptív feldolgozása MENTÁ LIS FÁ R A DT S ÁG MÉRÉSE Az agyi jelek adaptív feldolgozása MENTÁ LIS FÁ R A DT S ÁG MÉRÉSE Bevezetés I. A fáradtság lehet fizikai: a normál testi funkciók hiánya mentális: csökkent agyi aktivitás vagy kognitív funkciók. Megjelenhet

Részletesebben

Vérnyomásmérés, elektrokardiográfia. A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre.

Vérnyomásmérés, elektrokardiográfia. A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. Vérnyomásmérés, elektrokardiográfia A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. Állati Struktúra és Funkció II. gyakorlat A mérést és kiértékelést végezték:............ Gyakorlatvezető:...

Részletesebben

Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál

Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza

Részletesebben

a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg:

a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg: Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza meg: 1. Koncentráció

Részletesebben

Érzékelési folyamat szereplői. Az érzékelés biofizikájának alapjai. Receptor felépítése. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG?

Érzékelési folyamat szereplői. Az érzékelés biofizikájának alapjai. Receptor felépítése. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG? külső, belső környezet ei Érzékelési folyamat szereplői Az érzékelés biofizikájának alapjai specifikus transzducer központi idegrendszer Az jellemzői Receptor felépítése MILYEN? HOL? MENNYI? MEDDIG? Magasabb

Részletesebben

Sarkadi Margit1, Mezősi Emese2, Bajnok László2, Schmidt Erzsébet1, Szabó Zsuzsanna1, Szekeres Sarolta1, Dérczy Katalin3, Molnár Krisztián3,

Sarkadi Margit1, Mezősi Emese2, Bajnok László2, Schmidt Erzsébet1, Szabó Zsuzsanna1, Szekeres Sarolta1, Dérczy Katalin3, Molnár Krisztián3, Sarkadi Margit1, Mezősi Emese2, Bajnok László2, Schmidt Erzsébet1, Szabó Zsuzsanna1, Szekeres Sarolta1, Dérczy Katalin3, Molnár Krisztián3, Rostás Tamás3, Ritter Zsombor4, Zámbó Katalin1 Pécsi Tudományegyetem

Részletesebben

Az akciós potenciál (AP) 2.rész. Szentandrássy Norbert

Az akciós potenciál (AP) 2.rész. Szentandrássy Norbert Az akciós potenciál (AP) 2.rész Szentandrássy Norbert Ismétlés Az akciós potenciált küszöböt meghaladó nagyságú depolarizáció váltja ki Mert a feszültségvezérelt Na + -csatornákat a depolarizáció aktiválja,

Részletesebben

Epilepszia és epilepsziás rohamok. Janszky József Egyetemi adjunktus

Epilepszia és epilepsziás rohamok. Janszky József Egyetemi adjunktus Epilepszia és epilepsziás rohamok Janszky József Egyetemi adjunktus Epilepsziás roham definíciója Objektív vagy szubjektív klinikai tünetek Ok: agyi neuronpopuláció abnormálisan synchron aktivációja Epilepsziás

Részletesebben

Egy idegsejt működése

Egy idegsejt működése 2a. Nyugalmi potenciál Egy idegsejt működése A nyugalmi potenciál (feszültség) egy nem stimulált ingerelhető sejt (neuron, izom, vagy szívizom sejt) membrán potenciálját jelenti. A membránpotenciál a plazmamembrán

Részletesebben

Elektroencephalogram (EEG) vizsgálata Az alfa- és béta aktivitás változás vizsgálata (EEG II) A mérési adatok elemzése és értékelése

Elektroencephalogram (EEG) vizsgálata Az alfa- és béta aktivitás változás vizsgálata (EEG II) A mérési adatok elemzése és értékelése Elektroencephalogram (EEG) vizsgálata Az alfa- és béta aktivitás változás vizsgálata (EEG II) A mérési adatok elemzése és értékelése Pszichológia BA. gyakorlat A mérést és kiértékelést végezték: Gyakorlatvezető:...

Részletesebben

Orvosi fizika laboratóriumi gyakorlatok 1 EKG

Orvosi fizika laboratóriumi gyakorlatok 1 EKG ELEKTROKARDIOGRÁFIA I. Háttér A szívműködést kísérő elektromos változások a szív körül egy változó irányú és erősségű elektromos erőteret hoznak létre. A szívizomsejtek depolarizációja majd repolarizációja

Részletesebben

Érzékelési folyamat szereplői. Az érzékelés biofizikájának alapjai. Inger Modalitás Receptortípus. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG?

Érzékelési folyamat szereplői. Az érzékelés biofizikájának alapjai. Inger Modalitás Receptortípus. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG? külső, belső környezet ei Érzékelési folyamat szereplői Az érzékelés biofizikájának alapjai specifikus transzducer központi idegrendszer Az jellemzői MILYEN? HOL? MENNYI? MEDDIG? Magasabb szintű kódolás

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv Jelkondicionálás Elvezetés 2/12 a bioelektromos jelek kis amplitúdójúak extracelluláris spike: néhányszor 10 uv EEG hajas fejbőrről: max 50 uv EKG: 1 mv membránpotenciál: max. 100 mv az amplitúdó növelésére,

Részletesebben

Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei

Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei Dr. Gingl Zoltán SZTE, Kísérleti Fizikai Tanszék Szeged, 2000 Február e-mail : gingl@physx.u-szeged.hu 1 Az ember kapcsolata

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ 101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az

Részletesebben

Szívbetegségek hátterében álló folyamatok megismerése a ciklusosan változó szívélettani paraméterek elemzésén keresztül

Szívbetegségek hátterében álló folyamatok megismerése a ciklusosan változó szívélettani paraméterek elemzésén keresztül Dr. Miklós Zsuzsanna Semmelweis Egyetem, ÁOK Klinikai Kísérleti Kutató- és Humán Élettani Intézet Szívbetegségek hátterében álló folyamatok megismerése a ciklusosan változó szívélettani paraméterek elemzésén

Részletesebben

RITMUSOS DELTA AKTIVITÁSOK ÉS EPILEPSZIA

RITMUSOS DELTA AKTIVITÁSOK ÉS EPILEPSZIA RITMUSOS DELTA AKTIVITÁSOK ÉS EPILEPSZIA Dr. Dömötör Johanna Kenézy Gyula Kórház és Rendelőintézet Neurológia Osztály, Debrecen Magyar Epilepszia Liga XIII. Kongresszusa 2016. május 26-28. Szeged Bevezetés

Részletesebben

EPILEPSZIA. Fekete István. DE OEC Neurológiai Klinika. Debrecen, szeptember 13.

EPILEPSZIA. Fekete István. DE OEC Neurológiai Klinika. Debrecen, szeptember 13. EPILEPSZIA Fekete István DE OEC Neurológiai Klinika Debrecen, 2011. szeptember 13. Az epilepszia mint betegség Mindazon tünetegyüttesek összefoglaló neve, amelyekre jellemző: klinikailag rohamszerű tünetek,

Részletesebben

Vérnyomásmérés, elektrokardiográfia. A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. A mérési adatok elemzése és értékelése

Vérnyomásmérés, elektrokardiográfia. A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. A mérési adatok elemzése és értékelése Vérnyomásmérés, elektrokardiográfia A testhelyzet, a légzés, a munkavégzés hatása a keringési rendszerre. A mérési adatok elemzése és értékelése Biológia Bsc. gyakorlat A mérést és kiértékelést végezték:............

Részletesebben

1. számú ábra. Kísérleti kályha járattal

1. számú ábra. Kísérleti kályha járattal Kísérleti kályha tesztelése A tesztsorozat célja egy járatos, egy kitöltött harang és egy üres harang hőtároló összehasonlítása. A lehető legkisebb méretű, élére állított téglából épített héjba hagyományos,

Részletesebben

Szívstresszmérés (VIPORT - EKG-bázisú szívstresszmérő készülék)

Szívstresszmérés (VIPORT - EKG-bázisú szívstresszmérő készülék) Szívstresszmérés (VIPORT - EKG-bázisú szívstresszmérő készülék) A stressz hatása a szívre A túlzott mértékű stressz a szívbetegségek egyik rizikófaktora. Nyugalmi állapotban, átlagosan a felnőtt szív percenként

Részletesebben

Membránpotenciál, akciós potenciál

Membránpotenciál, akciós potenciál A nyugalmi membránpotenciál Membránpotenciál, akciós potenciál Fizika-Biofizika 2015.november 3. Nyugalomban valamennyi sejt belseje negatív a külső felszínhez képest: negatív nyugalmi potenciál (Em: -30

Részletesebben

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák

Részletesebben

2006 1. Nemszinaptikus receptorok és szubmikronos Ca2+ válaszok: A két-foton lézermikroszkópia felhasználása a farmakológiai vizsgálatokra.

2006 1. Nemszinaptikus receptorok és szubmikronos Ca2+ válaszok: A két-foton lézermikroszkópia felhasználása a farmakológiai vizsgálatokra. 2006 1. Nemszinaptikus receptorok és szubmikronos Ca 2+ válaszok: A két-foton lézermikroszkópia felhasználása a farmakológiai vizsgálatokra. A kutatócsoportunkban Közép Európában elsőként bevezetett két-foton

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok Az akusztikus emisszió vizsgálata a műszaki diagnosztikában Anyagvizsgálati módszerek Roncsolásos metallográfia, kémia, szakító,

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás

Részletesebben

Vizsgálataink. EKG (Elektrokardiogramm) A míg az lész, a mi vagy. (Goethe)

Vizsgálataink. EKG (Elektrokardiogramm) A míg az lész, a mi vagy. (Goethe) Kardiológiai Szakrendelés Dr. Füsi Gabriella Kardiológus Főorvos Élni való minden élet, Csak magadhoz hű maradj. Veszteség nem érhet téged, A míg az lész, a mi vagy. (Goethe) Vizsgálataink EKG (Elektrokardiogramm)

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

Funkcionális konnektivitás vizsgálata fmri adatok alapján

Funkcionális konnektivitás vizsgálata fmri adatok alapján Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions

Részletesebben

Teremakusztikai méréstechnika

Teremakusztikai méréstechnika Teremakusztikai méréstechnika Tantermek akusztikája Fürjes Andor Tamás 1 Tartalomjegyzék 1. A teremakusztikai mérések célja 2. Teremakusztikai paraméterek 3. Mérési módszerek 4. ISO 3382 szabvány 5. Méréstechnika

Részletesebben

A TEMPORÁLIS LEBENY EPILEPSZIA ÉS AZ ALVÁS: VIZSGÁLATOK AZ INTERIKTÁLIS TÜSKÉK ÉS A MEMÓRIAKONSZOLIDÁCIÓ SZEMPONTJÁBÓL

A TEMPORÁLIS LEBENY EPILEPSZIA ÉS AZ ALVÁS: VIZSGÁLATOK AZ INTERIKTÁLIS TÜSKÉK ÉS A MEMÓRIAKONSZOLIDÁCIÓ SZEMPONTJÁBÓL A TEMPORÁLIS LEBENY EPILEPSZIA ÉS AZ ALVÁS: VIZSGÁLATOK AZ INTERIKTÁLIS TÜSKÉK ÉS A MEMÓRIAKONSZOLIDÁCIÓ SZEMPONTJÁBÓL Ph. D értekezés Clemens Zsófia Semmelweis Egyetem Doktori Iskola Idegtudományok Doktori

Részletesebben

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.

Részletesebben

A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban

A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban 17. Központi idegrendszeri neuronok ingerületi folyamatai és szinaptikus összeköttetései 18. A kalciumháztartás zavaraira

Részletesebben

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)

Részletesebben

Kiváltott agyi jelek informatikai feldolgozása. Artefact ( műtermék )

Kiváltott agyi jelek informatikai feldolgozása. Artefact ( műtermék ) Kiváltott agyi jelek informatikai feldolgozása Artefact ( műtermék ) 1 Agyi hullámok csoportjai Ritmikus agyi hullámok (agyi ritmusok) Széles frekvencia spektrumú, vagy impulzus-szerű hullámok (pl. k-komplex)

Részletesebben

Dózis-válasz görbe A dózis válasz kapcsolat ábrázolása a legáltalánosabb módja annak, hogy bemutassunk eredményeket a tudományban vagy a klinikai

Dózis-válasz görbe A dózis válasz kapcsolat ábrázolása a legáltalánosabb módja annak, hogy bemutassunk eredményeket a tudományban vagy a klinikai Dózis-válasz görbe A dózis válasz kapcsolat ábrázolása a legáltalánosabb módja annak, hogy bemutassunk eredményeket a tudományban vagy a klinikai gyakorlatban. Például egy kísérletben növekvő mennyiségű

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

Nagyon köszönöm a disszertáció alapvetően pozitív megítélését és a gondos bírálatot. A következőkben válaszolok a feltett kérdésekre.

Nagyon köszönöm a disszertáció alapvetően pozitív megítélését és a gondos bírálatot. A következőkben válaszolok a feltett kérdésekre. Válasz Dr. Tamás Gábor bírálói véleményére Tisztelt Professzor Úr, Nagyon köszönöm a disszertáció alapvetően pozitív megítélését és a gondos bírálatot. A következőkben válaszolok a feltett kérdésekre.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ Dr. Soumelidis Alexandros 2018.09.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG A tárgy célja

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

Beltéri autonóm négyrotoros helikopter szabályozó rendszerének kifejlesztése és hardware-in-the-loop tesztelése

Beltéri autonóm négyrotoros helikopter szabályozó rendszerének kifejlesztése és hardware-in-the-loop tesztelése Beltéri autonóm négyrotoros helikopter szabályozó rendszerének kifejlesztése és hardware-in-the-loop tesztelése Regula Gergely, Lantos Béla BME Villamosmérnöki és Informatikai Kar Irányítástechnika és

Részletesebben

Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni.

Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni. Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni. Kezdjük a sort a menetidőgörbékről, illetve az NMO korrekcióról tanultakkal. A következő ábrán

Részletesebben

Minden leendő szülő számára a legfontosabb, hogy születendő gyermeke egészséges legyen. A súlyosan beteg gyermek komoly terheket ró a családra.

Minden leendő szülő számára a legfontosabb, hogy születendő gyermeke egészséges legyen. A súlyosan beteg gyermek komoly terheket ró a családra. Egészséges magzat, biztonságos jövő Minden leendő szülő számára a legfontosabb, hogy születendő gyermeke egészséges legyen. A súlyosan beteg gyermek komoly terheket ró a családra. A veleszületett fejlődési

Részletesebben

Orvosi Fizika és Statisztika

Orvosi Fizika és Statisztika Orvosi Fizika és Statisztika Szegedi Tudományegyetem Általános Orvostudományi Kar Természettudományi és Informatikai Kar Orvosi Fizikai és Orvosi Informatikai Intézet www.szote.u-szeged.hu/dmi Orvosi fizika

Részletesebben

Figyelemhiány/Hiperaktivitás Zavar - ADHD TÁJÉKOZTATÓ FÜZET. ADHD-s gyermekek családjai részére

Figyelemhiány/Hiperaktivitás Zavar - ADHD TÁJÉKOZTATÓ FÜZET. ADHD-s gyermekek családjai részére Figyelemhiány/Hiperaktivitás Zavar - ADHD TÁJÉKOZTATÓ FÜZET ADHD-s gyermekek családjai részére KEZELÉSI TÁJÉKOZTATÓ FÜZET Ezt a tájékoztató füzetet azért készítettük, hogy segítsünk a FIGYELEMHIÁNY/HIPERAKTIVITÁS

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet

Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet Az ioncsatorna fehérjék szerkezete, működése és szabályozása Panyi György www.biophys.dote.hu Mesterséges membránok

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek

Részletesebben

AZ EPILEPSZIA DIAGNOSZTIKÁJA

AZ EPILEPSZIA DIAGNOSZTIKÁJA AZ EPILEPSZIA DIAGNOSZTIKÁJA PTE ÁOK, V. évfolyam Pécs, 2014.04.23. Gyimesi Csilla I. Az epilepszia betegség felismerése definíció klasszifikáció differenciáldiagnózis II. Kivizsgálásának lépései III.

Részletesebben

NGB_IN040_1 SZIMULÁCIÓS TECHNIKÁK dr. Pozna Claudio Radu, Horváth Ernő

NGB_IN040_1 SZIMULÁCIÓS TECHNIKÁK dr. Pozna Claudio Radu, Horváth Ernő SZÉCHENYI ISTVÁN EGYETEM Műszaki Tudományi Kar Informatika Tanszék BSC FOKOZATÚ MÉRNÖK INFORMATIKUS SZAK NGB_IN040_1 SZIMULÁCIÓS TECHNIKÁK dr. Pozna Claudio Radu, Horváth Ernő Fejlesztői dokumentáció GROUP#6

Részletesebben

Gyógyszeres kezelések

Gyógyszeres kezelések Gyógyszeres kezelések Az osteogenesis imperfecta gyógyszeres kezelésében számos szert kipróbáltak az elmúlt évtizedekben, de átütő eredménnyel egyik se szolgált. A fluorid kezelés alkalmazása osteogenesis

Részletesebben

-Két fő korlát: - asztrogliák rendkívüli morfológiája -Ca szignálok értelmezési nehézségei

-Két fő korlát: - asztrogliák rendkívüli morfológiája -Ca szignálok értelmezési nehézségei Nature reviewes 2015 - ellentmondás: az asztrociták relatív lassú és térben elkent Ca 2+ hullámokkal kommunikálnak a gyors és pontos neuronális körökkel - minőségi ugrás kell a kísérleti és analitikai

Részletesebben

STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés

STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés Mit nevezünk idősornak? STATISZTIKA 10. Előadás Idősorok analízise Egyenlő időközökben végzett megfigyelések A sorrend kötött, y 1, y 2 y t y N N= időpontok száma Minden időponthoz egy adat, reprodukálhatatlanság

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Dr. habil. Czupy Imre

Dr. habil. Czupy Imre AZ ERDŐ- ÉS VADGAZDÁLKODÁSBAN ELŐFORDULÓ ERGONÓMIAI KOCKÁZATOK ÉS AZ ÁLTALUK OKOZOTT MOZGÁSSZERVI MEGBETEGEDÉSEK Dr. habil. Czupy Imre SOPRONI EGYETEM intézetigazgató egyetemi docens SZABADBAN VÉGZETT

Részletesebben

Ló tréningmonitorozó rendszer bemutatása

Ló tréningmonitorozó rendszer bemutatása Ló tréningmonitorozó rendszer bemutatása A lovak tréningjének műszeres támogatására jelenleg jóval kevesebb eszköz és módszer áll rendelkezésre, mint a humán sportolók esetében. A ló és lovassportok egyre

Részletesebben

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt.

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális jel esetében?

Részletesebben

A beszéd lateralizáció reorganizációjának nyomonkövetésea fmri-velaneurorehabilitációsorán

A beszéd lateralizáció reorganizációjának nyomonkövetésea fmri-velaneurorehabilitációsorán A beszéd lateralizáció reorganizációjának nyomonkövetésea fmri-velaneurorehabilitációsorán (klinikai tanulmány terv) Péley Iván, Janszky József PTE KK Neurológiai Klinika Az (emberi) agy egyik meghatározó

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

IONCSATORNÁK. I. Szelektivitás és kapuzás. III. Szabályozás enzimek és alegységek által. IV. Akciós potenciál és szinaptikus átvitel

IONCSATORNÁK. I. Szelektivitás és kapuzás. III. Szabályozás enzimek és alegységek által. IV. Akciós potenciál és szinaptikus átvitel IONCSATORNÁK I. Szelektivitás és kapuzás II. Struktúra és funkció III. Szabályozás enzimek és alegységek által IV. Akciós potenciál és szinaptikus átvitel V. Ioncsatornák és betegségek VI. Ioncsatornák

Részletesebben

SZÉDÜLÉS ÉS A NEUROREHABILITÁCIÓ. Péley Iván PTE KK Neurológiai Klinika és Szigetvári Kórház Neurorehabilitáció

SZÉDÜLÉS ÉS A NEUROREHABILITÁCIÓ. Péley Iván PTE KK Neurológiai Klinika és Szigetvári Kórház Neurorehabilitáció SZÉDÜLÉS ÉS A NEUROREHABILITÁCIÓ Péley Iván PTE KK Neurológiai Klinika és Szigetvári Kórház Neurorehabilitáció Szédülés és a neurorehabilitáció Szédülés és a neurorehabilitáció Szédülés és a neurorehabilitáció

Részletesebben

Erőművi turbina-generátor gépcsoportok rezgésdiagnosztikája

Erőművi turbina-generátor gépcsoportok rezgésdiagnosztikája Erőművi turbina-generátor gépcsoportok rezgésdiagnosztikája Kiss Attila 1. Bevezetés A rezgésdiagnosztika a forgógép karbantartás olyan ágazata, amely nagyon sokrétűen és dinamikusan fejlődik. A gyors

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

Dr. Péczely László Zoltán. A Grastyán örökség: A játék neurobiológiája

Dr. Péczely László Zoltán. A Grastyán örökség: A játék neurobiológiája Dr. Péczely László Zoltán A Grastyán örökség: A játék neurobiológiája A motiváció A motiváció az idegrendszer aspeficikus aktiváltsági állapota, melyet a külső szenzoros információk, és a szervezet belső

Részletesebben

A KOGNITÍV PSZICHOTERÁPIA ALAPJAI 1. Perczel Forintos Dóra Semmelweis Egyetem Klinikai Pszichológia Tanszék 2010

A KOGNITÍV PSZICHOTERÁPIA ALAPJAI 1. Perczel Forintos Dóra Semmelweis Egyetem Klinikai Pszichológia Tanszék 2010 A KOGNITÍV PSZICHOTERÁPIA ALAPJAI 1. Perczel Forintos Dóra Semmelweis Egyetem Klinikai Pszichológia Tanszék 2010 INGER TUDATTALAN KÉSZTETÉS EMÓCIÓ PSZICHOANALITIKUS MODELL Beck, 1974. INGER EMÓCIÓ TANULÁSELMÉLETI

Részletesebben

Markov modellek 2015.03.19.

Markov modellek 2015.03.19. Markov modellek 2015.03.19. Markov-láncok Markov-tulajdonság: egy folyamat korábbi állapotai a későbbiekre csak a jelen állapoton keresztül gyakorolnak befolyást. Semmi, ami a múltban történt, nem ad előrejelzést

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

Janszky JózsefJ PTE ÁOK Neurológiai Klinika

Janszky JózsefJ PTE ÁOK Neurológiai Klinika Epilepszia mőtéti m ti kezelése Janszky JózsefJ PTE ÁOK Neurológiai Klinika Az epilepsziasebészet szet helye az epilepszia terápi piájában 2005-ben Epilepszia prevalenciája: 0,5-1 % kb. 20-30%-ban az epilepszia

Részletesebben

Érzékszervi receptorok

Érzékszervi receptorok Érzékszervi receptorok működése Akciós potenciál Érzékszervi receptorok Az akciós potenciál fázisai Az egyes fázisokat kísérő ionáram változások 214.11.12. Érzékszervi receptorok Speciális sejtek a környezetből

Részletesebben

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz MRI áttekintés Orvosi képdiagnosztika 3. ea. 2015 ősz MRI Alapelv: hogyan lehet mágneses vizsgálattal valamilyen anyag (jelen esetben az élő emberi szervezet) belső felépítéséről információt kapni? A mágneses

Részletesebben

NOAC-kezelés pitvarfibrillációban. Thrombolysis, thrombectomia és kombinációja. Az ischaemiás kórképek szekunder prevenciója. A TIA új, szöveti alapú

NOAC-kezelés pitvarfibrillációban. Thrombolysis, thrombectomia és kombinációja. Az ischaemiás kórképek szekunder prevenciója. A TIA új, szöveti alapú NOAC-kezelés pitvarfibrillációban. Thrombolysis, thrombectomia és kombinációja. Az ischaemiás kórképek szekunder prevenciója. A TIA új, szöveti alapú meghatározása. (Megj.: a felsorolt esetekben meghatározó

Részletesebben

A vasút életéhez. Örvény-áramú sínpálya vizsgáló a Shinkawa-tól. Certified by ISO9001 SHINKAWA

A vasút életéhez. Örvény-áramú sínpálya vizsgáló a Shinkawa-tól. Certified by ISO9001 SHINKAWA SHINKAWA Certified by ISO9001 Örvény-áramú sínpálya vizsgáló a Shinkawa-tól Technikai Jelentés A vasút életéhez A Shinkawa örvény-áramú sínpálya vizsgáló rendszer, gyors állapotmeghatározásra képes, még

Részletesebben

Mi van a Lajtner Machine hátterében?

Mi van a Lajtner Machine hátterében? 1 Mi van a Lajtner Machine hátterében? Ma egyeduralkodó álláspont, hogy a gondolat nem más, mint az agy elektromos (elektromágneses) jele. Ezek az elektromágneses jelek képesek elhagyni az agyat, kilépnek

Részletesebben

Elektronika Oszcillátorok

Elektronika Oszcillátorok 8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja

Részletesebben

Az egyedi neuronoktól az EEG hullámokig Somogyvári Zoltán

Az egyedi neuronoktól az EEG hullámokig Somogyvári Zoltán Az egyedi neuronoktól az EEG hullámokig Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az állati elektromosság felfedezése 1792 Galvani, De Viribus - Electricitatis in Motu

Részletesebben

Fizikai hangtan, fiziológiai hangtan és építészeti hangtan

Fizikai hangtan, fiziológiai hangtan és építészeti hangtan Fizikai hangtan, fiziológiai hangtan és építészeti hangtan Témakörök: A hang terjedési sebessége levegőben Weber Fechner féle pszicho-fizikai törvény Hangintenzitás szint Hangosságszint Álló hullámok és

Részletesebben