2. Mérés. Áramkör építési gyakorlat II. Egyenirányítók, rezgéskeltők I Összeállította: Mészáros András

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2. Mérés. Áramkör építési gyakorlat II. Egyenirányítók, rezgéskeltők I. 2015.02.25. Összeállította: Mészáros András"

Átírás

1 2. Mérés Áramkör építési gyakorlat II. Egyenirányítók, rezgéskeltők I Összeállította: Mészáros András Méréstechnikában napjainkban elengedhetetlen egyrészt a nagy pontosság, másrészt hogy a mérőműszer minél kisebb mértékben legyen ráhatással a vizsgálandó áramkörre, harmadrészt pedig minél kisebb villamos és nem villamos mennyiségek nagy pontosságú mérésére is egyaránt legyen lehetőség. A mérésre kerülő precíziós egyenirányító kapcsolások: Precíziós félhullámú egyenirányító, Precíziós teljes hullámú egyenirányító. Az útmutató (valamint a III. útmutató, de mindent a maga idejében) az egyenirányítókon túl kitér még olyan áramkörök vizsgálatára, melyek néhány alkatrész felhasználásával tetszőleges amplitúdójú és frekvenciájú váltakozó áramú jelek (túlnyomórészt négyszögjelek) előállítására kiválóan alkalmasak. Ilyen, a mérés során megismerendő áramkörök: elaxációs oszcillátor, Pulzusszélesség modulátor (PWM), Háromszög-, négyszögjel generátor. 2.0 mérés: Az első mérési útmutatóban szereplő módon ismét ellenőrizzük le a méréshez rendelkezése bocsájtott műveleti erősítő működőképességét! Emlékeztetőül: a mérés során használt műveleti erősítő DIP8-as tokjában mindkét erősítőt hajtsuk meg nullkomparátoros üzemmódban. A mérőáramkörök esetleges gerjedése elkerülése végett illesszünk 470nF-os szűrőkondenzátorokat a +U t -GND és U t -GND táppontok közé!

2 2.1 mérés: Precíziós egyenirányítók félhullámú egyenirányító A jelen precíziós egyenirányító esetében, ha a bemeneti feszültség nagyobb nullánál, akkor D 1 dióda zárva van és D 2 vezet, ezért a kimeneti feszültség nulla lesz; mivel 2 egyik lába a virtuális földpontra csatlakozik (U - ) és nem folyik rajta keresztül áram. Ha a bemenet kisebb nullánál, úgy D 1 dióda nyit és D 2 zár és a kimeneti feszültség látszólagos értéke a bemeneti feszültséggel, illetve annak 2 / 1 szeresével fog változni. Ez a képlet azonban csak akkor teljesül, ha 2 ellenállás értéke mellett D 1 dinamikus ellenállása elhanyagolhatóan kicsi. A műveleti erősítő bemeneti- és a kimeneti feszültség viszonyait az 1. ábra szemlélteti. 1. ábra: Félhullámú egyenirányító átviteli karakterisztikája Az áramkör nagy előnye az egyszerű egydiódás precíziós félhullámú egyenirányítóval szemben, hogy az opamp kimenete egyik félperiódusban sem szaturál hála a D 2 dióda általi visszacsatolásnak-, így nagyobb frekvenciájú jelek is mérhetővé válnak. 2. ábra: Precíziós félhullámú egyenirányító A precíziós egyenirányító tehát nagyon kicsi amplitúdójú jelek egyenirányítására alkalmas; ugyanakkor számba kell venni a frekvenciafüggését is, mely problémakör két részből tevődik össze: 1. Alacsony frekvenciákon a kimeneti jelalak a vártnak ( ideálisnak ) megfelel, azonban a frekvencia növelésével a nullátmenetek mentén (különösen a lefutó élek esetén) torzulás, túlfutás jelensége fog feltűnni, egyre növekvő mértékben. Ennek oka az áramkörben szereplő diódák kapcsolási sebessége, ami normál szilíciumdiódák esetében eléggé alacsony. Ezen problémát a gyakorlatban nagy kapcsolási sebességű (ns) Schottky-diódák beiktatásával lehet kiküszöbölni; ezek azonban nagyságrenddel drágábbak is.

3 2. Schottky-diódák alkalmazásával tehát lehetőség nyílik megemelni a működési frekvenciatartományt. A frekvencia további növekedése azonban egy, a korábbihoz képest eltérő torzulást fog eredményezni a kimeneti jelben; a szinusz félhullámainak fel- és lefutó élei 0V közelében kerekedni, lankásodni kezdenek. Ezen jelenség magyarázatához tudni kell, hogy a szinuszjel a nullátmeneteinél a legmeredekebb, ami a függvény deriválásával igazolható: U d ( t) = A sin( ωt) ( U ( t) ) dt = Aω cos ( ωt) Ha t=0 (nullátmenet), akkor megkapjuk, hogy a függvény a legmeredekebb pontjainál Aω [V/µs] meredekségű, mivel ilyenkor cos(ωt)=1. A műveleti erősítők maximális felfutási meredekségét (S Slew ate) a kimenetükön definiálják (katalógus adat); ez egyúttal azt is jelenti, hogy nem a vizsgálni kívánt jel maximális meredekségét kell az előbbi összefüggéssel meghatározni. Ezáltal a műveleti erősítő S-je oly módon számít, hogy a bemeneti jel maximális felfutási meredeksége még tovább szorzódik az 1 és 2 ellenállások által beállított erősítéssel, és az így kapott jel jelentik meg a kimeneten. Amennyiben ilyen torzítási jelenség lépne fel, úgy nagyobb S-ű műveleti erősítőt kell alkalmazni. Méréshez szükséges adatok: IC: C4558 (U t = ±10V), vagy IC: NE5532 (6. mérési pontban) D 1 és D 2 1N4007 normál Si diódák, vagy BAT54 Schottky-k (5. és 6. mérési pontban) 1 =1kΩ 2 =10kΩ * A kapcsolás jelalakjai lehetőleg mm-papíron kerüljenek rögzítésre! * 1. feladat estében természetesen csak azon jelalakok kerüljenek rögzítésre, melyek hullámformájában számottevő eltérés van a többihez képest (nincs szükség hasonló/egyforma időfüggvények tucatjaira). * Az NE5532 S értéke 9V/µs és a lábkiosztása az C4558-éval ekvivalens. Mérési feladatok: 1. Vizsgáljuk meg a kapcsolás kimeneti jelalakját több frekvencia (50Hz, 100Hz, 500Hz, 1kHz, 10kHz, 20kHz és 50kHz mindenképp) és amplitúdó mellett. ögzítsük a be- és kimeneti jelalakokat fázishelyesen! 2. Mérjük meg U bemin értékét (ha lehet)! 3. Mérjük meg az erősítést, igazoljuk számítással (nem-invertáló kapcsolás), majd rajzoljuk fel a kapcsolás transzfer (U be -U ki ) karakterisztikáját! 4. Vegyük fel a kapcsolás transzfer karakterisztikát XY módban is! 5. Cseréljük ki D 1 és D 2 diódákat Schottkydiódákra, majd ismételjük meg az 1. pontot! 6. Cseréljük ki az IC-t NE5532 típusúra, majd ismételjük meg az 1. pontot!

4 2.2 mérés: Precíziós egyenirányítók teljes hullámú egyenirányító Teljes hullámú jelek egyenirányítására szolgál a 3. ábrán bemutatásra kerülő kapcsolás, ahol egy egyutas egyenirányító kimenetére egy súlyozott összegzőt kötünk, ezáltal a kimeneti feszültség lüktető egyenfeszültség lesz. Az ellenállások értékéből kifolyólag itt is adott a lehetőség a bementi feszültség erősítésére; a mérési elrendezés értékeit követve azonban U ki2p =U bep kell, hogy legyen, ami egyúttal azt is jelenti, hogy amennyiben a kimeneti lüktető egyenfeszültséget DC voltmérőre vezetjük, úgy U ki2dc =U be-eff. Amennyiben a kapcsolás kimenetére integráló tagot (pl. C) teszünk, úgy az aluláteresztő szűrő utáni kimeneti, immáron lüktetésmentes egyenfeszültség értéke U ki =U bep lesz (megfelelő integrálási idő megválasztása mellett). 3. ábra: Teljes hullámú precíziós egyenirányító Méréshez szükséges adatok: IC: C4558 (U t = ±10V) D 1 és D 2 1N4007 normál Si diódák 1 = 2 = 3 =10kΩ 4 = 5 =20kΩ *A kapcsolás jelalakjai lehetőleg mm-papíron kerüljenek rögzítésre! Mérési feladatok: 1. Vizsgáljuk meg a kapcsolás kimeneti jelalakjait több (50Hz, 1kHz, 10kHz és 20kHz mindenképp) és amplitúdó mellett. ögzítsük a be- és kimeneti jelalakokat fázishelyesen! Mérjük meg U bemin értékét! 2. Méréssel igazoljuk, hogy U ki2dc =U be-eff!

5 2.3 mérés: elaxációs oszcillátor Műveleti erősítők gyakori felhasználási területe a harmonikus jelek előállítása, oszcillátorok, rezgéskeltők, függvénygenerátorok készítése. Az egyik legegyszerűbb, négyszögjel és fűrészjel előállítására alkalmas áramkör a 4. ábrán látható relaxációs oszcillátor. A műverősítő itt hiszterézises komparátorként üzemel, melynek billenési szintjeit 2 és 3 ellenállások osztásaránya állítja be. Amikor a kimenet logikai 1 -be (azaz +U t -be) billen, akkor tölteni kezdi a C kondenzátort 1 ellenálláson keresztül, annak időállandójának megfelelően. Amikor C kondenzátoron elég nagy a feszültség ahhoz, hogy a hiszterézises komparátor billenési feltétele teljesüljön, akkor a kimenet logikai 0 -ba (-U t -be) billen át, majd kisütni kezdi a kondenzátort szintén 1 ellenálláson keresztül addig, amíg C feszültsége el nem éri a hiszterézis másik billenési szintjét; ez a jelenség ismétlődik. Emiatt U ki1 értéke közel ±U t szélsőértékű négyszögjel, míg U ki2 a kondenzátor jelalakja, azaz fűrészjel lesz. 4. ábra: elaxációs oszcillátor műveleti erősítővel A relaxációs oszcillátor működésének vázlatos leírása: 1. Legyen az invertáló bemenet potenciálja U -, a nem invertáló bemeneté pedig U Legyen a műveleti erősítő bemeneteinek árama zérus (I + =I - =0). 3. Mivel a műveleti erősítő U+ bemenetére egy ellenállásosztón keresztül visszacsatoljuk a kimeneti feszültség éppen aktuális értékét, így: U + = ± U ki

6 4. U - feszültség megegyezik U ki2 -vel, ami egyúttal a C kondenzátor feszültsége, így: U = U ki = U C 2 5. Felírható a kondenzátor árama: ± U ki 1 U = 6. Átrendezve az előző egyenletet: 1 du C dt du U ± Uki + = 1 dt C C Látható, hogy a felírt egyenlet megoldásához további differenciálegyenletek szükségesek, melyek mellőzése a közjavat szolgálja (lévén szó mérési útmutatóról, nem pedig elméleti jegyzetről). A legfontosabb azonban a relaxációs oszcillátor rezgési periódusideje és frekvenciája: T = C ln 3 3 f = C ln 3 3 A kapcsolás bizonyos esetekben sajnálatos hátránya azonban az, hogy Uki 2 pont, azaz a kondenzátoron megjelenő fűrészfeszültség csak nagy bemeneti impedanciájú fokozattal terhelhető, különben erős és nem kívánatos hatás gyakorolható a működési frekvenciára. Méréshez szükséges adatok: IC: C4558 (U t = ±10V) 1 = 2 = 3 =10kΩ C=100nF *A kapcsolás jelalakjai lehetőleg mm-papíron kerüljenek rögzítésre! Mérési feladatok: 1. Mérjük meg az oszcillátor frekvenciáját, majd számítással igazoljuk annak helyességét! 2. Ábrázoljuk a kimeneti jelalakokat fázishelyesen! Ne szedjük szét a kapcsolást!

7 2.4 mérés: Pulzusszélesség-modulátor A gyakorlatban számtalanszor szükség van szabályozási körökben, vagy vezérlési láncokban olyan négyszögjelre, aminek a kitöltési tényezője, más néven az impulzusszélessége információt hordoz magában, vagy vezérlési célokat valósít meg. Mind híradástechnikában, mind pedig vezérlés- és szabályozástechnikában használatos az úgynevezett pulzusszélesség-moduláció (angolul pulse-width modulation, azaz PWM), mely rendkívül egyszerűen megvalósítható, amennyiben az előző kapcsolást megtoldjuk egy komparátorral. Az 5. ábrán látható komparátornak ideális esetben nincs hiszterézise (vagyis a műveleti erősítő S-je kellően nagy), azaz egy billenési szintje van, amit a P 1 potenciométer állít be. Amennyiben a bemenetére kapcsoljuk a 2.3 feladat során megépített áramkör U ki2 kimenetét, akkor a komparátor kimenetén a potenciométerrel beállított feszültséggel arányos kitöltési tényezőjű (d, duty cycle) PWM jel jelenik meg (szemléltetés: 6. ábra). Az arányosság linearitása illetve mértéke a bemeneti fűrészfeszültség jelalakjától függ (lineáris vagy nem lineáris fel-, lefutó élek ). Megjegyzés: A mérés során használt műveleti erősítő felfutási meredeksége véges (C4558: S=1.1V/µs), ezáltal a hiszterézis-jelenség valamilyen mértékben megfigyelhető lesz. Nagyon jó példa a felhasználására a DC motorok fordulatszám szabályozása, ahol a motor tápvonalával sorba elhelyezett kapcsoló MOSFET-et vezéreljük PWM-el, minek következtében a motor fordulatszáma arányos lesz a kitöltési tényezővel (ilyenkor a motor mechanikai tehetetlensége fogja integrálni a jelet, így olyan, mintha változtatható értékű DC jelet kapott volna). 5. ábra: PWM generátor A mérés során használt műveleti erősítő a bemenetei között található gyári diódás védelem miatt ±0,6V-ot képes körülbelül fogadni. Ahhoz, hogy a modulátor megfelelően működhessen, előosztókat kell alkalmazni. 6 és 7 feszültségosztó a relaxációs oszcillátor fűrészfeszültségű kimenetét csökkenti nagyjából az egy-tizenegyedére, míg 4 -P- 5 feszültségosztó kb. ±0,7V egyenfeszültség beállítását teszi lehetővé a referencia bemeneten. A valóságban természetesen U ref -et túlnyomórészt valamilyen egyéb áramkör kimeneti jele szolgáltatja (pl. fordulatszám távadó, mikrokontroller D/A konverterének integrált jele stb.).

8 6. ábra: A pulzusszélesség-moduláció jellemző jelalakjai A 6. ábra szemlélteti egy tipikus PWM áramkör működését a gyakorlatban. A felső ábrán látható háromszögjel tekinthető a bemeneti feszültségnek, a szinusz jel pedig a szabályozó feszültségnek, azaz U ref -nek. Látható, hogy a kimeneti jel akkor veszi fel a logikai 1 állapotot, amennyiben a referenciafeszültségnél nagyobb amplitúdójú a fűrészfeszültség. Ez a jelenség igény szerint megfordítható (invertálható) úgy, hogy a műveleti erősítő invertáló és nem invertáló bemenetét felcseréljük. Méréshez szükséges adatok: IC: C4558 (U t = ±10V) P=10 kω =1kΩ Piros LED *A kapcsolás jelalakjai lehetőleg mm-papíron kerüljenek rögzítésre! Mérési feladatok: 1. Vizsgáljuk meg a modulátor kimeneti jelalakját több fix értékű U ref esetén úgy, hogy U be és U ki jelalakjait rögzítjük fázishelyesen! 2. Vegyük fel a modulátor U ref -d karakterisztikáját! 3. Tegyünk LED-et a kimenetre előtétellenállással és győződjünk meg a PWM teljesítményszabályozó hatásáról!

9 2.5 mérés: Háromszög- négyszögjel generátor A 2.3-ban ismertetett kapcsolás hátránya, hogy a fűrészjel linearitása rossz és terhelni sem szabad, hiszen az megváltoztatja az 1 C tag rezonanciafrekvenciáját, vagy le is állítja. A 7. ábrán látható kapcsolásban a hiszterézises komparátor és az integrátor különszedésre került, ezáltal (mivel aktív integráló tag van a körben) lineárisabb háromszögjelet kapunk, ami ráadásul jobban is terhelhető. 7. ábra: Háromszög- négyszögjel generátor A működési frekvenciát az alábbi képlet írja le: T = 4 1C 2 3 Méréshez szükséges adatok: IC: NE5532 (U t = ±10V) 2 =1kΩ 1 = 3 =10kΩ C=100nF P=10 kω *A kapcsolás jelalakjai lehetőleg mm-papíron kerüljenek rögzítésre! Mérési feladatok: 1. Mérjük meg az oszcillátor frekvenciáját, majd számítással igazoljuk annak helyességét! 2. Ábrázoljuk a kimeneti jelalakokat fázishelyesen! et cseréljük ki potenciométerre, majd vizsgáljuk meg a működés határait!

10 Ellenőrző kérdések: 1. Ismertesse a precíziós egyenirányítók általános rendeltetését, illetve a félhullámú egyenirányító működését! 2. Mik okozzák a precíziós egyenirányítók frekvenciafüggését? 3. Hogyan lehet növelni a precíziós egyenirányítók működési frekvenciáját? 4. Ismertesse a teljes hullámú precíziós egyenirányító működését! 5. Magyarázza röviden a relaxációs oszcillátor működését (kapcsolási rajzzal)! 6. Mi a PWM? Mutasson be egy lehetséges előállítási módot! 7. Mondjon minél több példát PWM alkalmazási területekre! 8. Mutassa be a háromszög-négyszögjel generátor működését, előnyét a relaxációs oszcillátorral szemben!

2. Mérés. Áramkör építési gyakorlat II. Egyenirányítók, rezgéskeltők I. 2014.03.01.

2. Mérés. Áramkör építési gyakorlat II. Egyenirányítók, rezgéskeltők I. 2014.03.01. 2. Mérés Áramkör építési gyakorlat II. Egyenirányítók, rezgéskeltők I. 2014.03.01. Méréstechnikában napjainkban elengedhetetlen egyrészt a nagy pontosság, másrészt hogy a mérőműszer minél kisebb mértékben

Részletesebben

Egységes jelátalakítók

Egységes jelátalakítók 6. Laboratóriumi gyakorlat Egységes jelátalakítók 1. A gyakorlat célja Egységes feszültség és egységes áram jelformáló áramkörök tanulmányozása, átviteli karakterisztikák felvétele, terhelésfüggőségük

Részletesebben

TRANZISZTOROS KAPCSOLÁSOK KÉZI SZÁMÍTÁSA

TRANZISZTOROS KAPCSOLÁSOK KÉZI SZÁMÍTÁSA TRNZSZTOROS KPSOLÁSOK KÉZ SZÁMÍTÁS 1. gyenáramú számítás kézi számításokhoz az ábrán látható egyszerű közelítést használjuk: = Normál aktív tartományban a tranzisztort bázis-emitter diódáját az feszültségforrással

Részletesebben

A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban.

A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. E II. 6. mérés Műveleti erősítők alkalmazása A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. A mérésre való felkészülés

Részletesebben

Mintavételező és tartó áramkörök

Mintavételező és tartó áramkörök 8. Laboratóriumi gyakorlat Mintavételező és tartó áramkörök 1. A dolgozat célja A mintavételező és tartó (Sample and Hold S/H) áramkörök működésének vizsgálata, a tároló kondenzátor értékének és minőségének

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

Mérési útmutató Periodikus jelek vizsgálata, egyfázisú egyenirányító kapcsolások Az Elektrotechnika tárgy 5. sz. laboratóriumi gyakorlatához

Mérési útmutató Periodikus jelek vizsgálata, egyfázisú egyenirányító kapcsolások Az Elektrotechnika tárgy 5. sz. laboratóriumi gyakorlatához BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Mérési útmutató Periodikus jelek vizsgálata, egyfázisú egyenirányító kapcsolások Az Elektrotechnika

Részletesebben

3. Térvezérlésű tranzisztorok

3. Térvezérlésű tranzisztorok 1 3. Térvezérlésű tranzisztorok A térvezérlésű tranzisztorok (Field Effect Transistor = FET) működési elve alapjaiban eltér a bipoláris tranzisztoroktól. Az áramvezetés mértéke statikus feszültséggel befolyásolható.

Részletesebben

Irányítástechnika 1. 5. Elıadás. Félvezetıs logikai áramkörök. Irodalom

Irányítástechnika 1. 5. Elıadás. Félvezetıs logikai áramkörök. Irodalom Irányítástechnika 1 5. Elıadás Félvezetıs logikai áramkörök Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Helmich József: Irányítástechnika I, 2005 Félvezetıs logikai elemek Logikai szintek

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIM Elektronikai alapismeretek

Részletesebben

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁYI EGYETEM VILLAMOSMÉRÖKI ÉS IFORMATIKAI KAR VILLAMOS EERGETIKA TASZÉK Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók vizsgálata

Részletesebben

Egyszerű áramkör megépítése és bemérése

Egyszerű áramkör megépítése és bemérése 1. mérés Egyszerű áramkör megépítése és bemérése Bevezetés A szokásos mérnöki megközelítések az áramkörtervezésben azon alapulnak, hogy az elméleti ismeretek alapján elsőként az áramkör egy modelljét építik

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 011. május 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 011. május 13. 8:00 Az írásbeli vizsga időtartama: 0 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

MŰVELETI ERŐSÍTŐK MÉRÉSE

MŰVELETI ERŐSÍTŐK MÉRÉSE M I SKOLCI EGY ETEM GÉPÉSZMÉRNÖKI ÉS INFORMTIKI KR ELEKTROTECHNIKI- ELEKTRONIKI TNSZÉK DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE MÉRÉSI ÚTMUTTÓ 2012. MŰVELETI ERŐSÍTŐS KPCSOLÁSOK MÉRÉSE mérések célja: megismerni

Részletesebben

Vezérlés és irányítástechnológia (Mikroprocesszoros irányítás)

Vezérlés és irányítástechnológia (Mikroprocesszoros irányítás) Vezérlés és irányítástechnológia (Mikroprocesszoros irányítás) 2.7. DC motor bekapcsolása 2.08. DC motor forgásirány változtatása (jelfogós kapcsolás) 2.09. DC motor forgásirány változtatás (integrált

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 5 ÉRETTSÉGI VIZSG 05. október. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ EMBERI ERŐFORRÁSOK MINISZTÉRIM Egyszerű, rövid

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 080 ÉETTSÉGI VIZSG 009. május. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTÁLIS MINISZTÉIM Egyszerű, rövid feladatok

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Elektronika 1. 9. Előadás. Teljesítmény-erősítők

Elektronika 1. 9. Előadás. Teljesítmény-erősítők Elektronika 1 9. Előadás Teljesítmény-erősítők Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki Könyvkiadó, 1999 - Borbély

Részletesebben

Egyszerű áramkörök vizsgálata

Egyszerű áramkörök vizsgálata A kísérlet célkitűzései: Egyszerű áramkörök összeállításának gyakorlása, a mérőműszerek helyes használatának elsajátítása. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek)

Részletesebben

Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy

Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy Név Neptun-kód Hallgató aláírása 0-15 pont: elégtelen (1) 16-21 pont: elégséges (2) 22-27 pont: közepes (3) 28-33 pont: jó (4) 34-40 pont: jeles (5) Érzékelők jellemzése Hőmérsékletérzékelés Erő- és nyomásmérés

Részletesebben

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:

Részletesebben

Az ideális feszültségerősítő ELEKTRONIKA 2

Az ideális feszültségerősítő ELEKTRONIKA 2 Az ideális feszültségerősítő ELEKTONIKA Erősítők: Erősítőknek nevezzük azokat az áramköröket amelyek: Nagyobb teljesítményt képesek a kimeneti áramkörben szolgáltatni mind amennyit a bemeneti jelforrástól

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. május 23. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. május 23. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

tetszőleges időpillanatban értelmezhető végtelen sok időpont értéke egy véges tartományban bármilyen értéket felvehet végtelen sok érték

tetszőleges időpillanatban értelmezhető végtelen sok időpont értéke egy véges tartományban bármilyen értéket felvehet végtelen sok érték Elektronika 2 tetszőleges időpillanatban értelmezhető végtelen sok időpont értéke egy véges tartományban bármilyen értéket felvehet végtelen sok érték Diszkrét időpillanatokban értelmezhető (időszakaszos)

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2006. október 2. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. október 2. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép és készülékszerelő

Részletesebben

Klórérzékelı vezérlı elektronika

Klórérzékelı vezérlı elektronika Klórérzékelı vezérlı elektronika Leírás: A vezérlı elektronika fı feladata a mérés során alkalmazott klórgáz-érzékelı szonda mőködıképességének megırzése a kémiailag igen aktív gáz érzékelésekor, valamint

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria 005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 006. május 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 006. május 18. 1:00 Az írásbeli vizsga időtartama: 0 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. május 1. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 1. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Felhasználás. Készülék jellemzők. Kalibra59

Felhasználás. Készülék jellemzők. Kalibra59 RISH Multi 20 Digitális multiméter 5 ¾ digites kijelzés Felhasználás RISH Multi 20 5 ¾ digites multiméter felbontása és alacsony mérési bizonytalansága miatt kiválóan alkalmas mind oktatási, folyamatmérési,

Részletesebben

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának

Részletesebben

[MECHANIKA- HAJLÍTÁS]

[MECHANIKA- HAJLÍTÁS] 2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás

Részletesebben

5. Aszimmetrikus és szimmetrikus erősítők

5. Aszimmetrikus és szimmetrikus erősítők Szimmetriks erősítők 5. szimmetriks és szimmetriks erősítők Lineáris feszültséerősítők két csoportba oszthatók az erősítendő frekvencia tartomány szempontjából: - Váltakozó feszültséű erősítők, amelyek

Részletesebben

2. Egymástól 130 cm távolságban rögzítjük az 5 µ C és 10 µ C nagyságú töltéseket. Hol lesz a térerısség nulla? [0,54 m]

2. Egymástól 130 cm távolságban rögzítjük az 5 µ C és 10 µ C nagyságú töltéseket. Hol lesz a térerısség nulla? [0,54 m] 1. Elektrosztatika 1. Egymástól 30 m távolságban rögzítjük az 5 µ C és 25 µ C nagyságú töltéseket. Hová helyezzük a 12 µ C nagyságú töltést, hogy egyensúlyban legyen? [9,27 m] 2. Egymástól 130 cm távolságban

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A

Részletesebben

Elektronika I. laboratórium mérési útmutató

Elektronika I. laboratórium mérési útmutató Elektronika I. laboratórium mérési útmutató Összeállította: Mészáros András, Horváth Márk 2015.08.26. A laboratóriumi foglalkozásokkal kapcsolatos általános tudnivalók: E.1 A foglalkozások megkezdésének

Részletesebben

Párhuzamos programozás

Párhuzamos programozás Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák

Részletesebben

Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)

Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet) Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű

Részletesebben

Laboratóriumi mérések

Laboratóriumi mérések Laboratóriumi mérések Bevezető Az öt mérési alkalomból az elsőn megismerjük a szimulációs program kezelését és elvégezzük a diódás áramkörök szimulációját. A többi alkalmon laboratóriumi méréseket végzünk.

Részletesebben

A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével.

A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. Eszközszükséglet: kaloriméter fűtőszállal digitális mérleg tanulói tápegység vezetékek

Részletesebben

rezegnek, mások pedig nyugalomban maradnak. Ezek a csomópontok. Ha mindkét végén L = nλ n

rezegnek, mások pedig nyugalomban maradnak. Ezek a csomópontok. Ha mindkét végén L = nλ n Állóhullám kötélen 1. Elméleti háttér A hullámok alapvető tulajdonságai egyszerűen tanulmányozhatók kötélen kialakult állóhullámok segítségével. A hullámoknak ez a típusa gyakran megfigyelhető mindennapi

Részletesebben

Bevezetés a lágy számítás módszereibe

Bevezetés a lágy számítás módszereibe BLSZM-07 p. 1/10 Bevezetés a lágy számítás módszereibe Nem fuzzy halmaz kimenetű fuzzy irányítási rendszerek Egy víztisztító berendezés szabályozását megvalósító modell Viselkedésijósló tervezési példa

Részletesebben

Transzformátor vizsgálata

Transzformátor vizsgálata A kísérlet, mérés célkitűzései: A transzformátor működési elvének megértése, gyakorlati alkalmazás lehetőségeinek megismerése kísérletek útján. Eszközszükséglet: Tanulói transzformátor készlet digitális

Részletesebben

DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István

DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István IGITÁLI TECHNIKA 7 Előadó: r. Oniga István zekvenciális (sorrendi) hálózatok zekvenciális hálózatok fogalma Tárolók tárolók JK tárolók T és típusú tárolók zámlálók zinkron számlálók Aszinkron számlálók

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 201. május 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 201. május 20. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Kombinációs LABOR feladatok Laborfeladat: egyszerű logikai kapuk vizsgálata Logikai műveletek Tervezz egy egyszerű logikai kapukat

Részletesebben

Autóipari beágyazott rendszerek. Fedélzeti elektromos rendszer

Autóipari beágyazott rendszerek. Fedélzeti elektromos rendszer Autóipari beágyazott rendszerek Fedélzeti elektromos rendszer 1 Személygépjármű fedélzeti elektromos rendszerek 12V (néha 24V) névleges feszültség Energia előállítás Generátor Energia tárolás Akkumulátor

Részletesebben

Digitális technika (VIMIAA01) Laboratórium 1

Digitális technika (VIMIAA01) Laboratórium 1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 1 Fehér Béla Raikovich Tamás,

Részletesebben

A döntő feladatai. valós számok!

A döntő feladatai. valós számok! OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és

Részletesebben

Budapesti Muszaki és Gazdaságtudományi Egyetem, Közlekedésmérnöki Kar, Közlekedésautomatikai Tanszék Elektrotechnika 3. félév

Budapesti Muszaki és Gazdaságtudományi Egyetem, Közlekedésmérnöki Kar, Közlekedésautomatikai Tanszék Elektrotechnika 3. félév Budapesti Muszaki és Gazdaságtudományi Egyetem, Közlekedésmérnöki Kar, Közlekedésautomatikai Tanszék Elektrotechnika 3. félév 1. Villamos erotér összefüggései általánosan, pontszeru töltésekre, síkkondenzátorra.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,

Részletesebben

Útszelepek Elektromos működtetés Sorozat SV09. Katalógus füzetek

Útszelepek Elektromos működtetés Sorozat SV09. Katalógus füzetek Útszelepek Elektromos működtetés Sorozat SV09 Katalógus füzetek Útszelepek Elektromos működtetés Sorozat SV09 elektromos visszaállító egységgel Qn = 3000 l/min Menetes csatlakozással Sűrített levegő csatlakozás

Részletesebben

Szabályozatlan tápegységek

Szabályozatlan tápegységek Tartalom Áttekintés.2 szabályozatlan tápegységek.4.1 Áttekintés A kompakt tápegységek fontos láncszemek a vezérlések energiaellátásában. Mindenütt használják őket, ahol a folyamat vagy a vezérlés feszültsége

Részletesebben

Jelek tanulmányozása

Jelek tanulmányozása Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás

Részletesebben

Elektrotechnika-tételek 3. félév (Elektrotechnika I.) 1. Villamos er tér összefüggései általánosan, pontszer töltésekre, síkkondenzátorra.

Elektrotechnika-tételek 3. félév (Elektrotechnika I.) 1. Villamos er tér összefüggései általánosan, pontszer töltésekre, síkkondenzátorra. 3. félév (Elektrotechnika I.) 1. Villamos er tér összefüggései általánosan, pontszer töltésekre, síkkondenzátorra. Villám, villámvédelem. 2. Egyenáramú körök törvényei, feszültség és áramgenerátorok, szuperpozíció.

Részletesebben

5 Egyéb alkalmazások. 5.1 Akkumulátorok töltése és kivizsgálása. 5.1.1 Akkumulátor típusok

5 Egyéb alkalmazások. 5.1 Akkumulátorok töltése és kivizsgálása. 5.1.1 Akkumulátor típusok 5 Egyéb alkalmazások A teljesítményelektronikai berendezések két fõ csoportját a tápegységek és a motorhajtások alkotják. Ezekkel azonban nem merülnek ki az alkalmazási lehetõségek. A továbbiakban a fennmaradt

Részletesebben

Típus Egyes Dupla Egyes+LED jelzőfény

Típus Egyes Dupla Egyes+LED jelzőfény ipb nyomógombok Rendelési számok MSZ EN 669-1 és MSZ EN 947-5-1 b ipb nyomógombokat villamos áramkörök impulzus jellegű vezérlésére lehet használni. ipb nyomógombok Típus Egyes Dupla Egyes+LED jelzőfény

Részletesebben

Áramlás- és zárószelepek Logikai szelep Logikai szelepek (ÉS / VAGY) Katalógus füzetek

Áramlás- és zárószelepek Logikai szelep Logikai szelepek (ÉS / VAGY) Katalógus füzetek Áramlás- és zárószelepek Logikai szelep Katalógus füzetek 2 Áramlás- és zárószelepek Logikai szelep Váltószelep (VAGY) Qn = 80 l/min Alaplapos szelep csőcsatlakozással Sűrített levegő csatlakozás bemenet:

Részletesebben

A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra).

A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra). 3.10. Tápegységek Az elektronikus berendezések (így a rádiók) működtetéséhez egy vagy több stabil tápfeszültség szükséges. A stabil tápfeszültség időben nem változó egyenfeszültség, melynek értéke független

Részletesebben

Kereskedelmi, háztartási és vendéglátóipari gépszerelő 31 521 14 0000 00 00 Kereskedelmi, háztartási és vendéglátóipari gépszerelő

Kereskedelmi, háztartási és vendéglátóipari gépszerelő 31 521 14 0000 00 00 Kereskedelmi, háztartási és vendéglátóipari gépszerelő A 10/007 (. 7.) SzMM rendelettel módosított 1/006 (. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Radon, Toron és Aeroszol koncentráció viszonyok a Tapolcai Tavas-barlangban

Radon, Toron és Aeroszol koncentráció viszonyok a Tapolcai Tavas-barlangban Radon, Toron és Aeroszol koncentráció viszonyok a Tapolcai Tavas-barlangban Kutatási jelentés Veszprém 29. november 16. Dr. Kávási Norbert ügyvezetı elnök Mérési módszerek, eszközök Légtéri radon és toron

Részletesebben

300 W PROGRAMOZHATÓ ELEKTRONIKUS TERHELÉS

300 W PROGRAMOZHATÓ ELEKTRONIKUS TERHELÉS 300 W PROGRAMOZHATÓ ELEKTRONIKUS TERHELÉS PEL-3031 E FŐBB JELLEMZŐK A PEL-30301E programozható egycsatornás elektronikus terhelés 1V-150 V / 60 A t szolgáltat és terhelhetősége 300 W. Megörökölve a PEL-3000

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 4 előadás Főátlagok összehasonlítása http://uni-obudahu/users/koczyl/gazdasagstatisztikahtm Kóczy Á László KGK-VMI Viszonyszámok (emlékeztető) Jelenség színvonalának vizsgálata

Részletesebben

MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján)

MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján) Miskolci Egyetem Elektrotechnikai- Elektronikai Intézeti Tanszék MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján) A mérések célja: megismerni a leggyakoribb alap- és alkalmazott

Részletesebben

A mérések eredményeit az 1. számú táblázatban tüntettük fel.

A mérések eredményeit az 1. számú táblázatban tüntettük fel. Oktatási Hivatal A Mérések függőleges, vastag falú alumínium csőben eső mágnesekkel 2011/2012. tanévi Fizika Országos Középiskolai Tanulmányi Verseny döntő feladatának M E G O L D Á S A I. kategória. A

Részletesebben

Lécgerenda. 1. ábra. 2. ábra

Lécgerenda. 1. ábra. 2. ábra Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög

Részletesebben

54 523 01 0000 00 00 Elektronikai technikus Elektronikai technikus

54 523 01 0000 00 00 Elektronikai technikus Elektronikai technikus A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 3266L Lakatfogó multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Előlap és kezelőszervek... 2 3. Műszaki jellemzők... 3 4. Mérési jellemzők... 3 5. A mérés menete... 4 6. Karbantartás...

Részletesebben

Készítsen négy oldalas prezentációt egy vállalat bemutatására!

Készítsen négy oldalas prezentációt egy vállalat bemutatására! 1. feladat Készítsen négy oldalas prezentációt egy vállalat bemutatására! 1. A prezentáció háttere világoskék színű legyen, átlósan le árnyékolással. 2. Az első dia bal oldalán, felül a cég neve olvasható:

Részletesebben

HWDEV-02A GSM TERMOSZTÁT

HWDEV-02A GSM TERMOSZTÁT HWDEV-02A GSM TERMOSZTÁT 2010 HASZNÁLATI ÚTMUTATÓ A termosztát egy beépített mobiltelefonnal rendelkezik. Ez fogadja az Ön hívását ha felhívja a termosztát telefonszámát. Érdemes ezt a telefonszámot felírni

Részletesebben

Villamos hálózatok - áramkörök

Villamos hálózatok - áramkörök Villamos hálózatok - áramkörök Az elektromágneses térnek olyan egyszerűsített leírása, amely csak az erőtér néhány jellemző mennyisége közötti kapcsolatára vonatkozik Áram Töltések rendezett mozgása villamos

Részletesebben

Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között

Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között Dr. Nyári Tibor Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között tökéletes színeket visszaadni. A digitális

Részletesebben

EDC gyors üzembe helyezési útmutató

EDC gyors üzembe helyezési útmutató EDC gyors üzembe helyezési útmutató ALAPFUNKCIÓK Az útmutató az EDC szervó meghajtó alapvető funkcióival ismerteti meg a felhasználót, és segítséget nyújt az üzembe helyezés során. Az útmutató az alábbi

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek

Részletesebben

Jelformáló áramkörök vizsgálata Billenő áramkörök vizsgálata (Időkeret: 5óra) Név:

Jelformáló áramkörök vizsgálata Billenő áramkörök vizsgálata (Időkeret: 5óra) Név: Jelformáló áramkörök vizsgálata Billenő áramkörök vizsgálata (Időkeret: 5óra) Név: Előzetes kérdések: Írja az áramköri jelhez a dióda és a tranzisztor lábainak elnevezését! Kell ügyelni a nf kapacitású

Részletesebben

Útmutató a vízumkérő lap kitöltéséhez

Útmutató a vízumkérő lap kitöltéséhez Útmutató a vízumkérő lap kitöltéséhez A vízumkérő lap ( Visa application form of the People s Republic of China, Form V. 2013 ) az egyik legfontosabb dokumentum, amit a kínai vízumra való jelentkezésnél

Részletesebben

FENNTARTHATÓ FEJLŐDÉS

FENNTARTHATÓ FEJLŐDÉS FENNTARTHATÓ FEJLŐDÉS Kump Edina ÖKO-Pack Nonprofit Kft. E-mail: edina@okopack.hu Web: www.okopack.hu Dunaújváros, 2014. november 07. A FENNTARTHATÓ FEJLŐDÉS FOGALMA A fenntartható fejlődés a fejlődés

Részletesebben

Telepítési leírás - 6550AM kitakarásvédett PIR mozgásérzékelő

Telepítési leírás - 6550AM kitakarásvédett PIR mozgásérzékelő Telepítési leírás - 6550AM kitakarásvédett PIR mozgásérzékelő Telepítési útmutató Az érzékelők kialakításuknak köszönhetően kiküszöbölik a téves riasztásokat. Kerülendők viszont az alábbiak (1. ábra):

Részletesebben

HÁLÓZATSEMLEGESSÉG - EGYSÉGES INTERNET SZOLGÁLTATÁS-LEÍRÓ TÁBLÁZAT

HÁLÓZATSEMLEGESSÉG - EGYSÉGES INTERNET SZOLGÁLTATÁS-LEÍRÓ TÁBLÁZAT HÁLÓZATSEMLEGESSÉG - EGYSÉGES INTERNET SZOLGÁLTATÁS-LEÍRÓ TÁBLÁZAT - 2016.04.01 után kötött szerződésekre Díjcsomag neve Go Go+ Go EU Go EU+ Kínált letöltési sebesség - 3G 42 Mbit/s 42 Mbit/s 42 Mbit/s

Részletesebben

Dr. Schuster György. 2014. február 21. Real-time operációs rendszerek RTOS

Dr. Schuster György. 2014. február 21. Real-time operációs rendszerek RTOS Real-time operációs rendszerek RTOS 2014. február 21. Az ütemező (Scheduler) Az operációs rendszer azon része (kódszelete), mely valamilyen konkurens hozzáférés-elosztási problémát próbál implementálni.

Részletesebben

A táblázatkezelő felépítése

A táblázatkezelő felépítése A táblázatkezelés A táblázatkezelő felépítése A táblázatkezelő felépítése Címsor: A munkafüzet címét mutatja, és a program nevét, amivel megnyitottam. Menüszalag: A menüsor segítségével használhatjuk az

Részletesebben

2. Mérés. Áramkör építési gyakorlat II Összeállította: Mészáros András

2. Mérés. Áramkör építési gyakorlat II Összeállította: Mészáros András 2. Mérés Áramkör építési gyakorlat II. 2018.02.06. Összeállította: Mészáros András Méréstechnikában napjainkban elengedhetetlen egyrészt a nagy pontosság, másrészt hogy a mérőműszer minél kisebb mértékben

Részletesebben

Mágneses szuszceptibilitás vizsgálata

Mágneses szuszceptibilitás vizsgálata Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség

Részletesebben

higanytartalom kadmium ólom

higanytartalom kadmium ólom Termék Alkáli elem, 1,5 V oldal 1. az 5-ből 1. Típusmegjelölés: IEC: LR14 JIS: AM-2 ANSI: C 2. Kémiai rendszer: elektrolit-cink-mangándioxid (higany- és kadmiummentes) 3. Méretek: Ø 24.9-26.2mm, magasság:

Részletesebben

MEZŐGAZDASÁGI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

MEZŐGAZDASÁGI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei MEZŐGAZDASÁGI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA Középszint Emelt szint 180 perc 15 perc 240 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható segédeszközök

Részletesebben

Billenőkörök. Mindezeket összefoglalva a bistabil multivibrátor az alábbi igazságtáblázattal jellemezhető: 1 1 1 nem megen

Billenőkörök. Mindezeket összefoglalva a bistabil multivibrátor az alábbi igazságtáblázattal jellemezhető: 1 1 1 nem megen Billenőkörök A billenőkörök, vagy más néven multivibrátorok pozitívan visszacsatolt, kétállapotú áramkörök. Kimeneteik szigorúan két feszültségszint (LOW és HIGH) között változnak. Rendszerint két kimenettel

Részletesebben

Jelalakvizsgálat oszcilloszkóppal

Jelalakvizsgálat oszcilloszkóppal 12. fejezet Jelalakvizsgálat oszcilloszkóppal Fűrészjel és impulzusjel megjelenítése oszcilloszkóppal Az oszcilloszkópok feszültség vagy bármilyen feszültséggé átalakítható mennyiség időbeli változásának

Részletesebben

1. Ismertesse a villamos áramkörök szimulációjára használható szoftverek típusait! Az egyik csoportba az áramkör tervezéshez használható szoftverek

1. Ismertesse a villamos áramkörök szimulációjára használható szoftverek típusait! Az egyik csoportba az áramkör tervezéshez használható szoftverek 1. Ismertesse a villamos áramkörök szimulációjára használható szoftverek típusait! Az egyik csoportba az áramkör tervezéshez használható szoftverek (az angol nyelvű szakirodalomban: Circuit-Oriented Simulators)

Részletesebben

ÚTMUTATÓ A KONTROLL ADATSZOLGÁLTATÁS ELKÉSZÍTÉSÉHEZ (2012-TŐL)

ÚTMUTATÓ A KONTROLL ADATSZOLGÁLTATÁS ELKÉSZÍTÉSÉHEZ (2012-TŐL) ÚTMUTATÓ A KONTROLL ADATSZOLGÁLTATÁS ELKÉSZÍTÉSÉHEZ (2012-TŐL) A 2006-2010. évre vonatkozó, régebbi adatszolgáltatások esetében az adatszolgáltatás menete a mostanitól eltérő, a benyújtáshoz különböző

Részletesebben

Mehet!...És működik! Non-szpot televíziós hirdetési megjelenések hatékonysági vizsgálata. Az r-time és a TNS Hoffmann által végzett kutatás

Mehet!...És működik! Non-szpot televíziós hirdetési megjelenések hatékonysági vizsgálata. Az r-time és a TNS Hoffmann által végzett kutatás Mehet!...És működik! Non-szpot televíziós hirdetési megjelenések hatékonysági vizsgálata Az r-time és a TNS Hoffmann által végzett kutatás 2002-2010: stabil szponzorációs részarány Televíziós reklámbevételek

Részletesebben

Az első lépések. A Start menüből válasszuk ki a Minden program parancsot. A megjelenő listában kattintsunk rá az indítandó program nevére.

Az első lépések. A Start menüből válasszuk ki a Minden program parancsot. A megjelenő listában kattintsunk rá az indítandó program nevére. A számítógép elindítása A számítógépet felépítő eszközöket (hardver elemeket) a számítógépház foglalja magába. A ház különböző méretű, kialakítású lehet. A hátoldalán a beépített elemek csatlakozói, előlapján

Részletesebben

ÍRÁSBELI FELADAT MEGOLDÁSA

ÍRÁSBELI FELADAT MEGOLDÁSA 54 523 04 1000 00 00-2014 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT MEGOLDÁSA Szakképesítés: 54 523 04 1000 00 00 SZVK rendelet száma: Modulok: 6308-11

Részletesebben

ALES60. Infrasorompó DUPLASUGARAS. Telepítési kézikönyv. ISTRUZIONI ALES60 HUN POLITEC s r.l. 1 of 8

ALES60. Infrasorompó DUPLASUGARAS. Telepítési kézikönyv. ISTRUZIONI ALES60 HUN POLITEC s r.l. 1 of 8 ALES60 Infrasorompó DUPLASUGARAS Telepítési kézikönyv ISTRUZIONI ALES60 HUN POLITEC s r.l. 1 of 8 1. FŐBB ÖSSZETEVŐK LISTÁJA Csatlakozók TEST (Teszt) nyomógomb Csatornaválasztó kapcsoló Szabotázskapcsoló

Részletesebben

Elektronika I. Dr. Istók Róbert. IV. előadás

Elektronika I. Dr. Istók Róbert. IV. előadás Elektronika I Dr. Istók Róbert IV. előadás Nagyfrekvenciás frekvenciakompenzáció Közös emitteres kapcsolásoknak a nagyfrekvenciás átviteli tulajdonságait, kapcsolás csekély módosításával javítjuk. Nagyfrekvenciás

Részletesebben