Antibiotikumok. Mik is az antibiotikumok? Szekunder metabolizmus. BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Antibiotikumok. Mik is az antibiotikumok? Szekunder metabolizmus. BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1"

Átírás

1 Antibiotikumok Mik is az antibiotikumok? Mikroorganizmusok által termelt szekunder metabolitok, melyek más mikroorganizmusokat elpusztítanak vagy gátolják fejlődésüket. Másodlagos anyagcseretermékek: Termelésük nem kapcsolódik közvetlenül az energia-termeléshez, a növekedéshez. Csak a tenyésztés késői szakaszában indul meg, általában valamilyen tápanyag limit kialakulásával kínjában termeli. Hasznosságuk csak közvetett, termelésük sokszor látszólag értelmetlen. Lehetnek például: antibiotikumok, pigmentek, nyálkaanyagok, tokanyagok, toxinok, stb. 2 Szekunder metabolizmus Szénforrás szabályozás: katabolit represszió ha bőségesen van hozzáférhető C-forrás, akkor az elsődleges anyagcsere pörög, nincs termékképzés. glükóz limit (adagolás apránként), vagy lassan metabolizálható C-forrás, pl. poliszacharidok (keményítő, dextrin), laktóz, növényi olajok. Nitrogén szabályozás: változó, de a sok N általában a növekedésnek kedvez elsődleges anyagcsere Az ammónium sók gyakran represszálják a termékképzést, inkább szerves N-forrás (szójaliszt, kukoricalekvár) fed batch adagolással alacsony szinten tartani a koncentrációt. 3 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1

2 Szekunder metabolizmus Foszfor szabályzás: befolyásolja mikroba növekedési sebességét, annak mértékét, szénhidrát égetésének sebességét bizonyos koncentráció felett negatívan szabályoz, (hozzájárul a gyors C égetéshez) túl nagy koncentrációja a szintetáz enzimek képződését gátolja alacsony indulási P koncentráció, csak annyi, hogy a szaporodási szakasz végére elfogyjon. Enzim indukció: A kulcsenzimek némelyike indukálható speciális tápanyaggal pl: metionin cephalosporin 4 Az antibiotikumok alkalmazási területei Humán gyógyászat: mikrobiális fertőzések gyógyítására (a hatékony koncentrációban az emberi szervezetet ne károsítsa) Rákellenes antibiotikumok: citosztatikus hatásúak, a kemoterápia eszközei Állatgyógyászat Állattenyésztésben: takarmány-adalékként Biokémiai, mikrobiológiai kutatásokban (szelektív inhibítorok) Növénypatogének ellen - mezőgazdaságban (egyre kevésbé) Élelmiszeriparban konzerválás (egyre kevésbé) 5 Egy kis történelem antibiózis szimbiózis (Viullemin) Salvarsan, szerves arzén származék, vérbaj ellen, (Ehrlich-Hata) Szulfonamidok (p-amino-szulfonsav-amidok), Domagk 1929 penicillin észlelése, Fleming 1944 a penicillin ipari gyártása, szubmerz tenyészetben új antibiotikumok felfedezésének korszaka 1950 félszintetikus származékok 1990 nincsenek új molekulák, a szabadalmak lejártak generikus termékké váltak, verseny a piacon. 6 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 2

3 Antibiotikumok Az elmúlt 80 évben kb ezer antibiotikumot fedeztek fel. A humán gyógyszer piacon ebből ~2-300 molekula van. Ennek ~10 %-át gyártják fermentációs úton, ~80 %-ot ezek kémiai módosításával, félszintetikusan, néhányat szintetikusan. Miért ilyen kevés? - toxicitás - nem elég hatásos, van nála jobb - mellékhatások - rezisztencia 7 Termelő mikroorganizmusok Sugárgombák (Actinomycetes, elsősorban Streptomyces) ~ 65 % Egyéb baktériumok ~ 12 % Fonalas gombák (elsősorban Penicillium, Cephalosporium törzsek) ~ 22 % 8 Az antibiotikumok csoportosítása Csoportosítani lehet» kémiai szerkezet» hatásmechanizmus, támadáspont» hatásspektrum» bioszintézis út» orvosi alkalmazás szerint Mi most: 1. támadáspont 1.1. kémiai szerkezet szerint tárgyaljuk 9 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 3

4 Mikrobák ellenállóképessége Természetes rezisztencia: állandó, örökletes tulajdonság, specieszekre, nagyobb rendszertani egységekre jellemző Szerzett antibiotikum-rezisztencia: természetes érzékenységi spektrum örökletes megváltozása generációk között egy fajon belül is lehet egyedenként különböző Ez is lehet antibiotikum csoportosítási szempont! 10 Mikrobák érzékenysége 11 A szerzett rezisztencia formái 1. A céltárgy (fehérje, receptor) megváltozása 2. A sejtmembrán átjárhatóságának megváltozása (permeabilitási mutáns, nem jut be a molekula) 3. Enzimes inkativálás (bontás, vagy származékképzés) A genetikai változás történhet kromoszóma vagy plazmid szinten. Penicillin típusú rezisztencia: fokozatosan alakul ki, generációról generációra. Sztreptomicin típusú rezisztencia: ugrásszerűen alakul ki, általában egy plazmid megjelenésével. 12 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 4

5 A penicillin enzimes inaktiválása A β-laktamáz enzimek (sokféle van) felnyitják a négytagú gyűrűt. 13 Csoportosítás hatásmechanizmus szerint: Sejtfal szintézist gátlók peptidoglükán szintézist befolyásolják (penicillin, bacitracin, vankomicin) Fehérjeszintézist gátlók tetraciklinek, sztreptomicin, eritromicin Sejtmembránra hatók poliének, ciklopeptidek DNS függő RNS polimerázra hat rifampicin DNS replikációra hatnak - citosztatikumok 14 Csoportosítás hatásmechanizmus szerint: 15 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 5

6 A. SEJTFALSZINTÉZIST GÁTLÓ ANTIBIOTIKUMOK I. β-laktám VÁZAS ANTIBIOTIKUMOK (PENICILLIN CSOPORT) Penicillinek Szerkezet: 6-amino-penicillánsav, 6-APA Cys Val 16 A penicillin tulajdonságai Fizikai: színtelen, vízben jól oldódik, 4 aszimmetria-centrum (= forgatás), nincs UV elnyelése Kémiai: gyenge sav, alkáli sóit forgalmazzák BOMLÉKONY! Savak, lúgok és enzimek hatására többféle reakcióban is gyorsan bomlik. Analitikai reakciók: - jód oldattal titrálható - hidrazin + Fe ionokkal színreakció 1 biológiai egység: 50 ml-nyi standard összetételű tápoldatban éppen meggátolja egy adott Staphylococcus aureus törzs szaporodását. 1 IU = 0,6 μg G-penicillin Na sónak felel meg. 17 G-penicillin/benzil-penicillin Az R oldallánc fenilecetsav Ez a fermentált alapmolekula, ebből gyártják a többit. Savra érzékeny vegyület, a gyomorsav elbontja, ezért szájon át nem szedhető, csak kapszulában. 18 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 6

7 A penicillin story 1929 A. Fleming, kioltási gyűrű, Penicillium notatum Izolálás, tisztítás, szerkezetfelderítés nehezen ment 1940 hadianyaggá válik 1943 klinikai kipróbálás felületi tenyészet, Penicillium chrysogenum ,5 tonna szubmerz tenyészet, mutációs törzsjavítás tonna 1952 Magyarországonis, GYOKI 1980 kb tonna 19 A penicillin bioszintézise Három aminosavból alakul ki egy tripeptid. Többszöri gyűrű-átrendeződések után alakul ki a β-laktám váz. A templát α-amino-adipinsav, a végén lecserélődik egy másik savra, felszabadul és visszakerül a folyamat elejére. 20 A penicillin gyártás fejlesztése Fermentációs úton, a szintézis nem gazdaságos. A technológia fejlesztése két fő irányban mehet: Törzsmunka (biológia): törzsizolálás indukált mutáció szelekció törzsfenntartás Technológia (mérnöki): Felületi/szubmerz Prekurzorok (4-8 x) tápoldatoptimálás anyagcsereszabályozás (cukorlimit, C/N, Fe ion) Levegőztetés, reaktor Szabályozások (ph, t) 21 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 7

8 A gyártás lépései: 1. Törzsfenntartás 2. Inokulum lépcső(k) 3. Főfermentáció 1. Fed batch, rátáplálásos szakaszos, glükóz limit 2. Vágás: kb IU/ml ~ 5 % -os oldat 4. Feldolgozás, kulcslépése: extrakció: savasban extrahálható, de ott gyorsan bomlik» hűtés» rövid kontaktidő 22 Törzsnemesítés Célok: hozamnövelés, fermentációs illetve feldolgozási kritériumok szerinti hatékonyság növelés az eredeti pigment-termelés megszüntetése Eszközök: a génmanipuláció igen bonyolult (sok gén vesz részt a folyamatban), a titernövekedés túlnyomó részét a régi (65 év több ezer lépés) mutációs szelekciós törzsjavítással érték el (~2-3 ppb ~ ppb) 23 Fermentáció Jellegzetes szekunder metabolit fermentáció, két szakasza van: Első szakasz (kb. 40 h): a sejtek elszaporítása, jó tápanyagellátás intenzív levegőztetés, keverés, elsődleges anyagcsere. Tápanyagforrások az első szakaszban: szénforrások: néhány % cukor (glükóz, melasz), ami a szaporítás végére elfogy nitrogén: ebben a szakaszban még lehet NH 4 sók formájában, de jó, ha a végére elfogy foszfor: foszfátként annyit kell bemérni a tápoldatba, hogy éppen elfogyjon a szaporodás végére 24 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 8

9 Fermentáció Második szakasz, termelő fázis: h, többszörös tápanyag limit, kikényszerített másodlagos anyagcsere. Tápanyagellátás a második szakaszban: Szénforrás: limitáció (régen: nehezen bontható vegyületek: laktóz, keményítő, ma glükóz adagolás apránként, az oldott oxigén szint alapján) nitrogén: szerves vegyületek, fehérje formájában: CSL, szójadara, mogyoróliszt, esetleg kazein, halliszt kis koncentráció, apránként adagolva Foszfát: jelenlétében nem megy a másodlagos anyagcsere, ezért elfogyása után nem adagolnak többet Prekurzor: fenil-ecetsav, mérések alapján adagolják, koncentrációját a 2-4 g/l sávban tartják. 25 A penicillin fermentáció lefutása 26 Feldolgozás Extracelluláris termék, csak ~1% található a micéliumban Kulcslépés: EXTRAKCIÓ A penicillin gyenge sav, a disszociált formája jól oldódik vízben, a nem-disszociált viszont szerves oldószerben. Az extrakcióhoz vissza kell szorítani a disszociációt (erősebb savval, pl. kénsav) de: savas közegben bomlik! Megoldás: - hűtés, - rövid kontaktidő (kis méretű, folytonos reaktorban, aztán gyorsan szétválasztani szeparátorral) Észter típusú oldószerek (BuOAc, amilacetát) Reextrakció ~semleges vizes fázissal Kristályosítás K- vagy Na-só formájában Pigmentek eltávolítása aktív szénnel 27 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 9

10 Félszintetikus penicillinek Előállítás: oldallánc cserével 6-APAn keresztül A 6-APA előállítása:- G penicillin enzimes bontásával - direkt fermentációval - kémiai bontás A 6-APA is nagyon bomlékony, tárolás közben polimerizál, és reagál a légköri CO 2 -dal is. Acilezés: - enzimesen - kémiailag Enzimes folyamatok: ld. a penicillin-amidáz/aciláz -nál 28 Félszintetikus penicillinek Szerkezet - tulajdonságok összefüggése: savtűrés: elektronszívó csoportokkal lehet védeni a savamid kötést. penicillináz rezisztencia: sztérikus védőcsoportok hatásspektrum változtatás: -NH 2, -COOH, észter csoportok 29 Félszintetikus penicillinek Fermentált alapvegyületek: 30 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 10

11 Félszintetikus penicillinek 31 Hatásmód csak a szaporodókat pusztítja el (nyugvósejteket nem, szelekció) a falszintézist gátolja (abnormális alakok, protoplasztok) A hatásmechanizmus megértéséhez ismételjük át a bakteriális sejtfal szerkezetét és bioszintézisét. N-acetilmurámsav, AM N-acetilglükózamin, AGA 32 A Gram-pozitív sejtfal szerkezete lizozim AM AGA AM AGA AM AGA AM alaplánc L-Ala D-Glu Gly Gly Gly Gly Gly L-Lys D-Ala D-Ala térhálósodás 33 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 11

12 A Gram-pozitív sejtfal térhálósítása 34 A penicillin a D-Ala-D-Ala láncvég szerkezet-analógja penicillin D-Ala-D-Ala Irreverzibilisen kapcsolódik a transzpeptidázhoz afalszintézis leáll ionkiáramlás 35 A penicillin hatásmechanizmusa 36 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 12

13 A penicillin orvosi tulajdonságai Hatásspektrum: elsősorban Gram + ellen, a modern félszintetikus származékoké szélesebb Rezisztencia: fokozatosan, sok generáció után jelenik meg (penicillin típusú rezisztencia) Bevitel: a savérzékenyek (pl. G) szájon át nem adhatók, a többi bárhogyan Adagolás: pl.: Maripen: IU/tabletta 3x /nap Penicillin érzékenység: régen a szennyezések miatt, ma valódi allergia (haptének) 37 A penicillin orvosi tulajdonságai 38 További β-laktám vázak 39 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 13

14 Brotzu (1948), Cephalosporium acremonium Cefalosporinok 7-amino-cefémsav OMe Cephamicinek:: 7-OMe Oldalláncok: 7-amino-cefalosporánsav R = α-amino-adipinsav, X=CH 2 OAc - Cephalosporin C R = fenil-glicin, X=CH 2 OAc - Cephalexin 4 generációban közel ötven félszintetikus molekula 40 A cefalosporinok Előállítása: C. acremoniummal Cef-C fermentáció, ebből oldallánc cserével félszintetikus származékok V-penicillinből 3 kémiai lépéssel ki lehet tágítani a gyűrűt cefémsavvá, aztán oldallánc csere Tulajdonságai: Stabilitásuk jobb, mint a penicillineké Hatásspektrumuk szélesebb Rezisztensek sok penicillinázra (de vannak más béta-laktamázok, amelyek specifikusan ezt bontják) 41 A cefalosporinok előállítása Bioszintézis: a penicillinéből ágazik el αaaa, Cys, Val Anyagcsere-szabályozás: - katabolit-represszió: nehezen bontható cukrok, illetve szabályozott glükóz adagolás - N- és P-szint: alacsonyan tartani, szabályozni, vagy MgO adagolás MgNH 4 PO 4, rosszul oldódó só - Cys prekurzor: lizálja a sejteket, ezért inkább tioszulfát, erre rezisztens mutánsok - αaaa prekurzor: drága, inkább Lys, vagy kadáverin - amino-donorok: 1,3-diamino propán, dimetil-formamid 42 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 14

15 A cefalosporinok előállítása Az oldallánc-csere kémiailag is megoldható (stabilabb az alapmolekula), a köztitermék a 7-ACS 7-ACS-ból a C-7 és C-3-as szénen történő származékképzéssel sokféle félszintetikus termék állítható elő. 43 Első generációs cephalosporinok Pl.: Cephalothin Cephalexin 44 További példák további generációkból 45 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 15

16 Klavulánsav Nincs antibiotikus aktivitása! Penicillinekkel együtt adagolják, mert szerkezetanalógja penicillineknek kompetitív inhibícióval gátolja a bontó enzimeket (penicillináz, béta-laktamáz) rezisztens törzsek elpusztítására is alkalmas. 46 B. FEHÉRJESZINTÉZIST GÁTLÓ ANTIBIOTIKUMOK I. AMINOGLIKOZID ANTIBIOTIKUMOK Szerkezetük: aminocsoportokkal szubsztituált cukrok, pszeudocukor (inozit) Tulajdonságok: vízben jól oldódnak kationos jelleg (szulfát sók) stabil, ellenálló molekulák sztreptomicin típusú rezisztencia toxicitás: vese és belső fül (mert felhalmozódnak) 47 SZTREPTOMICIN Waksman (1944), célzott kutatás TBC ellenes metabolitra. Streptomyces griseus Bioszintézis: részenként, a cukoranyagcseréből, glükózamin, inozit 48 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 16

17 Sztreptomicin 2. Előállítás: fermentációval. Feldolgozás kulcslépése: kation csere Hatásmód: a riboszóma 30S alegységének S12 fehérjéjéhez kötődik. (az S12 mutációja rezisztenciát okozhat) A hatás koncentrációfüggő: - kis koncentráció: a fehérjeszintézis lelassul és hibás - közepes koncentráció: a 70S riboszóma nem disszociál, a kész lánc nem válik le - magas koncentráció: a láncindítás gátolt Hatásspektrum: Gram Θ, M. tuberculosis, coccusok 49 Sztreptomicin 3. Rezisztencia:» a riboszóma S12 fehérje nem köti» enzimesen: -3" adenilezés, -3" foszfatáz, - 3',6 difoszfatáz, -6 foszfatáz» egylépcsős, sztreptomicin típusú Farmakokinetika: - felszívódás emésztőcsatornából: rossz, ezért injekció formájában adják, felezési ideje kb. 2,5 óra - kötődés plazmafehérjékhez: % - metabolizmus: gyakorlatilag nincs - vizelettel ürül % Adagolás: 0,7-1,5 g/nap, parenterálisan Toxicitás: belső fül (hallás, egyensúlyzavar), vesekárosító 50 NEOMICIN Waksman (1940), Str. fradiae törzsben, több komponens Szerkezete: (C) Igen stabil, autoklávozható 51 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 17

18 NEOMICIN 2. Előállítás: fermentációval, feldolgozás: ioncsere, sóképzés Hatásmód: támadáspont a riboszóma kis (30S) alegysége, de máshol, mint a sztreptomicin, nem sztöchiometrikus Hatásspektrum: Gram Θ ellen Kinetika: felszívódása rossz Alkalmazás: csak bélfertőtlenítésre vagy külsőleg a toxicitás miatt (pl. szemcsepp) Toxicitás: belső fül és vesekárosodás Rezisztencia: enzimes inaktiválások, összesen 10 ponton -NH 2 -csoportok acilezése -3',5" OH foszforilezése -4' OH adenilezése 52 GENTAMICIN Weinstein (1958), Micromonospora purpurea (tényleg lila) Szerkezete: kb. 20 komponens, gyógyszerként a C 1a Tulajdonságok: vízoldható, stabil, sót képez 53 GENTAMICIN 2. Előállítás: fermentációval, a komponensarány irányítható a levegőztetés intenzitásának változtatásával Hatásmód: a 30S riboszómán, közel azonos támadáspont a többi aminoglikoziddal Hatásspektrum: széles, Gram Θ, Pseudomonas, Staphylococcus, Aerobacter, Klebsiella, Streptococcus, Proteus, Escherichia, Mycobacterium törzsek ellen. Rezisztencia: ritkább, mert kevesebb inktiválási pont van (csak 4!), nincs olyan -OH, amit foszforilezni vagy adenilezni lehetne ( kopasz cukrok ) Részleges keresztrezisztencia a sztreptomicin csoporttal. 54 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 18

19 GENTAMICIN 3. Farmakokinetika: Felszívódás: orálisan alig; im. gyors, maximum 1 óra után, 2-3 mg/l, felezési idő 90 perc Kiürülés: 85-95% vesén át, mg/l Toxicitás: fül és vese, a kisebb hatásos koncentrációk miatt kevésbé, mint pl. a többi aminoglikozid Alkalmazás: im mg/nap urogenitális fertőzések, égési sérülések fertőzése ellen, kórházi (polirezisztens) törzsek ellen 55 TOBRAMICIN Szerkezet: Előbb állították elő félszintetikusan kanamicinből, csak később izolálták fermentléből (Str. tenebrarius). (Nebramicin komplex: tobramicin, apramicin, kanamicin, sisomicin, stb) 56 TOBRAMICIN 2. Előállítás: 1. fermentációval - tobramicinre célzottan izolált Str. tenebrarius 2, szintetikus úton kanamicinből BIOGAL technológia, jogvita, piacmegosztás: fix mennyiséget adhattak el A TEVA-Biogal gyártja Brulamicin néven. Ebből is kevés kell: mg/nap. Húgyutak fertőzéseire. Ha a koncentráció a vérszérumban 3-10 mg/l, akkor a vizeletben mg/l! 57 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 19

20 2. TETRACIKLINEK Szerkezet: négy gyűrű, ebből csak egy aromás R1 R2 R3 CTC (klórtetraciklin) Cl CH 3 H TC (tetraciklin) H CH 3 H OTC (oxitetracilin) H CH 3 OH DMCTC(demetilklór-tetraciklin) Cl H H 58 TETRACIKLINEK 2. Tulajdonságok: ikerionos, 3 disszociációs lépcső, 3 pk kelátképző (Ca 2+, Mg 2+, Fe 2+ ) pl. tej (Ca 2+ ); a csontban kötött Ca-mal is kelátot képez fogelszíneződést okozhat. bomlékony: a sok kettős kötés miatt, savas, semleges és lúgos közegben más-más úton túladagolják Szerkezet tulajdonságok összefüggése: minden szubsztituens kell a hatáshoz, egyedül a savamid szubsztituálható (pirrolidino-metil). 59 TETRACIKLINEK 3. HATÁSMÓD: a fehérjeszintézist gátolja, a 70 S riboszómához kötődik, az aminoacil-trns kötődését gátolja. HATÁSSPEKTRUM: széles: Gram+, Gram-, nagy vírusok, átmeneti törzsek (mikoplazmák, rickettsiák, miyagavanellák) ellen; Széles spektrumú, életmentő antibiotikum. KINETIKA: Felszívódás: per os: rossz (bomlás) %, max 2-4 óra múlva 2-3 µg/ml; Felezési idő: 5-8 óra Metabolizmus: szöveti alig, bomlás az emésztőcsatornában Kiürülés: vesén át, per os: %; parentálisan: % 60 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 20

21 TETRACIKLINEK 4. MELLÉKHATÁSOK: bélflóra szelekció vitaminhiány élesztők májkárosodás (veseelégtelenség esetén) fotodermatózis fogak elszíneződése ADAGOLÁS: 1-2 g/nap, 3-4 részletben Doxiciklin: 200 mg/nap, egyszerre! REZISZTENCIA: ritka, keresztrezisztencia csak egymás között, lassan alakul ki 61 TETRACIKLINEK A TETRACIKLINEK BIOSZINTÉZISE Poliketid típusú: a zsírsavszintézis reakciói: 63 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 21

22 A TETRACIKLINEK BIOSZINTÉZISE A szekunder metabolizmusnál nem mindig megy végig a redukció, hanem valamelyik lépcsőn (=O, -OH, C=C) megáll. Ebben az esetben a szénláncon minden második atomon jelenik meg a szubsztituens ( szögesdrót szerkezet). A tetraciklinek bioszintézisénél a ketocsoportok ismétlődnek (= poliketid). 64 TETRACIKLINEK BIOSZINTÉZISE 2. Indítás: 1 malonil-amid, 8 acilcsoport 65 TETRACIKLINEK BIOSZINTÉZISE 3. Keto-enol átrendeződések, aromás gyűrűk jönnek létre 66 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 22

23 KLÓRTETRACIKLIN (CTC, aureomicin ) Duggar (1948), Streptomyces aureofaciens (a legelső) TULAJDONSÁGOK: - HCl ja fénylő, sárga kristályos; - fotoszenzitív, de O 2 -re stabil; - vízben jól, alkoholban rosszul oldódik; - keserű ízű. ELŐÁLLÍTÁS: fermentációval; klórozás: Cl - ion egy lépésben épül be. Br analóg is képződhet. 67 TETRACIKLIN (TC) ELŐÁLLÍTÁS: a. Előbb félszintetikusan a CTC hidrogénezésével: b. Később fermentációval : - hiányzott a klórozó enzimrendszer - halogénhiányos tápoldat - halogénezést gátló szerek, pl. rodanidok (KSCN) 68 OXITETRACIKLIN (OTC, terramicin) Finlay (1950), Str. rimosus, később tucatnyi más törzs TULAJDONSÁGOK: vízben nagyon jól oldódik (33 %), Még bomlékonyabb, ph = 2-8 -on kívül gyorsan elbomlik De: hatékony, nem toxikus és olyan olcsó, hogy érdemes többszörösen túladagolni. 69 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 23

24 DOXYCYKLIN (Vibramycin) Négy szintetikus lépéssel OTC-ből állítható elő. Szerkezete: A metilcsoportra nézve racém. Mind a két alak hatékony, de azα3x jobb. Sokkal stabilabb, mint a többi tetraciklin, jobb a felszívódása, lassabban ürül ki. Emiatt elég naponta egyszer adni. (Savtűrő kapszulában 100 mg) Felezési ideje óra! 70 C. MEMBRÁNFUNKCIÓT KÁROSÍTÓ ANTIBIOTIKUMOK PEPTID ANTIBIOTIKUMOK 71 CIKLOPEPTID ANTIBIOTIKUMOK KÖZÖS TULAJDONSÁGOK: - gyűrűs szerkezet, másodlagos merevítések, - D-aminosavak, ritka aminosavak is előfordulnak, - savra, proteázokra nem bomlanak, sőt enziminhibitorok, - nem szívódnak fel, - csak baktériumok ellen hatékonyak - toxikusak, ezért csak speciális esetekben alkalmazzák, - megváltoztatják a bélflórát, ennek következtében javul a takarmányhasznosítás, 72 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 24

25 A ciklopeptid antibiotikumok bioszintézise NEM-riboszomális fehérjeszintézis, a peptid egy fehérje felszínén képződik (tiotemplát, multienzim komplex). Az aminosav kiválasztása nem a kodon-antikodon kapcsolódással megy, hanem magát az aminosavat ismerik fel az aktív centrumok, emiatt kevésbé pontos és szelektív. Ellentmond a genetika centrális dogmájának: 73 GRAMICIDIN-S (1944) Bacillus brevis Szerkezet: dekapeptid (2 pentapeptid), H-hidak Az apoláros és poláros (Orn) oldalláncok detergens jelleget adnak beépül a membránokba. Hatásmód: Detergensként membránkárosító. 74 A gramicidin-s bioszintézise 2+2 enzimből álló tiotemplát, összesen tíz kötőhellyel. Minden kötőhely specifikusan felismeri a megfelelő aminosavat, és SH csoporton tioészter formában köti meg. Aktiválás ATP-vel ( tioészter), majd az aminosavak között létrejön a peptidkötés. ATP -SH + AS -S-AS + H 2 O ADP 75 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 25

26 GRAMICIDIN-S Az enzimrendszer in-vitro is működik, izolálták, oszlopban rögzítették így is működött (ATP, aminosavak). Hatásspektrum: Csak baktériumok ellen, azon belül is a Gram + ellen. Alkalmazás: Nincsen humán felhasználása, ezért nincs is farmokinetika. 76 BACITRACIN Kórházi mintából (1945), Bacillus licheniformis Tulajdonságok: - kb. 10 féle változata van, - lúgos közegben bomlik, - nehézfémsók inaktiválják (pl. Cu 2+ ), de kétértékű ionok kellenek a hatáshoz (a legjobb ezek közül a Zn 2+ ), - biológiai egysége van. Ile Cys 77 BACITRACIN 2. Bioszintézis: Tiotempláton, mint az előzőek. Előállítás: Fermentációval. A folyamat gyors lefutású (baktérium, óra), harmadik típusú (a szaporodás és termelés nem különül el élesen), nehezen irányítható, a hatóanyagot csak nagy időkéséssel lehet mérni (biológiai titrálással). Optimális ph és hőmérséklet profillal a folyamat lerövidíthető. Feldolgozás: cinkkomplex-képzés, porlasztva szárítás Hatásmód: Kettős: - membránkárosító, - sejtfal-szintézist gátló hatás. 78 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 26

27 BACITRACIN 3. Hatásspektrum: Elsősorban a Gram+ baktériumok ellen (mint a penicillin). Kinetika: Felszívódás: nincs, mert túl nagy, parentálisan sem adják, mert toxikus. Alkalmazás: Csak külsőlegesen (bőrre vagy emésztőcsatornába). Viszont takarmányadalékként nagyon jó (nagyon kevés kell, 4 g/t már hatásos), csökkenti az elhullást, javítja a takarmány/hús fajlagosokat. Takarmányadalékként Znvagy Mg-komplex formájában adagolják. 79 POLIMIXIN B Bacillus polymyxa (1947) Tulajdonságok: - kationos detergens, anionos detergensek csökkentik a hatását. szulfátsó formájában stabil, lúgos közegben elbomlik. Hatásmód: DAV = L-α,γ- diamino-vajsav detergensként membránkárosító. 80 POLIMIXIN B Hatásspektrum: GramΘ baktériumok ellen hatékony, ezzel kiegészíti a bacitracin spektrumát (E. coli, Ps. auriginosa). Kinetika: Felszívódás: a polimixin B nem szívódik fel, de a metánszulfonátja igen. Viszont ezt is im adják (így kevésbé toxikus). Csúcs 2 óra után 2 µg/ml, t 1/2 kb. 6 óra. Kiürülés: % a vizelettel. Alkalmazás: Ez is toxikus, de a peptid antibiotikumok közül mégis a legalkalmazhatóbb. Csak speciális és indokolt esetekben adják. 81 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 27

28 VIOMICIN ( ), Streptomyces-ek (nem baktériumok) Szerkezet: nem-fehérjealkotó aminosavak Bioszintézis: tiotempláton Tulajdonságok: - erősen bázikus, - vörös kristályos, - vízben jól oldódik, - szulfátsóját forgalmazzák, - toxikus: vesére, belső fülre, elektrolit-háztartásra 82 VIOMICIN 2. Aki még nem vette észre, annak kimondjuk, hogy a viomicin minden részletében aminoglikozid antibiotikumként viselkedik, pedig ciklopeptid. Hatásmód: riboszómán kötődik, fehérjeszintézist gátol, - keresztrezisztencia a sztreptomicinnel azonos a támadáspont. Hatásspektrum: a lényeg: M. tuberculosis ellen hatásos, bár a rezisztencia gyorsan kialakul. Kinetika: Felszívódás: per os kevés, ezért parentálisan; Kiürülés: vesén át, % /24óra Alkalmazás: TBC ellen tartalék; napi 1g 83 CIKLOSPORIN (1973), Tolypocladium inflantum, Cylindrocarpon lucidum Szerkezet: Tulajdonságok: Nagyon apoláros, vízben roszszul oldódik 84 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 28

29 CIKLOSPORIN 2. Bioszintézis: nem riboszómális, tiotempláton megy, a metilcsoportokat S-metil-metionin adja Előállítás: fermentációval; feldolgozás: az intracelluláris terméket a biomasszából oldószerrel extrahálják. Hatásmód: Egyes mrns-ek átírását gátolja egyes sejtek osztódását gátolja a T-limfociták nem aktiválódnak immunszupresszív hatás. Hatásspektrum: eukariótákra hat; gombák és paraziták ellen is használható, de főként immunszupresszióra. 85 CIKLOSPORIN 3. Kinetika: Felszívódás: szájon át is (bár nagy és apoláros); Metabolizmus: Máj oxidál, amit lehet, de a gyűrű megmarad. Kiválasztás: 90 % epével, 6 % vesén át; Alkalmazások: Szervátültetéseknél és autoimmun gyulladások ellen. Per os és iv; Mellékhatás: vesekárosítás ( Na + - és vízháztartás ) 86 VANKOMICIN Szerkezete: rémületes 87 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 29

30 VANKOMICIN 2. Nocardia (Streptomyces) orientalis (1956) Tulajdonságai: HCl-val fehér kristályokat alkot, savas közegben stabil. Vízben jól, alkoholokban, acetonban roszszul oldódik. UV max 282 nm-en. Bioszintézis: tiotempláton, aromás aminosavak származékaiból (poh-fenilglicin, Asp, mcl-(β-oh)-tirozin, N-metilleucin) + glükóz Előállítás: fermentáció, N. orientalis, N. lurida Feldolgozás lehet: - kationcserélő, majd kicsapás - affinkromatográfia - oldószeres extrakció 88 VANKOMICIN 3. Hatásmód: a falszintézist gátolja, az L-Lys-D-Ala-D-Ala végződéssel kötődik Hatásspektrum: szűk, Gram+, elsősorban kokkuszok Rezisztencia: keresztrezisztencia nincs Kinetika: Felszívódás: nincs, (túl nagy a molekula), i.v. adva a felezési idő 2-4 óra, kúrában a koncentráció mg/l Kiürülés: a vesén át Alkalmazás: iv, szűk spektrumú penicillinhelyettesítő, de: polirezisztens kórházi törzseknék ez az utolsó védővonal, ha már semmi sem segít. 89 ORITAVANCIN 90 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 30

31 TEICOPLANIN 91 DALBAVANCIN 92 BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 31

ANTIBIOTIKUMOK. Szekunder metabolizmus. Az antibiotikumok alkalmazási területei. Mik is az antibiotikumok? Szekunder metabolizmus. Egy kis történelem

ANTIBIOTIKUMOK. Szekunder metabolizmus. Az antibiotikumok alkalmazási területei. Mik is az antibiotikumok? Szekunder metabolizmus. Egy kis történelem ANTIBIOTIKUMOK Szekunder metabolizmus Foszfor szabályzás: befolyásolja mikroba növekedési sebességét, annak mértékét, szénhidrát égetésének sebességét bizonyos koncentráció felett negatívan szabályoz,

Részletesebben

C. MEMBRÁNFUNKCIÓT GÁTLÓ ANTIBIOTIKUMOK I. POLIÉNEK (GOMBAELLENES ANTIBIOTIKUMOK) Közös tulajdonságok. Az antifungális hatás összehasonlítása

C. MEMBRÁNFUNKCIÓT GÁTLÓ ANTIBIOTIKUMOK I. POLIÉNEK (GOMBAELLENES ANTIBIOTIKUMOK) Közös tulajdonságok. Az antifungális hatás összehasonlítása C. MEMBRÁNFUNKCIÓT GÁTLÓ ANTIBIOTIKUMOK I. POLIÉNEK (GOMBAELLENES ANTIBIOTIKUMOK) KÖZÖS TULAJDONSÁGOK: - nagy laktongyűrű (26-38 tagú), - konjugált kettős kötések (3-7 db.), - aminocukrok (pl. mikózamin),

Részletesebben

ANTIBIOTIKUMOK antibiotikumok másodlagos anyagcseretermékek Antibiotikumok felhasználása Csoportosításuk

ANTIBIOTIKUMOK antibiotikumok másodlagos anyagcseretermékek Antibiotikumok felhasználása Csoportosításuk ANTIBIOTIKUMOK Antibiózis: egyik élőlény tevékenysége károsítja a másikat (+,-; 0,-) Ellentéte a szimbiózis: élőlények együttműködése, mindkettőnek előnyös (+,+). Viullemin definiálta (1889) Antibiotikumok:

Részletesebben

Antibiotikumok I. Selman Abraham Waksman 1888-1973

Antibiotikumok I. Selman Abraham Waksman 1888-1973 Antibiotikumok I. Az antibiotikumok az élő szervezetek elsősorban mikroorganizmusok által termelt úgynevezett másodlagos anyagcseretermékek (szekunder metabolitok) legfontosabb csoportja. Ökológiai szerepük,

Részletesebben

4. Génmanipulált mikroorganizmusok

4. Génmanipulált mikroorganizmusok A biotechnológiai iparban nagyon sok féle terméket gyártanak. Ezeknek az anyagoknak a bioszintézise és a gyártástechnológiája is különböző. Egy célszerű csoportosítási elv a termékekre az anyagcsere jellege

Részletesebben

Makrolid antibiotikumok

Makrolid antibiotikumok Makrolid antibiotikumok Közös tulajdonságok: - nagy laktongyűrű - aminocukor + valódi cukor - bázikusak (- 2 ), sóképzés - bioszintézis: poliketid típusú - támadáspont: riboszóma 50S Eritromicin 1952,

Részletesebben

4. GÉNMANIPULÁLT MIKRO- ORGANIZMUSOK Elsődleges anyagcseretermék: például: triptofán Másodlagos anyagcsere-termékek: az antibiotikumok

4. GÉNMANIPULÁLT MIKRO- ORGANIZMUSOK Elsődleges anyagcseretermék: például: triptofán Másodlagos anyagcsere-termékek: az antibiotikumok 4. GÉNMANIPULÁLT MIKRO- ORGANIZMUSOK A biotechnológiai ipar termékei: Elsődleges anyagcseretermékek Amelyek bioszintézise közvetlenül kapcsolódik a sejt energiatermeléséhez, vagy növekedéséhez Másodlagos

Részletesebben

4. GÉNMANIPULÁLT MIKRO- ORGANIZMUSOK

4. GÉNMANIPULÁLT MIKRO- ORGANIZMUSOK 4. GÉNMANIPULÁLT MIKRO- ORGANIZMUSOK A biotechnológiai ipar termékei: Elsődleges anyagcseretermékek Amelyek bioszintézise közvetlenül kapcsolódik a sejt energiatermeléséhez, vagy növekedéséhez Másodlagos

Részletesebben

IPARI ENZIMEK IPARI ENZIMEK ENZIMEK ALKALMAZÁSAI MEGOSZLÁS IPARÁGAK SZERINT IPARI ENZIMEK PIACA IPARI ENZIMEK FORRÁSAI

IPARI ENZIMEK IPARI ENZIMEK ENZIMEK ALKALMAZÁSAI MEGOSZLÁS IPARÁGAK SZERINT IPARI ENZIMEK PIACA IPARI ENZIMEK FORRÁSAI IPARI ENZIMEK Történelem, mérföldkövek Ősrégi: borjúgyomor tejalvasztó enzim, rennin maláta keményítőbontó enzimek, amilázok 1836 Schwann: pepszin a gyomornedvből (triviális név) 1876 Kühne: enzim elnevezés

Részletesebben

4. SZERVES SAVAK. Az ecetsav biológiai előállítása SZERVES SAVAK. Ecetsav baktériumok. Az ecetsav baktériumok osztályozása ECETSAV. 04.

4. SZERVES SAVAK. Az ecetsav biológiai előállítása SZERVES SAVAK. Ecetsav baktériumok. Az ecetsav baktériumok osztályozása ECETSAV. 04. Az ecetsav biológiai előállítása 4. SZERVES SAVAK A bor után legősibb (bio)technológia: a bor megecetesedik borecet keletkezik A folyamat bruttó leírása: C 2 H 5 OH + O 2 CH 3 COOH + H 2 O Az ecetsav baktériumok

Részletesebben

2. A MIKROBÁK ÉS SZAPORÍTÁSUK

2. A MIKROBÁK ÉS SZAPORÍTÁSUK 2. A MIKROBÁK ÉS SZAPORÍTÁSUK A biológiai ipar jellemzően mikroorganizmusokat, vagy állati és növényi szervezetek elkülönített sejtjeit szaporítja el, és ezek anyagcseréjét használja fel a kívánt folyamatok

Részletesebben

TUMORELLENES ANTIBIOTIKUMOK

TUMORELLENES ANTIBIOTIKUMOK TUMORELLENES ANTIBIOTIKUMOK A rák gyógyszeres kezelése nem megoldott - néhány antibiotikum segíthet átmenetileg. Nincs igazán jó és egyértelmű terápiája, alternatívák: - sebészeti beavatkozás - besugárzás

Részletesebben

IPARI ENZIMEK 2. Proteázok. Alkalikus proteázok. Pécs Miklós: Biotermék technológia 1. 6. fejezet: Ipari enzimek 2.

IPARI ENZIMEK 2. Proteázok. Alkalikus proteázok. Pécs Miklós: Biotermék technológia 1. 6. fejezet: Ipari enzimek 2. IPARI ENZIMEK 2 Proteázok A proteázok az ipari enzimek egyik legfontosabb csoportja (6200 t tiszta E/év) Peptid kötéseket bont (létrehoz) (hidrolízis, szintézis) Fehérje lebontás: élelmiszer, tejalvadás,

Részletesebben

A BAKTÉRIUMOK SZAPORODÁSA

A BAKTÉRIUMOK SZAPORODÁSA 5. előadás A BAKTÉRIUMOK SZAPORODÁSA Növekedés: a baktérium új anyagokat vesz fe a környezetből, ezeket asszimilálja megnő a sejt térfogata Amikor a sejt térfogat és felület közti arány megváltozik sejtosztódás

Részletesebben

FÖLDMŰVELÉSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

FÖLDMŰVELÉSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 FÖLDMŰVELÉSTAN Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Előadás Biológiai tényezők és a talajművelés Szervesanyag gazdálkodás I. A talaj szerves anyagai, a szervesanyagtartalom

Részletesebben

Penicillium notatum gomba tenyészet

Penicillium notatum gomba tenyészet Antibiotikumok (Bevezetés) Penicillium notatum gomba tenyészet Antibiotikumok Definíció: Szűkebb definíció (Waksman, 1945) Tágabb definíció Az orvosi gyakorlatban antibiotikumoknak tekintjük a baktérium-,

Részletesebben

3. Aminosavak gyártása

3. Aminosavak gyártása 3. Aminosavak gyártása Előállításuk Fehérje-hidrolizátumokból: cisztein, leucin, aszparaginsav, tirozin, glutaminsav Kémiai szintézissel: metionin, glicin, alanin, triptofán (reszolválás szükséges) Biotechnológiai

Részletesebben

Az élelmiszerek mikrobiális ökológiája. Mohácsiné dr. Farkas Csilla

Az élelmiszerek mikrobiális ökológiája. Mohácsiné dr. Farkas Csilla Az élelmiszerek mikrobiális ökológiája Mohácsiné dr. Farkas Csilla Az élelmiszerek mikroökológiai tényezői Szennyeződés forrásai és közvetítői A mikroorganizmusok belső tulajdosnágai Belső tényezők (az

Részletesebben

4. SZERVES SAVAK SZERVES SAVAK. Felhasználása. Citromsav. Termelés. Történet. Pécs Miklós: Biotermék technológia

4. SZERVES SAVAK SZERVES SAVAK. Felhasználása. Citromsav. Termelés. Történet. Pécs Miklós: Biotermék technológia SZERVES SAVAK Mind prokarióták, mind eukarióták termelnek savakat, nincs különbség. 4. SZERVES SAVAK Anyagcserében: Az aeroboknál: a szénforrások szerves savakon keresztül oxidálódnak. Ha nem megy végig

Részletesebben

TAKARMÁNYOZÁSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

TAKARMÁNYOZÁSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 TAKARMÁNYOZÁSTAN Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Ásványi anyagok vázrendszer, fogak (Ca, P, F) enzim aktivátorok (Zn, Mn) ozmotikus viszonyok (K, Na, Cl) sav-bázis

Részletesebben

Gibberellinek. 1. ábra: Gibberellán, gibberellinsav szerkezete. BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1

Gibberellinek. 1. ábra: Gibberellán, gibberellinsav szerkezete. BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1 Gibberellinek A japán földmővesek régóta tartottak a rizs növény egy megbetegedésétıl, amit bakanae - nak (bolond palántának) neveztek. A fertızött növény sokkal magasabbra nıtt, mint a többi, ettıl végül

Részletesebben

EGYETEMI DOKTORI (PhD) ÉRTEKEZÉS TÉZISEI NRRL B-2682-ES TÖRZSBEN. Készítette: Dr. Bartalné Deák Eleonóra Biológus, gyógyszerész

EGYETEMI DOKTORI (PhD) ÉRTEKEZÉS TÉZISEI NRRL B-2682-ES TÖRZSBEN. Készítette: Dr. Bartalné Deák Eleonóra Biológus, gyógyszerész EGYETEMI DOKTORI (PhD) ÉRTEKEZÉS TÉZISEI A BÉTA-LAKTAMÁZ ENZIM SZEREPÉNEK ÉS A BÉTA-LAKTÁM ANTIBIOTIKUMOK HATÁSÁNAK VIZSGÁLATA A STREPTOMYCES GRISEUS NRRL B-2682-ES TÖRZSBEN Készítette: Dr. Bartalné Deák

Részletesebben

MÉRGEK SORSA AZ ÉLŐ SZERVEZETBEN ELŐADÓ DR. LEHEL JÓZSEF

MÉRGEK SORSA AZ ÉLŐ SZERVEZETBEN ELŐADÓ DR. LEHEL JÓZSEF MÉRGEK SORSA AZ ÉLŐ SZERVEZETBEN ELŐADÓ DR. LEHEL JÓZSEF 2006.09.13. 1 MÉREGHATÁS FELTÉTELE 1 kapcsolat (kémiai anyag biológiai rendszer) helyi hatás szisztémás Megfelelő koncentráció meghatározó tényező

Részletesebben

Mometazon furoát (monohidrát formájában)

Mometazon furoát (monohidrát formájában) 1. AZ ÁLLATGYÓGYÁSZATI KÉSZÍTMÉNY NEVE Posatex szuszpenziós fülcsepp kutyák részére 2. MINŐSÉGI ÉS MENNYISÉGI ÖSSZETÉTEL Hatóanyagok: Orbifloxacin Mometazon furoát (monohidrát formájában) Posakonazol 8,5

Részletesebben

5. A talaj szerves anyagai. Dr. Varga Csaba

5. A talaj szerves anyagai. Dr. Varga Csaba 5. A talaj szerves anyagai Dr. Varga Csaba A talaj szerves anyagainak csoportosítása A talaj élőlényei és a talajon élő növények gyökérzete Elhalt növényi és állati maradványok A maradványok bomlása során

Részletesebben

Környezettechnológia. Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék

Környezettechnológia. Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék Környezettechnológia Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék Szennyvíz Minden olyan víz, ami valamilyen módon felhasználásra került. Hulladéktörvény szerint:

Részletesebben

6. Zárványtestek feldolgozása

6. Zárványtestek feldolgozása 6. Zárványtestek feldolgozása... 1 6.1. A zárványtestek... 1 6.1.1. A zárványtestek kialakulása... 2 6.1.2. A feldolgozási technológia... 3 6.1.2.1. Sejtfeltárás... 3 6.1.2.2. Centrifugálás, tisztítás...

Részletesebben

Tantárgy tematikája: I. Félév

Tantárgy tematikája: I. Félév Képzés: BSc Tantárgy kódja és neve: TBBE0571, TBBE0572 + TBBL0572, Biomérnöki műveletek és folyamatok I-II Kredit: 3, 3+2 Tantárgyfelelős: Dr. Karaffa Levente Oktatók: Dr. Karaffa Levente, Dr. Fekete Erzsébet

Részletesebben

Baktériumok tenyésztése

Baktériumok tenyésztése Baktériumok tenyésztése Koch posztulátumok A betegből a kórokozó izolálása Izolálás, tenyésztés, tápközegben fenntartás Kísérleti állatba oltva a betegségre jellemző tünetek kialakulása Ezen állatokból

Részletesebben

KÖRNYEZETI MIKROBIOLÓGIA ÉS BIOTECHNOLÓGIA. Bevezető előadás

KÖRNYEZETI MIKROBIOLÓGIA ÉS BIOTECHNOLÓGIA. Bevezető előadás KÖRNYEZETI MIKROBIOLÓGIA ÉS BIOTECHNOLÓGIA Bevezető előadás Dr. Molnár Mónika, Dr. Feigl Viktória Budapesti Műszaki és Gazdaságtudományi Egyetem Alkalmazott Biotechnológia és Élelmiszertudományi Tanszék

Részletesebben

Biológia 3. zh. A gyenge sav típusú molekulák mozgása a szervezetben. Gyengesav transzport. A glükuronsavval konjugált molekulákat a vese kiválasztja.

Biológia 3. zh. A gyenge sav típusú molekulák mozgása a szervezetben. Gyengesav transzport. A glükuronsavval konjugált molekulákat a vese kiválasztja. Biológia 3. zh Az izomösszehúzódás szakaszai, molekuláris mechanizmusa, az izomösszehúzódás során milyen molekula deformálódik és hogyan? Minden izomrosthoz kapcsolódik kegy szinapszis, ez az úgynevezett

Részletesebben

6. A TALAJ KÉMIAI TULAJDONSÁGAI. Dr. Varga Csaba

6. A TALAJ KÉMIAI TULAJDONSÁGAI. Dr. Varga Csaba 6. A TALAJ KÉMIAI TULAJDONSÁGAI Dr. Varga Csaba Oldódási és kicsapódási reakciók a talajban Fizikai oldódás (bepárlás után a teljes mennyiség visszanyerhető) NaCl Na + + Cl Kémiai oldódás Al(OH) 3 + 3H

Részletesebben

A felvétel és a leadás közötti átalakító folyamatok összességét intermedier - köztes anyagcserének nevezzük.

A felvétel és a leadás közötti átalakító folyamatok összességét intermedier - köztes anyagcserének nevezzük. 1 Az anyagcsere Szerk.: Vizkievicz András Általános bevezető Az élő sejtekben zajló biokémiai folyamatok összességét anyagcserének nevezzük. Az élő sejtek nyílt anyagi rendszerek, azaz környezetükkel állandó

Részletesebben

Mikroorganizmusok patogenitása

Mikroorganizmusok patogenitása Mikroorganizmusok patogenitása Dr. Maráz Anna egyetemi tanár Mikrobiológia és Biotechnológia Tanszék Élelmiszertudományi Kar Budapesti Corvinus Egyetem Mikroorganizmusok kölcsönhatásai (interakciói) Szimbiózis

Részletesebben

A másodlagos biogén elemek a szerves vegyületekben kb. 1-2 %-ban jelen lévő elemek. Mint pl.: P, S, Fe, Mg, Na, K, Ca, Cl.

A másodlagos biogén elemek a szerves vegyületekben kb. 1-2 %-ban jelen lévő elemek. Mint pl.: P, S, Fe, Mg, Na, K, Ca, Cl. A sejtek kémiai felépítése Szerkesztette: Vizkievicz András A biogén elemek Biogén elemeknek az élő szervezeteket felépítő kémiai elemeket nevezzük. A természetben található 90 elemből ez mindössze kb.

Részletesebben

Az eddig figyelmen kívül hagyott környezetszennyezések

Az eddig figyelmen kívül hagyott környezetszennyezések ÁLTALÁNOS KÉRDÉSEK 1.7 3.3 6.6 Az eddig figyelmen kívül hagyott környezetszennyezések Tárgyszavak: ritka környezetszennyezők; gyógyszer; növényvédő szer; természetes vizek; üledék. A vizeket szennyező

Részletesebben

Bevezetés a növénytanba Növényélettani fejezetek 2.

Bevezetés a növénytanba Növényélettani fejezetek 2. Bevezetés a növénytanba Növényélettani fejezetek 2. Dr. Parádi István Növényélettani és Molekuláris Növénybiológiai Tanszék (istvan.paradi@ttk.elte.hu) www.novenyelettan.elte.hu A gyökér élettani folyamatai

Részletesebben

AMINOSAVAK, FEHÉRJÉK

AMINOSAVAK, FEHÉRJÉK AMINOSAVAK, FEHÉRJÉK Az aminosavak olyan szerves vegyületek, amelyek molekulájában aminocsoport (-NH2) és karboxilcsoport (-COOH) egyaránt előfordul. Felosztás A fehérjéket feloszthatjuk aszerint, hogy

Részletesebben

Archenius egyenlet. fehérje denat. optimum

Archenius egyenlet. fehérje denat. optimum Bírság A bírság nem mentesít semmi alól. A környezetvédelmi minisztérium vagy a jegyző szabhatja ki (utóbbi esetben a bírság 30%-a az önkormányzatot illeti). ( ) Alap 9-18.000 Ft Környezetveszélyeztetés

Részletesebben

KÉMIA 10. Osztály I. FORDULÓ

KÉMIA 10. Osztály I. FORDULÓ KÉMIA 10. Osztály I. FORDULÓ 1) A rejtvény egy híres ember nevét és halálának évszámát rejti. Nevét megtudod, ha a részmegoldások betűit a számozott négyzetekbe írod, halálának évszámát pedig pici számolással.

Részletesebben

Élelmiszer-technológiai adalékok

Élelmiszer-technológiai adalékok Élelmiszer-technológiai adalékok Tartósítószerek A romlást okozó mikroorganizmusok (élesztők, penészek, baktériumok) életműködését már kis koncentrációban is gátolják. Lehetnek szervetlen és szerves vegyületek.

Részletesebben

Az élő szervezetek felépítése I. Biogén elemek biomolekulák alkotóelemei a természetben előforduló elemek közül 22 fordul elő az élővilágban O; N; C; H; P; és S; - élő anyag 99%-a Biogén elemek sajátosságai:

Részletesebben

Convenia 80 mg/ml por és oldószer injekciós oldathoz kutya és macska számára

Convenia 80 mg/ml por és oldószer injekciós oldathoz kutya és macska számára . AZ ÁLLATGYÓGYÁSZATI KÉSZÍTMÉNY NEVE Convenia 0 mg/ml por és oldószer injekciós oldathoz kutya és macska számára. MINŐSÉGI ÉS MENNYISÉGI ÖSSZETÉTEL Egy ampulla liofilizált por tartalma: Hatóanyag: 5 mg

Részletesebben

KÉMIA. Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003

KÉMIA. Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 ű érettségire felkészítő tananyag tanterve /11-12. ill. 12-13. évfolyam/ Elérendő célok: a természettudományos gondolkodás

Részletesebben

Táplálék intoleranciák laboratóriumi vizsgálata vérből és székletből

Táplálék intoleranciák laboratóriumi vizsgálata vérből és székletből Táplálék intoleranciák laboratóriumi vizsgálata vérből és székletből Dr. Németh Julianna Synlab Hungary KFT Budapest Diagnosztika Központ Immunológiai Laboratóriuma Étkezéssel, emésztéssel összefüggő panaszok

Részletesebben

2012.11.21. Terresztris ökológia Simon Edina 2012. szeptember 25. Szennyezések I. Szennyezések II. Szennyezések forrásai

2012.11.21. Terresztris ökológia Simon Edina 2012. szeptember 25. Szennyezések I. Szennyezések II. Szennyezések forrásai Terresztris ökológia Simon Edina 2012. szeptember 25. Nehézfém szennyezések forrásai és ezek környezeti hatásai Szennyezések I. Térben és időben elkülöníthetők: 1) felszíni lefolyás során a szennyezőanyagok

Részletesebben

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai A BIOLÓGIA ALAPJAI A tananyag felépítése: Környezetmérnök és műszaki menedzser hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: október 3, november 5, december 5 dr. Pécs Miklós egyetemi

Részletesebben

Egy sejt fehérje Single-Cell Protein (SCP) (Hallgatói jegyzet)

Egy sejt fehérje Single-Cell Protein (SCP) (Hallgatói jegyzet) Egy sejt fehérje Single-Cell Protein (SCP) (Hallgatói jegyzet) Nagy mennyiségű sejttömeg előállítása a cél, ezt a sejttömeget használják később fel. Az emberiség élelmiszerigénye nő, a mezőgazdaság nem

Részletesebben

Házipatika.com Tünetek, kórlefolyás

Házipatika.com Tünetek, kórlefolyás Házipatika.com Tünetek, kórlefolyás 1. Gyomor-bélrendszeri tünetek: puffadás, hasi fájdalom, erős szelek, melyek a tej elfogyasztását követő egy óra elmúltával jelentkeznek. Napi 12 gramm laktóz (= 2,4

Részletesebben

Sporttáplálkozás. Étrend-kiegészítők. Készítette: Honti Péter dietetikus. 2015. július

Sporttáplálkozás. Étrend-kiegészítők. Készítette: Honti Péter dietetikus. 2015. július Sporttáplálkozás Étrend-kiegészítők Készítette: Honti Péter dietetikus 2015. július Étrend-kiegészítők Élelmiszerek, amelyek a hagyományos étrend kiegészítését szolgálják, és koncentrált formában tartalmaznak

Részletesebben

Az infravörös spektroszkópia analitikai alkalmazása

Az infravörös spektroszkópia analitikai alkalmazása Az infravörös spektroszkópia analitikai alkalmazása Egy molekula nemcsak haladó mozgást végez, de az atomjai (atomcsoportjai) egymáshoz képest is állandó mozgásban vannak. Tételezzünk fel egy olyan mechanikai

Részletesebben

HULLADÉK GAZDÁLKODÁS FELDOLGOZÁS IV. Előadás anyag

HULLADÉK GAZDÁLKODÁS FELDOLGOZÁS IV. Előadás anyag TÁMOP-4.1.1.F-14/1/KONV-2015-0006 Az ipari hulladékgazdálkodás vállalati gyakorlata HULLADÉK GAZDÁLKODÁS FELDOLGOZÁS IV. Előadás anyag Dr. Molnár Tamás Géza Ph.D főiskolai docens SZTE MK Műszaki Intézet

Részletesebben

A biológia tudománya az élők világát két alapvető egységre ún. doménre, birodalomra - osztja: a prokariótákra és az eukariótákra.

A biológia tudománya az élők világát két alapvető egységre ún. doménre, birodalomra - osztja: a prokariótákra és az eukariótákra. A prokarióták Szerkesztette: Vizkievicz András A biológia tudománya az élők világát két alapvető egységre ún. doménre, birodalomra - osztja: a prokariótákra és az eukariótákra. A prokarióták (legszembetűnőbb)

Részletesebben

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz 1. A vízmolekula szerkezete Elektronegativitás, polaritás, másodlagos kötések 2. Fizikai tulajdonságok a) Szerkezetből adódó különleges

Részletesebben

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1 EC 2. TRANSZFERÁZK: EC 2.4. Transzglikozilálás v. transzglikozilezés Mikrobiális poliszacharidok R 1 - - R 2 + R 3 R 1 - - R 3 + R 2 - Glikozil donor: Akceptor: Termék lehet: Mellék- Aktivált hexóz: alkohol,

Részletesebben

Fertőzésekkel szembeni immunitás, immunizálás

Fertőzésekkel szembeni immunitás, immunizálás Fertőzésekkel szembeni immunitás, immunizálás 1. Mit jelentenek az epitóp és a protektív antigén kifejezések? 2. Hasonlítsd össze a természetes és az adaptív immunválaszt! 3. Mi a vakcina? 4. Sorold fel

Részletesebben

A MIKROORGANIZMUSOK A TERMÉSZETBEN

A MIKROORGANIZMUSOK A TERMÉSZETBEN NYUGAT-MAGYARORSZÁGI EGYETEM Mezőgazdaság- és Élelmiszer-tudományi Kar Mosonmagyaróvár MIKROBIOLÓGIA ELŐADÁS Alapképzési (BSc) szakok A MIKROORGANIZMUSOK A TERMÉSZETBEN Prof. Dr. Varga László egyetemi

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

1.ábra A kadmium felhasználási területei

1.ábra A kadmium felhasználási területei Kadmium hatása a környezetre és az egészségre Vermesan Horatiu, Vermesan George, Grünwald Ern, Mszaki Egyetem, Kolozsvár Erdélyi Múzeum Egyesület, Kolozsvár (Korróziós Figyel, 2006.46) Bevezetés A fémionok

Részletesebben

NAGYHATÉKONYSÁGÚ FOLYADÉKKROMA- TOGRÁFIA = NAGYNYOMÁSÚ = HPLC

NAGYHATÉKONYSÁGÚ FOLYADÉKKROMA- TOGRÁFIA = NAGYNYOMÁSÚ = HPLC NAGYHATÉKONYSÁGÚ FOLYADÉKKROMA- TOGRÁFIA = NAGYNYOMÁSÚ = HPLC Az alkalmazott nagy nyomás (100-1000 bar) lehetővé teszi nagyon finom szemcsézetű töltetek (2-10 μm) használatát, ami jelentősen megnöveli

Részletesebben

Hydroxocobalamin RPH Pharmaceuticals

Hydroxocobalamin RPH Pharmaceuticals Nyilvános Értékelő Jelentés Gyógyszernév: Hydroxocobalamin RPH Pharmaceuticals (hidroxokobalamin-klorid) Nemzeti eljárás A forgalomba hozatali engedély jogosultja: RPH Pharmaceuticals AB Kelt: 2015. december

Részletesebben

Laboratóriumi technikus laboratóriumi technikus 54 524 01 0010 54 02 Drog és toxikológiai

Laboratóriumi technikus laboratóriumi technikus 54 524 01 0010 54 02 Drog és toxikológiai É 049-06/1/3 A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján.

Részletesebben

A szénhidrátok lebomlása

A szénhidrátok lebomlása A disszimiláció Szerk.: Vizkievicz András A disszimiláció, vagy lebontás az autotróf, ill. a heterotróf élőlényekben lényegében azonos módon zajlik. A disszimilációs - katabolikus - folyamatok mindig valamilyen

Részletesebben

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer

Részletesebben

KÉMIA TANMENETEK 7-8-9-10 osztályoknak

KÉMIA TANMENETEK 7-8-9-10 osztályoknak KÉMIA TANMENETEK 7-8-9-10 osztályoknak Néhány gondolat a mellékletekhez: A tanterv nem tankönyvhöz készült, hanem témakörökre bontva mutatja be a minimumot és az optimumot. A felsőbb osztályba lépés alapja

Részletesebben

Klasszikus analitikai módszerek:

Klasszikus analitikai módszerek: Klasszikus analitikai módszerek: Azok a módszerek, melyek kémiai reakciókon alapszanak, de az elemzéshez csupán a tömeg és térfogat pontos mérésére van szükség. A legfontosabb klasszikus analitikai módszerek

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal A versenyző kódszáma: 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló KÉMIA I. kategória FELADATLAP Munkaidő: 300 perc Elérhető pontszám: 100 pont ÚTMUTATÓ

Részletesebben

A szénhidrátok az élet szempontjából rendkívül fontos, nélkülözhetetlen vegyületek. A bioszféra szerves anyagainak fő tömegét adó vegyületek.

A szénhidrátok az élet szempontjából rendkívül fontos, nélkülözhetetlen vegyületek. A bioszféra szerves anyagainak fő tömegét adó vegyületek. Szénhidrátok Szerkesztette: Vizkievicz András A szénhidrátok az élet szempontjából rendkívül fontos, nélkülözhetetlen vegyületek. A bioszféra szerves anyagainak fő tömegét adó vegyületek. A szénhidrátok

Részletesebben

Horgászvízkezelő-Tógazda Tanfolyam (Elméleti képzés) 4. óra A halastavak legfőbb problémái és annak kezelési lehetőségei (EM technológia lehetősége).

Horgászvízkezelő-Tógazda Tanfolyam (Elméleti képzés) 4. óra A halastavak legfőbb problémái és annak kezelési lehetőségei (EM technológia lehetősége). Horgászvízkezelő-Tógazda Tanfolyam (Elméleti képzés) 4. óra A halastavak legfőbb problémái és annak kezelési lehetőségei (EM technológia lehetősége). Bevezetés Hazánk legtöbb horgász- és halastaván jelentős

Részletesebben

A baktériumok szaporodása

A baktériumok szaporodása A baktériumok szaporodása Baktériumsejt növekszik, majd osztódik a populáció szaporodik - Optimális körülmények esetén a sejttömeg (sejtszám) exponenciálisan nõ az idõvel - Generációs idõ: az az idõ, ami

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2013. október 22. KÉMIA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 22. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Evolúció ma: az antibiotikum rezisztencia a baktériumoknál

Evolúció ma: az antibiotikum rezisztencia a baktériumoknál Evolúció ma: az antibiotikum rezisztencia a baktériumoknál Dr. Jakab Endre, adjunktus Magyar Biológia és Ökológia Intézet, Babeş-Bolyai Tudományegyetem ejakab@hasdeu.ubbcluj.ro Tartalom az antibiotikum

Részletesebben

KOMPOSZTÁLÁS, KÜLÖNÖS TEKINTETTEL A SZENNYVÍZISZAPRA

KOMPOSZTÁLÁS, KÜLÖNÖS TEKINTETTEL A SZENNYVÍZISZAPRA KOMPOSZTÁLÁS, KÜLÖNÖS TEKINTETTEL A SZENNYVÍZISZAPRA 2.1.1. Szennyvíziszap mezőgazdaságban való hasznosítása A szennyvíziszapok mezőgazdaságban felhasználhatók a talaj szerves anyag, és tápanyag utánpótlás

Részletesebben

1. Melyik az az elem, amelynek csak egy természetes izotópja van? 2. Melyik vegyület molekulájában van az összes atom egy síkban?

1. Melyik az az elem, amelynek csak egy természetes izotópja van? 2. Melyik vegyület molekulájában van az összes atom egy síkban? A 2004/2005. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja KÉMIA (II. kategória) I. FELADATSOR 1. Melyik az az elem, amelynek csak egy természetes izotópja van? A) Na

Részletesebben

A baktériumok genetikája

A baktériumok genetikája 6. előadás A baktériumok genetikája A baktériumoknak fontos szerep jut a genetikai kutatásokban Előny: Haploid genom Rövid generációs idő Olcsón és egyszerűen nagy populációhoz juthatunk A prokarióták

Részletesebben

Szakközépiskola 9-10. évfolyam Kémia. 9-10. évfolyam

Szakközépiskola 9-10. évfolyam Kémia. 9-10. évfolyam 9-10. évfolyam A szakközépiskolában a kémia tantárgy keretében folyó személyiségfejlesztés a természettudományos nevelés egyik színtereként a hétköznapi életben hasznosulni képes tudás épülését szolgálja.

Részletesebben

A fehérjék szerkezete és az azt meghatározó kölcsönhatások

A fehérjék szerkezete és az azt meghatározó kölcsönhatások A fehérjék szerkezete és az azt meghatározó kölcsönhatások 1. A fehérjék szerepe az élõlényekben 2. A fehérjék szerkezetének szintjei 3. A fehérjék konformációs stabilitásáért felelõs kölcsönhatások 4.

Részletesebben

Kocák tejtermelési zavara és ami mögötte van 2016. 06. 02. dr. Dobos László

Kocák tejtermelési zavara és ami mögötte van 2016. 06. 02. dr. Dobos László Kocák tejtermelési zavara és ami mögötte van 2016. 06. 02. dr. Dobos László Postpartum Dysgalactia Syndrome PPDS Meghatározás Közvetlenül fialás után kezdődik Tejtermelés zavara (mennyiség és minőség)

Részletesebben

Az örökítőanyag. Az élőlények örökítőanyaga minden esetben nukleinsav (DNS,RNS) (1)Griffith, (2)Avery, MacLeod and McCarty (3)Hershey and Chase

Az örökítőanyag. Az élőlények örökítőanyaga minden esetben nukleinsav (DNS,RNS) (1)Griffith, (2)Avery, MacLeod and McCarty (3)Hershey and Chase SZTE, Orv. Biol. Int., Mol- és Sejtbiol. Gyak., VIII. Az örökítőanyag Az élőlények örökítőanyaga minden esetben nukleinsav (DNS,RNS) (1)Griffith, (2)Avery, MacLeod and McCarty (3)Hershey and Chase Ez az

Részletesebben

a NAT-1-0988/2010 nyilvántartási számú akkreditált státuszhoz

a NAT-1-0988/2010 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület RÉSZLETEZÕ OKIRAT a NAT-1-0988/2010 nyilvántartási számú akkreditált státuszhoz A METRIC Minõsítõ, Fejlesztõ és Szolgáltató Kft. Vizsgálólaboratóriuma (2921 Komárom, Szabadság

Részletesebben

Hatékony tumorellenes készítmények előállítása target és drug molekulák kombinációjával (Zárójelentés)

Hatékony tumorellenes készítmények előállítása target és drug molekulák kombinációjával (Zárójelentés) Hatékony tumorellenes készítmények előállítása target és drug molekulák kombinációjával (Zárójelentés) Prof. Dr. Mező Gábor tudományos tanácsadó Kutatásunk célja az volt, hogy olyan biokonjugátumokat készítsünk,

Részletesebben

FARMAKOKINETIKAI MODELLEK

FARMAKOKINETIKAI MODELLEK FARMAKOKINETIKAI MODELLEK Farmakokinetikai modellek 1. Farmakokinetikai modellek viszonylag egyszerű matematikai képletek (eljárások), amelyek a matematika nyelvén próbálnak meg leírni viszonylag komplex

Részletesebben

Környezetvédelem (KM002_1)

Környezetvédelem (KM002_1) A légkör keletkezése Környezetvédelem (KM002_1) 3a. Antropogén légszennyezés, levegőtisztaság-védelem 2015/2016-os tanév I. félév Dr. habil. Zseni Anikó egyetemi docens SZE, AHJK, Környezetmérnöki Tanszék

Részletesebben

14. Előadás Flavonoidok, antibiotikumok Flavonoidok (flavon, flavus latin, sárga) 4000, rügy, friss hajtás, virág, termés Sárga primula C 3 C 1 2 1 izoflavonoidváz neoflavonoidváz flavonoidváz (1,2-difenilpropán)

Részletesebben

Mikroorganizmusok patogenitása

Mikroorganizmusok patogenitása Mikroorganizmusok patogenitása Dr. Maráz Anna egyetemi tanár Mikrobiológia és Biotechnológia Tanszék Élelmiszertudományi Kar Budapesti Corvinus Egyetem Mikroorganizmusok kölcsönhatásai (interakciói) Szimbiózis

Részletesebben

Ásványi anyagok. Foszfor (P)

Ásványi anyagok. Foszfor (P) Ásványi anyagok Az ásványi anyagok azon csoportját, amelyek a szervezetünkben, a test tömegének 0,005%-ánál nagyobb mennyiségben vannak jelen, makroelemeknek nevezzük. Azokat az elemeket, amelyek ennél

Részletesebben

Baktériumok biokémiai vizsgálata

Baktériumok biokémiai vizsgálata Baktériumok biokémiai vizsgálata Baktériumok jellemzése Mikroszkópos morfológia Biokémia Makroszkópos morfológia Biokémiai identifikálás => baktérium fajra jellemző enzimek kimutatása (bizonyos enzim megléte

Részletesebben

SZTEROIDKONVERZIÓK. BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1. Szteroidkonverziók

SZTEROIDKONVERZIÓK. BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1. Szteroidkonverziók SZTEROIDKONVERZIÓK A szterán váz planáris, merev szerkezet, pl. a 3-as és 17- es C-ek távolsága ill. a rajtuk levő szubsztituensek távolsága pontosan meghatározott. A szteránvázas vegyületek bioszintézise

Részletesebben

SALGÓTARJÁNI MADÁCH IMRE GIMNÁZIUM 3100 Salgótarján, Arany János út 12. Pedagógiai program. Kémia tantárgy kerettanterve

SALGÓTARJÁNI MADÁCH IMRE GIMNÁZIUM 3100 Salgótarján, Arany János út 12. Pedagógiai program. Kémia tantárgy kerettanterve SALGÓTARJÁNI MADÁCH IMRE GIMNÁZIUM 3100 Salgótarján, Arany János út 12. Pedagógiai program Kémia tantárgy kerettanterve KÉMIA HELYI TANTERV A kémia tantárgy teljes óraterve 9. osztály 10. osztály Heti

Részletesebben

BWT Hungária Kft., 2040 Budaörs, Keleti u. 7. Műszaki iroda, bemutatóterem, raktár 2040 Budaörs, Keleti u. 7. Tel.: 23/430-480 Fax: 23/430-482

BWT Hungária Kft., 2040 Budaörs, Keleti u. 7. Műszaki iroda, bemutatóterem, raktár 2040 Budaörs, Keleti u. 7. Tel.: 23/430-480 Fax: 23/430-482 BWT Hungária Kft., 2040 Budaörs, Keleti u. 7. BWT Hungária Kft. Műszaki iroda, bemutatóterem, raktár 2040 Budaörs, Keleti u. 7. Tel.: 23/430-480 Fax: 23/430-482 E-mail: info.bp@bwt.hu www.bwt.hu G É P

Részletesebben

1. Tömegszámváltozás nélkül milyen részecskéket bocsáthatnak ki magukból a bomlékony atommagok?

1. Tömegszámváltozás nélkül milyen részecskéket bocsáthatnak ki magukból a bomlékony atommagok? A 2004/2005. tanévi Országos Középiskolai Tanulmányi Verseny első (iskolai) fordulójának feladatlapja KÉMIÁBÓL I-II. kategória I. FELADATSOR Az I. feladatsorban húsz kérdés szerepel. Minden kérdés után

Részletesebben

Gyógyszerészi feladatok a rezisztens/multirezisztens kórokozók terjedésének mérséklésében

Gyógyszerészi feladatok a rezisztens/multirezisztens kórokozók terjedésének mérséklésében Gyógyszerészi feladatok a rezisztens/multirezisztens kórokozók terjedésének mérséklésében Miseta Ildikó XLVIII. Rozsnyay Emlékverseny 2013. május10-12. Miskolctapolca Bevezetés Előadás vázlata Multirezisztenskórokozók

Részletesebben

Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p

Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p Név: Elérhető pont: 5 p Dátum: Elért pont: Javítóvizsga A teszthez tollat használj! Figyelmesen olvasd el a feladatokat! Jó munkát.. Mi a neve az anyag alkotórészeinek? A. részecskék B. összetevők C. picurkák

Részletesebben

BIOLÓGIA 7-8. évfolyam. A tantárgy heti óraszáma A tantárgy éves óraszáma 7. évfolyam 2 óra 72 óra 8. évfolyam 1,5 óra 54 óra. 7.

BIOLÓGIA 7-8. évfolyam. A tantárgy heti óraszáma A tantárgy éves óraszáma 7. évfolyam 2 óra 72 óra 8. évfolyam 1,5 óra 54 óra. 7. BIOLÓGIA 7-8. évfolyam Heti és éves óraterv: A tantárgy heti óraszáma A tantárgy éves óraszáma 7. évfolyam 2 óra 72 óra 8. évfolyam 1,5 óra 54 óra 7. évfolyam A tematikai egységek áttekintő táblázata Tematikai

Részletesebben

Szennyezőanyag-tartalom mélységbeli függése erőművi salakhányókon

Szennyezőanyag-tartalom mélységbeli függése erőművi salakhányókon Szennyezőanyag-tartalom mélységbeli függése erőművi salakhányókon Angyal Zsuzsanna 1. Bevezetés Magyarország régi nehézipari vidékeit még ma is sok helyen csúfítják erőművekből vagy ipari üzemekből származó

Részletesebben

Cipó Ibolya - Epizootiológia I

Cipó Ibolya - Epizootiológia I Mezőgazdasági Iskola Topolya Cipó Ibolya Készült a Magyar Nemzeti Tanács támogatásával Epizootiológia I (Általános mikrobiológia) jegyzetfüzet a Mezőgazdasági Iskola diákjainak Topolya, 2011 ÁLTALÁNOS

Részletesebben

BIOLÓGIA és BIOTECHNOLÓGIA 3. rész

BIOLÓGIA és BIOTECHNOLÓGIA 3. rész BIOLÓGIA és BIOTECHNOLÓGIA 3. rész Előadók: Ballagi András, c. egyetemi tanár Richter Gedeon NyRt. - BME Írásos segédanyag található a: http://oktatas.ch.bme.hu /oktatas /konyvek /mezgaz /Biol-biotech-vegyész-MSc

Részletesebben

BETEGTÁJÉKOZTATÓ: INFORMÁCIÓK A FELHASZNÁLÓ SZÁMÁRA. Standacillin 200 mg/ml por oldatos injekcióhoz. ampicillin

BETEGTÁJÉKOZTATÓ: INFORMÁCIÓK A FELHASZNÁLÓ SZÁMÁRA. Standacillin 200 mg/ml por oldatos injekcióhoz. ampicillin 39 261/55/07 BETEGTÁJÉKOZTATÓ: INFORMÁCIÓK A FELHASZNÁLÓ SZÁMÁRA Standacillin 200 mg/ml por oldatos injekcióhoz ampicillin Mielott elkezdené alkalmazni ezt a gyógyszert, olvassa el figyelmesen az alábbi

Részletesebben

Fejezet a Gulyás Méhészet által összeállított Méhészeti tudástár mézfogyasztóknak (2015) ismeretanyagból. A méz. összetétele és élettani hatása

Fejezet a Gulyás Méhészet által összeállított Méhészeti tudástár mézfogyasztóknak (2015) ismeretanyagból. A méz. összetétele és élettani hatása A méz összetétele és élettani hatása A méz a növények nektárjából a méhek által előállított termék. A nektár a növények kiválasztási folyamatai során keletkezik, híg cukortartalmú oldat, amely a méheket

Részletesebben

IPARI ENZIMEK. 1. Az enzimek használatának története

IPARI ENZIMEK. 1. Az enzimek használatának története IPARI ENZIMEK 1. Az enzimek használatának története Az enzimek a biológiai anyagok, biológiai makromolekulák, amelyeket élő szervezetek állítanak elő, és amelyek egy meghatározott biokémiai reakció katalizátoraként

Részletesebben