Elektrofiziológiai alapjelenségek 1. Dr. Tóth András

Hasonló dokumentumok
Szívelektrofiziológiai alapjelenségek. Dr. Tóth András 2018

Elektrofiziológiai alapjelenségek 1. Dr. Tóth András

Elektrofiziológiai alapjelenségek. Dr. Tóth András

Szívelektrofiziológiai alapjelenségek 2. Dr. Tóth András 2018

Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet

a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg:

Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika

Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál

Membránpotenciál, akciós potenciál

Érzékszervi receptorok

Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet.

Sejtek membránpotenciálja

Membránpotenciál. Nyugalmi membránpotenciál. Akciós potenciál

Egy idegsejt működése

Az ingerületi folyamat sejtélettani alapjai

Membránszerkezet, Membránpotenciál, Akciós potenciál. Biofizika szeminárium

Transzportfolyamatok a biológiai rendszerekben

Membránszerkezet Nyugalmi membránpotenciál

Gyógyszerészeti neurobiológia. Idegélettan

Az akciós potenciál (AP) 2.rész. Szentandrássy Norbert

IONCSATORNÁK. I. Szelektivitás és kapuzás. III. Szabályozás enzimek és alegységek által. IV. Akciós potenciál és szinaptikus átvitel

Nyugalmi potenciál, akciós potenciál és elektromos ingerelhetőség. A membránpotenciál mérése. Panyi György

IONCSATORNÁK. Osztályozás töltéshordozók szerint: pozitív töltésű ion: Na+, K+, Ca2+ negatív töltésű ion: Cl-, HCO3-

A szívizomsejt ioncsatornái és azok működése

Membránszerkezet. Membránszerkezet, Membránpotenciál, Akciós potenciál. Folyékony mozaik modell. Membrán-modellek. Biofizika szeminárium

a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció. Szinaptikus jelátvitel.

A Sejtmembrán Szerkezete Nyugalmi Membránpotenciál

A szívizom akciós potenciálja, és az azt meghatározó ioncsatornák

Az idegsejt elektrokémiai és

Az idegsejtek kommunikációja. a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció

A sejtek közötti kommunikáció módjai és mechanizmusa. kommunikáció a szomszédos vagy a távoli sejtek között intracellulári jelátviteli folyamatok

Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

CELLULÁRIS SZÍV- ELEKTROFIZIOLÓGIAI MÉRÉSI TECHNIKÁK. Dr. Virág László

A Sejtmembrán Szerkezete Nyugalmi Membránpotenciál

Potenciálok. Elektrokémiai egyensúly

MEMBRÁNSZERKEZET, MEMBRÁNPOTENCIÁL, AKCIÓS POTENCIÁL. Biofizika szeminárium

In vitro elektrofiziológiai technikák Mike Árpád

4. Egy szarkomer sematikus rajza látható az alanti ábrán. Aktív kontrakció esetén mely távolságok csökkenése lesz észlelhető? (3)

NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

A sejtek közöti kommunikáció formái. BsC II. Sejtélettani alapok Dr. Fodor János

BIOFIZIKA. Membránpotenciál és transzport. Liliom Károly. MTA TTK Enzimológiai Intézet

Az idegi működés strukturális és sejtes alapjai

A membránpotenciál. A membránpotenciál mérése

Biofizika I. DIFFÚZIÓ OZMÓZIS

- Csatornák pumpák - Ellenállás kondenzátor komponens - Fordulási-, membrán potenciál. ellenállás. kondenzátor

KÉSZÍTETTE: BALOGH VERONIKA ELTE IDEGTUDOMÁNY ÉS HUMÁNBIOLÓGIA SZAKIRÁNY MSC 2015/16 II. FÉLÉV

1. Mi jellemző a connexin fehérjékre?

Transzportfolyamatok a biológiai rendszerekben

A somatomotoros rendszer

Nyugalmi és akciós potenciál

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával

Ioncsatorna szerkezetek

Biofizika szeminárium. Diffúzió, ozmózis

A plazmamembrán felépítése

Membrántranszport. Gyógyszerész előadás Dr. Barkó Szilvia

Transzporterek vizsgálata lipidmembránokban Sarkadi Balázs MTA-SE Molekuláris Biofizikai Kutatócsoport, MTA-TTK Budapest

Biológiai membránok és membrántranszport

OZMÓZIS, MEMBRÁNTRANSZPORT

A sejtek membránpotenciálja (MP)

S-2. Jelátviteli mechanizmusok

A transzportfolyamatok és a sejtek közötti kommunikáció

NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

OZMÓZIS. BIOFIZIKA I Október 25. Bugyi Beáta PTE ÁOK Biofizikai Intézet

ÖSSZ-TARTALOM. 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi kommunikáció 3.

Szívbetegségek hátterében álló folyamatok megismerése a ciklusosan változó szívélettani paraméterek elemzésén keresztül

A transzportfolyamatok és a sejtek közötti kommunikáció

Ca 2+ Transients in Astrocyte Fine Processes Occur Via Ca 2+ Influx in the Adult Mouse Hippocampus

BIOFIZIKA I OZMÓZIS Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

ÖSSZ-TARTALOM 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás

Hodkin-Huxley formalizmus.

Jelutak ÖSSZ TARTALOM. Jelutak. 1. a sejtkommunikáció alapjai

Szignáltranszdukció Mediátorok (elsődleges hírvivők) az információ kémiailag kódolt

FEJEZETEK AZ ÉLETTAN TANTÁRGYBÓL

Kálium ioncsatornák eltérő funkciói

9. előadás Sejtek közötti kommunikáció

Ioncsatorna funkciók mérése in vitro körülmények között. Dr. Nagy Norbert Tudományos munkatárs SZTE Farmakológiai és Farmakoterápiai Intézet

Folyadékkristályok; biológiai és mesterséges membránok

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós

A harántcsíkolt izom struktúrája általános felépítés

Transzportfolyamatok a biológiai rendszerekben

klorid ioncsatorna az ABC (ATP Binding Casette) fehérjecsaládba tartozik, amelyek általánosságban részt vesznek a gyógyszerek olyan alapvetı

Receptorok, szignáltranszdukció jelátviteli mechanizmusok

MEDICINÁLIS ALAPISMERETEK BIOKÉMIA A BIOLÓGIAI MEMBRÁNOK 1. kulcsszó cím: MEMBRÁNOK

térrészek elválasztása transzport jelátvitel Milyen a membrán szerkezete? Milyen a membrán szerkezete? lipid kettısréteg, hidrofil/hidrofób részek

Az elmúlt években végzett kísérleteink eredményei arra utaltak, hogy az extracelluláris ph megváltoztatása jelentősen befolyásolja az ATP és a cink

Vázizom elektrofiziológia alapjai. Tóth András, PhD

A szív élettana. Aszív élettana I. A szív pumpafunkciója A szívciklus A szívizom sajátosságai A szív elektrofiziológiája Az EKG

13 Elektrokémia. Elektrokémia Dia 1 /52

Érzékelési folyamat szereplői. Az érzékelés biofizikájának alapjai. Receptor felépítése. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG?

Intracelluláris ion homeosztázis I.-II. Február 15, 2011

Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet

A kémiai szinapszis (alapok)

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói

Elektromos ingerlés ELEKTROMOS INGERLÉS. A sejtmembrán szerkezete. Na + extra. Elektromos ingerlés:

Szerkezet és funkció kapcsolata a membránműködésben. Folyadékkristályok típusai (1) Dr. Voszka István

Intracelluláris módszerek a szív elektrofiziológiai tulajdonságainak vizsgálatára. Tóth András DSc. 2018

Szerkezet és funkció kapcsolata a membránműködésben. Folyadékkristályok típusai (1) Dr. Voszka István

Átírás:

Elektrofiziológiai alapjelenségek 1. Dr. Tóth András

Témák Membrántranszport folyamatok Donnan egyensúly Ioncsatornák

1 Transzmembrán transzport

1 A membrántranszport-folyamatok típusai

2 J: diffúziós fluxus A: felület dc/dx: koncentráció gradiens D: diffúziós állandó (D: cm2/s) dc J = DA dx c J = DA x J D = dc A dx Fick első (diffúziós) törvénye

3 A diffúzióhoz szükséges időtartam a diffúziós távolság függvényében négyzetesen változik

4 J J K Fick törvénye membránra = DA = DA = D x β c x c x β β: particiós koefficiens K: permeabilitási tényező Transzmembrán diffúzió kinetikája

5 Ozmotikus diffúzió

6 A facilitált diffúzió mechanizmusa

7 Ioncsatornák működési elvei

8 A Na + /K + ATPáz működésének elve

9 Másodlagos aktív transzportfolyamatok

1 0 Michaelis-Menten egyenlet V max : maximális transzport sebesség K m : szubsztrát koncentráció, melyre a transzport sebessége = V max /2 A protein-mediált transzport szaturációs kinetikája

Kérdés: Mi a különbség az alábbi három iontranszporter között? 1. Nátrium-kalcium kicserélő 2. Nátrium-hidrogén kicserélő 3. A szarkolemma kálcium pumpája

2 Ionegyensúly

1 1 µ = µ o + RT ln C + zfe µ = RT ln [ ] X + [ ] X + A B + zf ( E E ) A B Az elektrokémiai potenciál(különbség)

1 2 Egyensúlyban 0 E = zf A [ ] + X A ln [ ] + zf + A X B ( ) [ ] + X EA EB = RT ln [ X ] + RT [ X ] + A EB = ln zf [ X ] + B RT ( E E ) B A B Egyértékű kationra Z = 1 = 60mV lg [ ] X + [ ] X E + X + A B A Nernst egyenlet levezetése

Kérdés: Mit értünk egy adott ion egyensúlyi potenciálján???

Hogyan használható a Nernst egyenlet ionmozgások vizsgálatára diffuzibilis ionok esetén?

1 3 A B A B 0.1 M 0.01 M 1 M 0.1 M K + K + HCO 3 - HCO 3 - E A E B = -60 mv E A E B = +100 mv Egyensúly áll fenn? A Nernst egyenlet alkalmazásai 1.

1 4 A B 0.1 M K + + + + + + + + 0.01 M K + A B 1 M 0.1 M HCO - 3 HCO - 3 E A E B = 60 mv 60 mv-nál a K + elektrokémiai egyensúlyban van a membrán két oldalán Nincsen elektromos hajtóerő!!! A Nernst egyenlet alkalmazásai 2.

1 5 A B 0.1 M K + + + + + + + + + 0.01 M K + A B 1 M HCO 3 - + + + + + + + + 0.1 M HCO 3 - E A E B = -60 mv A K + egyensúlyi állapotban van a membrán két oldalán Nincsen elektromos hajtóerő E A E B = +100 mv A HCO 3- ennél a membránfeszültségnél nincsen egyensúlyi állapotban Van elektromos hajtóerő: +40 mv A Nernst egyenlet alkalmazásai 3.

Mi történik akkor, ha a membrán legalább egy ionra NEM permeábilis?

1 6 A B A B [K + ] = 0.1 M [P - ] = 0.1 M [K + ] = 0.1 M [Cl - ] = 0.1 M [K + ] = [Cl - ] = [P - ] = 0.1 M [K + ] = [Cl - ] = Kiindulási állapot Egyensúly? 1. Az elektroneutralitás elvének érvényesülnie kell! 2. Az elektrokémiai potenciál minden diffuzibilis ionra zérus kell hogy legyen! (Nem diffuzibilis ionra nem teljesül!!!) A Gibbs-Donnan egyensúly kialakulása 1.

1 7 A B A B [K + ] = 0.1 M [P - ] = 0.1 M [K + ] = 0.1 M [Cl - ] = 0.1 M [K + ] = 0.133 M [Cl - ] = 0.033 M [P - ] = 0.1 M [K + ] = 0.066 M [Cl - ] = 0.066 M Kiindulási állapot Egyensúlyi állapot (!?) 1. Az elektroneutralitás elve érvényesül!!! 2. Az elektrokémiai potenciál K + -ra és Cl - -ra zérus!!! 3.Minden OK? A Gibbs-Donnan egyensúly kialakulása 2.

1 8 P H = 2.99 atm!!! A B A B [K + ] = 0.1 M [P - ] = 0.1 M [K + ] = 0.1 M [Cl - ] = 0.1 M [K + ] = 0.133 M [Cl - ] = 0.033 M [P - ] = 0.1 M [K + ] = 0.066 M [Cl - ] = 0.066 M Kiindulási állapot Egyensúlyi állapot (A nyomásokra nem áll fenn az egyensúly!!!) Gibbs-Donnan egyensúlyban a membrán két oldala között hidrosztatikus nyomásgradiens alakul ki

Kérdés: Mikor van Gibbs-Donnan egyensúlyban egy élő sejt membránja?

3 Ioncsatornák

Alaptulajdonságok

1 9 Ioncsatorna Protein ( vagy protein komplex), mely a sejt-, vagy sejtorganellum membránban pórusként működik és lehetővé teszi (facilitálja) ionok szelektív transzportját. Aktiválódása következtében transzmembrán elektromos áram generálódik, amely lehet befele mutató ( inward ) vagy kifele mutató ( outward ). Az ioncsatornák hibás működése súlyos betegségeket okozhat. Egyre nagyobb számban azonosítottak humán betegségeket, amelyek az ioncsatornák hibás működésének következtében alakulnak ki ioncsatorna betegségek ( channelopathies ).

2 0 Ioncsatornák alaptulajdonságai 1. Tézis: A sejtek normális működéséhez számos ion precízen szabályozott, szinkronizált transzportja szükséges. Ioncsatornák megtalálhatók a sejt plazma membránjában és számos sejtorganellumban. Belsejükben vezető csatorna található, amely az ionok mozgását azok méretétől és/vagy töltésétől függően teszi, vagy nem teszi lehetővé (szelektív permeabilitás). A csatorna működése lehet kapuzott (gated), vagy nem kapuzott (nongated). Egyéb iontranszport proteinektől az ioncsatornákat két fontos tulajdonságuk különbözteti meg: (1) A transzport relatív sebessége (transport rate) nagyon nagy (gyakran > 10 6 ion/s). (2) Az ionok elektrokémiai gradiensük irányában haladnak át a csatornán (amely a koncentrációgradiens és a membránpotenciál függvénye). A "downhill", transzporthoz nincs szükség metabolikus energiára (ATP, kotranszport vagy aktív transzport). Mindezek következtében az ioncsatornák mivel képesek az ionok ki- vagy beáramlását szabályozni sokszor direkt vagy indirekt(!!!) célpontjai különböző gyógyszereknek.

2 1 Ioncsatornák alaptulajdonságai 2. Tézis: Egyes csatornák működése szabályozott ( gated channels), másoké nem ( nongated leakage channels). Gated ion csatorna valamilyen stimulus hatására nyílik vagy záródik: (1) membránpotenciál (feszültség) változások (voltage gated) (2) specifikus ligand vagy szignál molekula kötődése (ligand gated) (hormon, neurotranszmitter, lokális hormon); (3) mechanikai hatás (deformáció, nyomás, stretch), (4) fényenergia (foton). A gated ioncsatorna szabályozott csak akkor nyílik, amikor a megfelelő szignál beérkezik. Záródása viszont lehet spontán, vagy szabályozott. Nongated (leakage) ion csatorna - mindig nyitott (vagy szivárog) és lehetővé teszi egy, vagy több ion áthaladását azok elektrokémiai grádiensének megfelelő irányban. A nongated csatorna nem szabályozott (azaz a transzport-fluxus az elektrokémiai potenciálon kívül csak a hőmérséklettől függ).

2 2 Egy ioncsatorna elvi struktúrája 1 csatorna domain-ek (tipikusan csatornánként négy) 2 outer vestibule 3 a selectivity filter 4 a selectivity filter átmérője 5 foszforilációs hely 6 sejt membrán A legtipikusabb csatorna-pórus legszűkebb pontján csak egy-két atomnyi széles és szelektív a rá specifikus ionra (pl. Na +, H +, K + ). Ugyanakkor jónéhány ioncsatorna több azonos előjelű töltéssel rendelkező ion számára is permeábilis lehet (azaz kation vagy anion szelektív).

2 3 Diverzitás Egyetlen élő sejtben több, mint 300 ioncsatorna típus található. Osztályozásuk többféleképpen történhet: a gating mechanizmus szerint, az általuk a póruson szelektiven átengedett ionok szerint, vagy az alkotó proteinek struktúrája, lokalizációja szerint. További heterogenitást jelent, ha az adott áramot több, eltérő szerkezettel rendelkező csatorna együttes aktiválódása alakítja ki. A csatornát alkotó, vagy szabályozó alegységek hiánya vagy mutációja funkcióvesztésben nyilvánulhat meg, amely számos betegség hátterében megtalálható.

Kérdés Miben különbözik a membránreceptor az ioncsatornától?

Kérdés Van-e olyan membrán receptor, amely ioncsatorna?

Vizsgálati technikák

Bert Sakmann Nobel díjas a patch clamp módszer kidolgozója

2 4 A patch clamp technika alapelve Szükséges hozzá Pipetta + Elektród Speciális pipettaoldat Gigaseal (R > 1GOhm) Feszültségparancs Árammérés

2 5 A patch clamp mérés lépései

2 6 A patch clamp technika fontosabb konfigurációi Vizsgálható Egyetlen csatorna árama Egy csatornatípus vagy - csoport árama Speciális pipettaoldat IC miliő módosítása

2 7 Automatizált patch clamp mérések elve

Szabályozási alapelvek

2 8 Egyszerű, kétállapotú ioncsatorna a background csatornák spontán oszcillálnak a nyitott és zárt állapotok között

2 9 Komplex, többállapotú ioncsatorna

Biofizikai tulajdonságok

3 0 Single channel áram és meghatározása 1. Egyetlen csatorna vagy nyitott,vagy zárt állapotban van. 2. A csatorna nyitott állapota rövid ideig tart a makroszkopikus áramhoz viszonyítva. 3. A nyitott állapot időtartama és latenciája nagyon változó. Előfordul, hogy egy csatorna egyáltalán nem nyílik ki. 4. Egyetlen csatorna nyitási valószínűségeloszlás függvénye hasonló a makroszkópikus áramhoz 5. A csatornák többször is kinyílhatnak, ha nincs inaktiváció

3 1 Sok feszültségfüggő Na + csatorna, illetve feszültségfüggő késleltetett K + csatorna integrált válasza feszültségugrásra A Na + csatorna spontán inaktiválódik, a K + csatorna nem

3 2 Az átlagos nyitvatartási idő meghatározása A csatorna modulációja az átlagos nyitvatartási idő változásában nyilvánul meg

3 3 Inward, illetve outward egyenirányító csatornák vezetési (feszültség-áram) karakterisztikája

3 4 Egy-egy Na +, illetve K + csatornacsoport, illetve azok kombinációjának feszültség-áram karakterisztikája A K + áram lineáris nincs feszültség-inaktiváció A Na + áram nemlineáris a feszültség-inaktiváció miatt

3 5 Két ioncsatorna típus áram-feszültség összefüggése pitvarból izolált sejtekben meghatározva

3 6 Az aktivációs/inaktivációs kinetika A Kv4 típusú K + csatornák lassú inaktivációjának működő strukturális modellje

Ioncsatornák csoportosítása

3 7 Csoportosítás a kapuzó szignál szerint 1 Feszültségfüggő ioncsatornák Nyitásuk (és sokszor záródásuk is) a membránpotenciál (feszültség-gradiens) változásainak függvénye, azaz spontán oszcillációjuk egyensúlyi állapota (a nyitott/ zárt állapot valószínűsége) feszültségfüggő Főbb típusok - Feszültségfüggő Na + csatornák (Nav) - Feszültségfüggő K + csatornák (Kv) - Feszültségfüggő Ca + csatornák (Cav) - Feszültségfüggő H + csatornák (Hv) - Hyperpolarizáció-aktivált csatornák - Tranziens receptor potenciál (TRP) csatornák Funkciójuk Elsősorban ingerelhető sejtek (izomsejtek, neuronok, mirigysejtek) ingerelhetőségéért és ingerületvezetéséért felelősek, ezáltal létfontosságúak az idegi impulzusok terjedésében is. Az adott körülményektől függően egyaránt hozzájárulhatnak a depolarizáció, repolarizáció, illetve hiperpolarizáció kialakulásához.

3 8 Csoportosítás a kapuzó szignál szerint 2 Ligand-függő ioncsatornák Másnéven ionotróp receptorok. Nyitásuk egy speciális ligand valamelyik csatornaproteinhez kötődésének függvénye: pl. neurotranszmitterfüggő, G-protein függő, modulált (kovalens modifikáció foszforiláció) csatornák. A ligand kötése a csatornaprotein konformációváltozásán keresztül facilitálja az ionok beáramlását Ezek a csatornák felelősek pl. az impulzusok inicializálásáért, azaz ingerelhető sejtek (ideg, izom, mirigy) kezdeti depolarizációjáért. A körülményektől függően depolarizáció, repolarizáció, vagy hiperpolarizáció kialakításában részt vehetnek. Példák: Kation-permeábilis nicotinerg acetylcholine receptor, ionotróp glutamát-függő receptorok, ATP-függő P2X receptorok, anion-permeábilis GABA-aktivált receptor. Egyesek a 2-nd messengerek által aktivált ioncsatornákat is ide szokták sorolni (bár a ligand és a 2-nd messenger nem azonos kategória).

3 9 A modulált csatornák, lehetnek feszültségfüggőek, de ezenkívül kovalens modifikáció (pl. foszforiláció) is modulálja a nyitott/zárt állapotok valószínűségét A G-protein függő csatornák nyitott és zárt állapotainak valószínűségét a (pl. receptor aktiválódás során) aktivált G- protein kötődése modulálja (pl. muszkarin típusú Ach)

4 0 Csoportosítás a kapuzó szignál szerint 3 Deformációra (stretch) aktiválódó ioncsatornák Nyitásuk (és sokszor záródásuk) a csatornára ható mechanikai stimulus (nyomás, stretch, vibráció) hatására történik. Fényre aktiválódó ioncsatornák Fényérzékeny sejtekben nyitásuk foton-abszorbció következtében történik.

4 1 Csoportosítás a transzportált ion szerint 1 Nátrium csatornák Feszültségfüggő nátrium csatornák (Nav) Epitheliális nátrium csatornák (ENaC) Kálium csatornák Feszültségfüggő kálium csatornák (Kv) Kalcium-aktivált kálium csatornáks (BKCa, SK, stb.) Befelé-egyenirányító (inward-rectifier) kálium csatornák (Kir) Two-pore-domain kálium csatornák ( leak channels) Kalcium csatornák Feszültségfüggő kalcium csatornák (CaV)

4 2 Csoportosítás a transzportált ion szerint 2 Proton csatornák Feszültségfüggő proton csatornák (Hv), erős ph függéssel és nagyon kicsi konduktanciával Klorid csatornák Kevéssé ismert anioncsatorna szuper-család legalább 13 taggal. (pl. ClC, CLIC, Bestrophin, CFTR). Kevéssé, vagy egyáltalán nem szelektív kisméretű anionokra. A klorid a legjellemzőbb transzportált anion. Nem-szelektív kation csatornák Többféle kationra permeábilisak ( főleg Na +, K + and Ca 2+ ) Sok TRP (transient receptor potential) csatorna is ide tartozik

4 3 További csoportosítások Kevéssé általános tulajdonságok, pl. a pórusok száma, illetve a válasz időtartama alapján történik. Kétpórusú (two pore) csatornák Kb. 2 tagú kation-szelektív ioncsatorna család, amely két Kv-szerű (6-transzmembrán domain) egységet tartalmaz. Valószínűleg dimerként működik. Tranziens receptor potenciállal rendelkező (TRP) csatornák Legalább 28 tagú család, rendkívül diverz aktivációs tulajdonságokkal Egyesek állandóan nyitottak, mások feszültség-, [Ca 2+ ]-, ph-, redox állapot-, osmolaritás- vagy stretch-függőek. Szelektivitásuk is változó, Ca 2+ -szelektív, illetve kevésbé szelektív kation csatornák. 6 csoport: kanonikus (TRPC), vanilloid (TRPV), melastatin (TRPM), polycystin (TRPP), mucolipin (TRPML), és ankyrin (TRPA) transzmembrán proteinnel.

4 4 A K + csatornák népes családja

Szerkezet

4 5 Néhány ioncsatorna szupercsalád jellemző képviselője

4 6 Az S 4 hélixek a feszültségfüggő csatornák feszültségszenzorai jelentős aminosav homológia jellemző

4 7 Feszültségfüggő csatornák működési hipotézisei a A konvencionális gating modell: A töltött S4 szegmens (feszültségszenzor) transzmembrán mozgást végez. b Az újabb paddle modell: A töltött S4 és az S3 szegmensek által alkotott hajtű a csatornán kívül helyezkedik el. A csatorna aktivációja ezek elfordulásával jön létre. c A transzporter modell: Ez az újabb modell azon alapul, hogy a feszültség-szenzoron (S4) található töltések nem végeznek transzmembrán mozgást, hanem elfordulnak hossztengelyük körül, ezáltal a gating töltések extracelluláris helyzetből intracelluláris pozícióba kerülnek.

4 8 Feszültségfüggő Na + csatornák (Nav) Legalább 9 tagú csatornacsalád, melynek nagy szerepe van az akciós potenciál kialakításában és terjedésében. A pórusképzőαalegységek rendkívül nagyok (kb. 4,000 amino csoport) és négy homológ domain-ból állnak (I-IV), melyekben 6-6 transzmembrán szegmens (S1- S6) található. Ezek az α alegységek szabályozó szereppel bíróβalegységekkel egészülnek ki, melyek egyetlen transzmembrán egységet alkotnak.

4 9 Feszültségfüggő K + csatornák (Kv) Közel 40 tagú ioncsatorna család, amely 12 alcsaládból áll. Ezek a csatornák főleg a membrán akciós potenciált követő repolarizációjáért felelősek. Az α alegységek (a Na + csatornákhoz hasonlóan) 6 transzmembrán szegmensből állnak (6TM) és ugyanúgy tetramert alkotva hoznak létre működő csatornát a membránban.

5 0 A K + csatorna funkcionális modellje

5 1 Feszültségfüggő Ca 2+ csatornák (Cav) A Cav csatornacsalád legalább 10 tagból áll. Fontos szerepük van az izmok excitáció-kontrakció csatolásának biztosításában, illetve neuronok transzmitter-felszabadulásának szabályozásában Az α 1 alegység szekezete nagyon hasonlít a Na + csatorna α alegységéhez. További szabályozó alegységek kapcsolódnak hozzá (α 2, δ, β, γ).

5 2 A kalcium-indukált kalcium felszabadulás (CICR) alapelve

5 3 A szívben található legfontosabb ioncsatornák

5 2 A szív akciós potenciálja és a legfontosabb ionáramai, ioncsatornái közötti kapcsolat

Kérdések Segítség Hogyan lehetséges, hogy a Na + átmegy egy ioncsatornán, a K + pedig nem? Hogyan lehetséges, hogy a K + átmegy egy ioncsatornán, a Na + nem? Ion Atomsugár(Angstöm) Hidratációs energia (kcal/mol ) Na + 0.95-105 K + 1.33-85

Kérdés Melyek az ioncsatornák fontosabb tulajdonságai?

Válasz Integráns Hidrofil pórust membrán proteinek Szelektív permeabilitással alkotnak a bilipid membránban rendelkeznek Single channel (ON-OFF) konduktanciát mutatnak Rectification Gating Reguláció, (egyenirányító) működést mutat(hat)nak (oszcilláció), vezető és nem vezető állapotok azaz feszültség-, ligand-, vagy kovalens módosulásfüggő vezetés Farmakológiai modulálhatóság!!! Klinikailag fontos hatóanyagok célpontjai!!!

5 5 "Birth of an Idea", 2007 1.50 m x 0.90 m x 0.90 m Steel, glass, wood Sculpture by Julian Voss- Andreae based on potassium channel Photo by Dan Kvitka Sculpture commissioned and owned by Roderick MacKinnon Please use only with link to www.julianvossandreae.com

Elektrofiziológiai alapjelenségek 2. Dr. Tóth András

Témák Nyugalmi potenciál Lokális és akciós potenciálok Az ingerület terjedése

4 Nyugalmi potenciál

5 6 A B 0.1 M NaCl 0.01 M NaCl Ha a membrán kationra permeábilis, anionra nem, ionáram szükséges az egyensúly kialakulásához!!! A koncentrációs elem

5 7 Na + A B 0.1 M NaCl + + + + + + + 0.01 M NaCl Elektrokémiai egyensúlyban E A E B = - 60 mv A koncentrációs elem

Kérdés: Mennyi Na + ionnak kell átvándorolnia a membránon (22. ábra) az egyensúly eléréséhez?

Az élő sejtek jól modellezhetők multi-ion koncentrációs elemmel

5 8 Mért intra- és extracelluláris ionkoncentrációk

5 9 Cl - Na + E cc cc E 1) Na K + + IC (mm) 15 150 EC (mm) 150 5 E eq + 60 mv -90 mv Cl - 10 125-70 mv -70 mv Prot - 150 - - cc E K + 2) 3) P K + 100 P Prot = 0 Na + 4) E m = 70 mv A nyugalmi membránpotenciál egyszerűsített modellje humán vázizomra

+ + + + + + = = = = = K K m K Na Na m Na Cl Cl m Cl g E E I g E E I g E E I R g R U I ) ( ) ( 0 ) ( 1 A chord konduktancia egyenlet kiindulási feltételei 6 0 A nyugalmi potenciál elméleti becslése 1.

6 1 +6 0 0 Na + I Na ( E E m + m + I E = g K K + Na + + g = 0 ) g K + + g Na Na + + = ( E E K + + m g K E + g K + + Na ) g + g Na K + + E Na + -70-90 E m K + g Na + = 1 g K + = 100 E m 100 = E + E + Na + K 100 + 1 1 100 + 1 A chord konduktancia egyenlet

6 2 A nyugalmi potenciál elméleti becslése 2. E m = RT F ln k k pk pk [ K [ K + + ] ] o i + + k k pna pna [ Na [ Na + + ] ] o i + + k k pcl pcl [ Cl [ Cl ] ] i o A constant field (Goldman-Hodgkin-Katz) egyenlet

6 3 C A nyugalmi potenciált kialakító főbb tényezők

Kérdés: Melyek az alapvető feltételei stabil membránpotenciál kialakításának és fenntartásának?

Válasz: 1. Elkülönült ion kompartmentek 2. A membrán szelektív permeabilitása 3. Ion koncentráció gradiensek 4. Energia ellátás és ion transzporterek

Szív sejtek

6 4 A nyugalmi potenciál szívizomban is [K + ] függő kell hogy legyen

6 5 A nyugalmi potenciál valóban [K + ] függő szívizomban

Kérdés: Miért 30 mv az egyik sejttípusban (pl. vvt) a nyugalmi potenciál, amíg a másik típusban (pl. kamrai szívizomsejt) 90 mv?

Kérdés Melyek a membránpotenciál aktuális értékét meghatározó tényezők?

Válasz 1. A monovalens kationok koncentrációgradiense 2. A membrán szelektív permeabilitása kationokra 3. Az intracelluláris, nem permeábilis anionok koncentrációi

5 Lokális és akciós potenciálok

Lokális válasz

Kérdés Mi a különbség az elektrokémiai potenciál és a membránpotenciál között?

6 6 A lokális (küszöb alatti) válasz

Kérdés Melyek a lokális válasz legfontosabb jellemzői?

6 7 Időbeli szummáció

6 8 Térbeli szummáció

Kérdés Melyek a lokális válasz speciális esetei?

Akciós potenciál

6 9 Az akciós potenciál fázisai

7 0 Különböző típusú akciós potenciálok

Kérdés Miben különbözik a lokális válasz az akciós potenciáltól?

Akciós potenciálok a szívben

7 1 Az emlősszívben mérhető ionkoncentrációk

7 2 A gyors és lassú válasz szívben

7 3 Az akciós potenciál regionális változásai a szívben

Kérdés Mi a magyarázata a különböző szívsejtekben mért akciós potenciálok egymástól jelentősen eltérő alakjának (kinetikájának)?

7 4 Ionáramok! Gyors Nátrium Funny Delayed rectifier Kálcium I L T+L 0 0 Tranziens outward Background Nátrium Inward rectifier Az eltérő akciós potenciálok magyarázata

Kérdés Hogyan tudná megváltoztatni az akciós potenciál alakját?

7 5 Tetrodotoxin hatása a gyors válaszra

Kérdés Mi a tetrodotoxin hatása a szívizomsejtre?

6 Az ingerület terjedése

Az ingerületvezetés alapelvei

Kérdés Mi az értelme annak, hogy jelentős energiabefektetéssel (ATP) fenntartjuk sejtjeink nyugalmi potenciálját?

7 6 A különböző távolságban regisztrált potenciálváltozások

7 7 A változás regisztrált maximuma a távolság függvényében

7 8 Modell RC-kör potenciálváltozásai

7 9 Az axonmembrán elektromos modellje

8 0 R m R i C A membrán mért időkonstansa

8 1 Modell feszültségosztó (rezisztencia-hányados)

8 2 R R m i A membrán mért térkonstansa

8 3 A lokális (küszöb alatti) válasz terjedésének modellje

8 4 A lokális válasz terjedésének modellje

Kérdés Miért éppen az axondombon alakul ki a posztszinaptikus akciós potenciál?

8 5 Az akciós potenciál terjedési modellje velőhüvely nélküli rostban

8 6 Az akciós potenciál szaltatórikus terjedése

8 7 Akciós potenciál myelinhüvellyel rendelkező és myelinhüvely nélküli idegrostban mért terjedési sebessége

Kérdés Milyen tényezőktől függ a myelinhüvelyes rostok vezetési sebessége? És a myelinhüvely nélkülieké?

Kérdés Mi a magyarázata a myelinhüvelyes rostok jóval nagyobb vezetési sebességének?

Ingerületvezetés szívizomban

Kérdés Mit értünk azon, hogy a szívizom funkcionális szincitiumot képez?

8 8 MW < 1500 Ca 2+ ph E m Az elektromos szinapszis (gap junction) szerkezete

Kérdés Hol találhatók a szervezetben elektromos szinapszisok?

Kérdés Melyek a fontosabb funkcionális különbségek az elektromos és kémiai szinapszisok között?

8 9 A szívizomsejt elektromos modellje

9 0 A mikroszkópikus ingerületterjedés számítógépes szimulációja

Kérdés Mitől függ, hogy milyen irányban terjed az AP a három dimenziós szívizomban?

Kérdés Mi a magyarázata annak, hogy az AV csomón nagyon lassan halad át az ingerület?

Kérdés Van-e gyors, illetve lassú akciós potenciál terjedés? Miért?

Bónusz A gap junctionok jelentősége a szívizom ingerületvezetésében

9 1 Impulzusterjedés szubcelluláris szinten

9 2 Intra- és intercelluláris aktivációs késleltetések közötti különbségek - egyetlen sejt szélességű sejthálózat

9 3 Intra- és intercelluláris aktivációs késleltetések közötti különbségek - néhány sejt szélességű sejthálózat

9 4 Impulzusvezetés (izokron vonalak) normális gap junction csatolás esetén (homogén AP-populáció)

9 5 Impulzusvezetés (izokron vonalak) súlyos gap junction szétkapcsolás esetén (heterogén AP-populáció)

9 6 Súlyos gap junction szétkapcsolás esetén a vezetési sebesség kb. KÉT nagyságrenddel (!!!) csökkenhet (36.7 cm/s helyett csak 0.31 cm/s)

9 7 Normális gap junction csatolás esetén viszonylag egyenletesen elhelyezkedő izokron vonalak és homogén AP-populáció

9 8 Kritikus gap junction szétkapcsolódás esetén az akciós potenciálok klaszterokat alkotnak

9 9 Az egyes klasztereket alkotó sejtek elhelyezkedése jelentős mértékű szétkapcsolás esetén- az ingerület visszakanyarodása reentry -hez vezethet

VÉGE