A MEGAVOLTTERÁPIA MINŐSÉG- ELLENŐRZÉSÉNEK NÉHÁNY KÉRDÉSE (SUGÁRFIZIKAI ÉS INFORMATIKAI SZEMPONTOK) Doktori tézisek.



Hasonló dokumentumok
BESUGÁRZÁSTERVEZŐ RENDSZEREK MINŐSÉGBIZTOSÍTÁSA A SUGÁRTERÁPIÁBAN, 10 ÉV TAPASZTALATA. Pesznyák Csilla

MINŐSÉGBIZTOSÍTÁS SZEREPE A SUGÁRTERÁPIÁS SUGÁRBALESETEK MEGELŐZÉSÉBEN

A MEGAVOLTTERÁPIA MINŐSÉG- ELLENŐRZÉSÉNEK NÉHÁNY KÉRDÉSE. Pesznyák Csilla

A kézirat beérkezett: Közlésre elfogadva:

Sugárterápia minőségbiztosításának alapelvei Dr. Szabó Imre (DE OEC Onkológiai Intézet)

Minőségbiztosítás a sugárterápiában

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől

Abszolút és relatív aktivitás mérése

Röntgendiagnosztikai alapok

Intenzitás modulált sugárterápiás tervek dozimetriai ellenőrzése PTW Octavius 4D fantommal

A SUGÁRVÉDELEM SZEREPE A BME ORVOSI FIZIKA MSC KÉPZÉSÉBEN

besugárz Dr. Fröhlich Georgina Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest

Környezeti és személyi dózismérők típusvizsgálati és hitelesítési feltételeinek megteremtése az MVM PA ZRt sugárfizikai laboratóriumában

Kiegyenlítő szűrő nélküli mezők Farmer-kamrával történő kalibrációjánál alkalmazandó csúcshatás-korrekció mérése

Teljes bôr elektronbesugárzás dozimetriája

Számítógépes besugárzástervezés: visszatekintés és korszerû módszerek

SUGÁRVÉDELMI MÉRÉSI ELJÁRÁSOK A SEMMELWEIS EGYETEMEN

Teleterápia Dr. Fröhlich Georgina

Az on-line képvezérelt sugárterápiás eljárás leadott dózisra gyakorolt hatásának vizsgálata kismedence fantomon

MBFT Magyar Orvosfizikai Társaság (MOFT) XIV. konferenciája. Összefoglalók

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

A SZEMÉLYI DOZIMETRIAI SZOLGÁLAT ÚJ TLD-RENDSZERE TÍPUSVIZSGÁLATÁNAK TAPASZTALATAI

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, április

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Környezeti paraméterek hatása a nemzeti etalonnal történő mérésekre

Ionizáló sugárzások dozimetriája

I. Külső (teleterápiás) besugárzó-készülékek. 5 db lineáris gyorsító:

MŰSZAKI LEÍRÁS. 6 MV és 10 MV (kiegyenlítő szűrővel és anélkül)

MAGYAR ORVOSFIZIKAI TÁRSASÁG (MOFT) XVI. Konferenciája. Budapest, szeptember Hotel Mercure Buda

DÓZISTELJESÍTMÉNY DILEMMA SUGÁRTERÁPIÁS BUNKEREK KÖRNYEZETÉBEN

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály

Kulcsszavak: képvezérelt sugárterápia, intenzitásmodulált ívbesugárzás, kilovoltos cone-beam CT, minőségbiztosítás

The goal of the project:

Rugalmas állandók mérése

Kutatási beszámoló február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Sugárvédelmi és dozimetriai gyakorlatok. Rakyta Péter. Bornemisza Györgyné. leadás időpontja: május 9.

Sugárzások kölcsönhatása az anyaggal

Engedélyszám: /2011-EAHUF Verziószám: Klinikai sugárterápia kivitelezése követelménymodul szóbeli vizsgafeladatai

Magspektroszkópiai gyakorlatok

A dozimetriai országos etalonok nemzetközi összehasonlító mérései

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Képrekonstrukció 3. előadás

A neutrontér stabilitásának ellenőrzése az MVM PA Zrt. Sugárfizikai Laboratóriumában

KLINIKAI SUGÁRFIZIKA

Röntgenberendezések átvételi vizsgálata a gyakorlatban

MAGYAR ORVOSFIZIKAI TÁRSASÁG (MOFT) XVII. Konferenciája szeptember Pécs, Hotel Makár Középmakár dőlı 4.

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

Minden mérésre vonatkozó minimumkérdések

RTCM alapú VITEL transzformáció felhasználó oldali beállítása Spectra Precision Survey Pro Recon szoftver használata esetén

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei

Tüdőszűrő munkahelyek minőségbiztosításának és dozimetriájának néhány gyakorlati vonatkozása.

DIPLOMAMUNKA. Almády Balázs

Hangfrekvenciás mechanikai rezgések vizsgálata

A FIZIKUS SZEREPE A DAGANATOS BETEGEK GYÓGYÍTÁSÁBAN

Balatoni albedó(?)mérések

MRI-képek használatának lehetôsége a háromdimenziós külsô besugárzástervezésben

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Terápiás ablak. Ionizáló sugárzás. Sugárterápia. Röntgen sugárzás. Radioaktív izotópok

DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG:

A SÚLYOS ERŐMŰVI BALESETEK KÖRNYEZETI KIBOCSÁTÁSÁNAK BECSLÉSE VALÓSIDEJŰ MÉRÉSEK ALAPJÁN

3D számítógépes geometria és alakzatrekonstrukció

Analóg elektronika - laboratóriumi gyakorlatok

Radioaktív izotópok a testünkben A prosztata belső sugárkezelése

Egy mozgástani feladat

Elektronikus mezôellenôrzés lineáris gyorsítón (EPI: Electronic Portal Imaging)

Modern Fizika Labor Fizika BSC

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

Cs radioaktivitás koncentráció meghatározása növényi mintában (fekete áfonya)

Folyadékszcintillációs spektroszkópia jegyz könyv

ÚJSZÜLÖTTEK ÉS KORASZÜLÖTTEK SUGÁRTERHELÉSÉNEK VIZSGÁLATA

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Speciális teleterápiás technikák

A személyzet egésztest dózisának a mérése és számítása az Intervenciós Kardiológián

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia március 18.

Sugárbiztonságot növelő műszaki megoldások a Paksi Atomerőmű Zrt. Sugárfizikai Laboratóriumában

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

Dr. Fröhlich Georgina

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

Szövetközi besugárzások - Emlőtűzdelések

AZ ÁLTALÁNOS KÖRNYEZETI VESZÉLYHELYZET MEGÁLLAPÍTÁSÁNAK BIZONYTALANSÁGI TÉNYEZŐI

Rugalmas állandók mérése

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában

Az ipari komputer tomográfia vizsgálati lehetőségei

MATROSHKA kísérletek a Nemzetközi Űrállomáson. Kató Zoltán, Pálfalvi József

Dr. Fröhlich Georgina

Átfogó fokozatú sugárvédelmi továbbképzés

Fényhullámhossz és diszperzió mérése

Curriculum Vitae Vendég oktató, Eötvös Loránd Tudományegyetem (ELTE), Természettudományi Kar (TTK), Atomfizika Tanszék, Budapest

DOZIMETRIAI HATÓSÁGI TEVÉKENYSÉG A MAGYAR KERESKEDELMI ENGEDÉLYEZÉSI HIVATALBAN

Válasz Kellermayer Miklós Professzor Úr bírálatára

Geofizikai kutatómódszerek I.

Modern Fizika Labor. 21. PET (Pozitron Annihiláció vizsgálata) Fizika BSc. A mérés száma és címe: A mérés dátuma: nov. 15.

Akusztikai tervezés a geometriai akusztika módszereivel

Mérési útmutató a Mobil infokommunikáció laboratórium 1. méréseihez

Mérési jegyzőkönyv. Megbízó székhelye: 6791 Szeged-Kiskundorozsma Széksósi út 12

Nukleáris anyagok vizsgálata a hazai nukleáris biztonság erősítésére

Maxillatumorok konformális sugárkezelése

Légzőmozgást figyelembe vevő képalkotó protokollok alkalmazása korai stádiumú tüdődaganatos betegek besugárzástervezésénél

Átírás:

A MEGAVOLTTERÁPIA MINŐSÉG- ELLENŐRZÉSÉNEK NÉHÁNY KÉRDÉSE (SUGÁRFIZIKAI ÉS INFORMATIKAI SZEMPONTOK) Doktori tézisek Pesznyák Csilla Semmelweis Egyetem Elméleti Orvostudományok Doktori Iskola Témavezető: Dr. Rontó Györgyi, D.Sc. Hivatalos bírálók: Dr. Vígváry Zoltán, C.Sc. Dr. Pálvölgyi Jenő, Ph.D. Szigorlati bizottság elnöke: Dr. Sótonyi Péter, akadémikus Szigorlati bizottság tagjai: Dr. Gróf Pál, C.Sc. Dr. Takácsi Nagy László, Ph.D. Budapest 2009

1. Bevezetés A sugárterápia rohamos technikai fejlődése szükségessé tette a megfelelő minőségbiztosítás megteremtését, ami nélkülözhetetlen a besugárzási tervek pontos megvalósításához. Magyarországon teleterápiára vonatkozó egységes minőségbiztosítási protokoll nem létezik, sőt erre vonatkozó előírást sem találni. Ennek eredménye, hogy a minőséggel és reprodukálhatósággal kapcsolatos rendelkezések, előírások az adott gyógyintézmény helyi sajátosságától függnek. 2. Célkitűzések A kutatás célja, hogy a kezelések biztonságosabbá tétele érdekében választ adjak a megavoltterápia minőségellenőrzésének néhány kérdésére. (A) A teleterápiában használt diagnosztikai CT-berendezések számára olyan feltételek meghatározása, amelyek alkalmassá teszik az eredetileg diagnosztikai célokra készült CT- és PET/CTkészülékeket besugárzástervezésre. A CT-számok mérésére alkalmas fantomok összehasonlítása. (B) A Varian CadPlan és a CMS XiO tervezőrendszerek minőségellenőrzése és számolási algoritmusainak összehasonlítása különböző energiájú foton- és elektronsugárzások esetében. A CTszámok változásának dozimetriai hatása a sugárzás energiájának és a tervezőrendszer számolási algoritmusának függvényében. 1

(C) Meghatározni a PTW EPID QC PHANTOM alkalmazási feltételeit az elektronikus mezőellenőrző eszközök, illetve a klasszikus mezőellenőrző filmek esetében. A különböző mezőellenőrző készülékek felvételeinek és mezőellenőrző filmek minőségi paramétereinek elemzése. 3. Módszerek A. Amikor a CT-készüléket nemcsak diagnosztikai célra használják, akkor a CT-hez sík, indexelt asztallap tartozik, melyen a páciensrögzítő eszközök megfelelő módon fixálhatók. Ez előfeltétele annak, hogy a páciens nap mint nap reprodukálhatóan feküdjék a teleterápiás kezelőasztalon. A CT-asztal lehajlási szögének mérése digitális szögmérővel, vízszintes mozgásának ellenőrzése lézerfénnyel történt. A CT-alapú tervezésnél fontos a CT-számok pontos meghatározása, mivel a 3D-s tervezőrendszerek inhomogenitás korrekciójához szükség van a különböző szövetek elektronsűrűségének ismeretére, azaz a CT-szám - relatív elektronsűrűség kalibrációs görbére. A CT-számok mérését négy különböző CT-fantommal végeztem: MINI CT QC FANTOM, 76-430 (Inovision Company), RMI 467 CT elektronsűrűség fantom (Gamex), CIRS 062 típusú elektronsűrűség referencia fantom és CIRS Thorax IMRT fantom. 2

A CT-készülékek esetében 110 és 130 kvp csőfeszültségen is vizsgáltuk a CT-szám csőfeszültség-függését. Egyes CT-fantomok alkalmasak a CT-képek geometriai torzításának ellenőrzésére is. A meghatározott távolságok mérésével kimutathatók a képen az esetleges torzítások. B. A Nemzetközi Atomenergia Ügynökség (NAÜ) által összeállított IAEA-TECDOC-1583-as protokollból választottunk nyolc különböző besugárzástervezési technikát, amelyek a napi gyakorlatnak legjobban megfelelnek. A mérésekhez a CIRS Thorax IMRT fantomot használtuk, amiben az emberi szerveknek megfelelő (elektron)sűrűségű szöveti inhomogenitások találhatók. A fantomról terápiás CT-felvételt készítettünk, és ezt használtuk a besugárzástervezésnél. A méréseket Varian 600C és 2100C gyorsítókon, 6 MV és 18 MV foton energiákon végeztük el. A mérésekhez hitelesített eszközöket: PTW Unidos elektrométert, NE Farmer ionizációs kamrát, hőmérőt és barométert használtunk. A dózisszámolás az IAEA TRS 398-as protokollja alapján történt. Vizsgáltam a CT-számok változásának dozimetriai hatását a számolási algoritmusok, fotonenergiák és szöveti mélységek függvényében. 3

A tervezéshez két tervezőrendszert használtam: 1. Varian CadPlan tervezőrendszer: Ceruzanyaláb konvolúció módosított Batho hatvány módszer korrekcióval (Pencil Beam convolution with Modified Batho Power Law correction algoritmusát, PBMB) Ceruzanyaláb konvolúció ekvivalens szövet-levegő/ szövet-maximum aránnyal (Pencil beam convolution with equivalent TAR/TMR, EqTAR) inhomogenitás korrekció nélküli számolási algoritmust (IKN) 2. CMS XiO tervezőrendszer: gyors Fourier transzformáció konvolucióval (Fast-Fourier transform convolution, FFTC) multigrid szuperpozíciós (Multigrid superposition, MGS) Az eredményeket az IAEA TRS 430 protokolljában megadott képlet alapján analizáltuk Hiba (%) = 100 (D calc -D meas )/D meas,ref, ahol D calc a számolt dózis, D meas a mért dózis, D meas,ref a referencia pontban mért dózis. Elektronenergiák esetében a sugárterápiás terveket a CIRS Thorax IMRT fantom CT-képeire készítettük. A méréseket 12 MeV, 16 MeV és 20 MeV energiákon végeztük. A négyszögtől eltérő irreguláris elektronmezőt Rose-fémből készült takarásokkal állítottuk elő. Kilenc különböző mezőelrendezést ellenőriztünk. A méréseket 100 és 108 cm-es állandó fókusz-bőr távolságon végeztük 4

A tervezéshez két tervezőrendszert használtuk. 1. Varian CadPlan tervezőrendszert: számolási algoritmusa általános Gauss ceruzanyaláb modell (generalized Gaussian pencil beam model), teljes háromdimenziós heterogenitás korrekcióval. 2. CMS XiO tervezőrendszert: a Hogstrom-féle ceruzanyaláb modellt alkalmazza. C. Munkámban négy különböző mezőellenőrző berendezés képminőségét hasonlítottam össze: Siemens OptiVue500aSi, Siemens BeamView Plus, Elekta iview, Varian PortalVision, valamint ellenőriztem a fantomot filmek minőségellenőrzésében is. Két rendszert teszteltem: a Kodak X-OMAT kazettát Kodak X- OMAT V filmmel és a Kodak EC-L Lightweight kazettát Kodak Portal Localisation ReadyPack filmmel. A mérésekhez a PTW EPID QC PHANTOM -ot használtuk, Az epidsoft2.0 programmal elemeztem a képek paramétereit: a jel linearitását és a jel-zaj arányt (SNR), a geometriai torzítást, a kiskontraszt felbontást és a nagykontraszt felbontást (modulációs átviteli függvény - MFT). Las Vegas fantommal is ellenőriztem a kiskontraszt felbontást, és összehasonlítottam az PTW EPID QC PHANTOM -mal kapott képpel. 5

4. Eredmények, megbeszélés A. Az ellenőrzött CT-berendezéseknél az asztallap 0-8 mm-es lehajlását mértük. A CT-számok értékének ellenőrzésekor két CTkészülék esetében tapasztaltam jelentős eltérést, a különböző berendezéseken mért eredmények az 1. ábrán látható. 1. ábra: A Gamex RMI 467 elektronsűrűség CTfantommal kapott eredmények A négy vizsgált fantom közül, csak a MINI CT QC fantommal mért eredmények tértek el jelentősen a várt értékektől. Méréseink szerint a CT-készülékek torzítása nagyon kicsi, valójában elhanyagolható. B. A CMS XiO tervezőrendszer esetében a NAÜ kritériumának a MGS algoritmus felel meg jobban, a legnagyobb hiba 6 MV energián 4,2% volt a félárnyékban. Az FFTC algoritmus esetében 6

tüdőekvivalens anyagban, 6 MV fotonenergián 8,5% hibát mértem, 18 MV-on ez az érték 12,5% volt. A Varian CadPlan tervezőrendszer esetében a legjobb eredményeket a PBMB algoritmussal kaptam. A legnagyobb hibát tüdőekvivalens anyagban mértem (5,6%), szemben a NAÜ 5%-os kritériumával (mérési pontunk több mint 20 cm-re a bőrfelszín alatt volt). Az EqTAR számolási algoritmus non-koplanáris tervek számolására nem alkalmas. Koplanáris tervek esetében 18 MV fotonenergián 10%-os hiba is előfordult. Az inhomogenitás korrekció nélküli számolási algoritmust (IKN) azért vizsgáltuk, mert pontos adatokat szerettünk volna kapni arra vonatkozóan, hogy mekkora eltérés várható, ha a tüdő illetve a csont sűrűségét nem vesszük figyelembe. Az eredményeket elemezve megállapítható, hogy a hiba a 20%-ot is elérheti. A CT-számok változásának dozimetriai hatása 6 MV és 18 MV fotonenergiákon ±100 HU változás esetében 2% körüli értékeket adott az inhomogenitások függvényében, míg a Varian CadPlan tervezőrendszer EqTAR algoritmusánál Co-60 sugárforrás esetében ez az érték 5% volt. Elektronenergiák esetében, amikor a forgóállvány 0 -ban állt, a mért értékek jól egyeztek a Varian CadPlan tervezőrendszer számolási eredményeivel, a CMS XiO esetében a tüdőekvivalens anyagban az eltérés 10% volt. Vízekvivalens anyagok esetében 3,4% volt a legnagyobb eltérés a számolt és a mért értékek között. A tervezőrendszerek egyaránt jó eredményeket adtak mindkét 7

fókusz-bőr távolságon, és a blokkot is jól kezelték. A NAÜ-nek elektronmérésekre nincsenek elfogadott kritériumai. Amikor a forgóállvány 90 -ban állt, 12 MeV-on a CMS XiO tervezőrendszer számított értékei feleltek meg jobban a mért értékeknek, míg 16 MeV-on a Varian CadPlan tervezőrendszerrel kaptunk jobb egyezést. Ha a fősugár ferdeszögben esett be a test felületére (forgóállvány 315 ), akkor a Varian CadPlan tervezőrendszernél 12 MeV-nál a referencia pontban csak 3%-os hibát mértünk, 16 MeV-nál pedig 0,1%-ot. Eredményeinket más tervezőrendszerekkel összehasonlítva (2. ábra) megállapíthatjuk, hogy a jelenleg kereskedelmi forgalomban lévő legjobb számolási algoritmusok között a mi két rendszerünk is megtalálható. 2. ábra: Az Pinnacle ADAC (collapsed cone), a CMS XiO (MGS), a Varian CadPlan (PBMB) és az Nucletron Oncentra MasterPlan (collapsed cone) tervezőrendszerek összehasonlítása (saját mérési eredmények alapján). 8

C. A Siemens OptiVue500aSi, az Elekta iview és a Kodak Portal Localisation ReadyPack filmmel készült képeket elemezve, a legjobb eredményeket 2 MU-nál kaptuk; kettős expozíciónál a 2 + 1 MU vagy a 2 + 2 MU ajánlott. A Siemens BeamView Plus, a Varian PortalVision és Kodak X-OMAT V film esetében a 7 + 7 MU ajánlott, természetesen az alkalmazott dózisra hatással van a páciens besugarazott testtájának átmérője, illetve az EPID műszaki állapota. A DICOM implementálás vizsgálata: az epidsoft 2.0 program nem tudta fogadni a Siemens BeamView Plus VEPID-ből exportált DICOM képeket. A képet ezért először a DicomWorks programba olvastuk be, és onnan exportáltuk bmp kiterjesztésű fájlba, amit a szoftver már tudott elemezni. A Varian dcm fájlok elemzésekor nem kaptunk értékeket a kontrasztra, tehát az epidsoft 2.0 program nem értékelte a lyukak abszorpcióját, bár a felvételeken jól látszottak. A képet BMP formátumba konvertálva már kis dózisnál is megjelentek a lyukak. Mindkét esetben a DICOM implementálása volt hiányos. Különböző fájlformátumú képek elemzésekor (dcm, bmp, tif), eltérő eredményeket kaptunk a képeket jellemző paramétereket illetően. 9

5. Következtetés A. Protokollban kell meghatározzuk a teleterápiában használt CTberendezések számára szükséges feltételeket, amelyek alkalmassá teszik a diagnosztikai célokra készült készülékeket besugárzástervezésre is. B. A besugárzási terveken leolvasott pontdózis és az ionizáló kamrával kapott dózisérték közötti különbség több okból keletkezhet. A mérések során az egyes hibák a hiba-terjedési törvény szerint összeadódnak. Ilyen hibák a tervezőrendszer bemérési hibái, a tervezőrendszer konfigurálásából eredő hibák, a számolási algoritmusok hibája, a mérőrendszer (elektrométer és ionizációs kamra) hibája, valamint a fantom beállítási hibája. A mérési eredményekből megállapítható, hogy a páciensek kezelésére a CMS XiO tervezőrendszer esetében korlátozás nélkül csak a szuperpozíciós számolási algoritmus használható, míg a Varian CadPlan tervezőrendszer esetében a PBMB a megfelelő választás. Az EqTAR-nál és az FFTC-nél több esetben kaptunk a NAÜ által megadott megfelelőségi kritériumnál nagyobb eltéréseket a különböző inhomogenitások esetén, ami kifejezettebb volt tüdőnél, mint csontban. Hogy mikor melyik algoritmust célszerű használni, annak eldöntése szakképzett orvosfizikus feladata. 10

A CT-számok változásának 1-2%-os dozimetriai hatása jelentéktelennek tűnhet, de ha figyelembe vesszük, hogy a eredő hibánk 2-5%-os lehet, akkor ez az érték véletlenül sem elhanyagolható. A CIRS Thorax IMRT fantom csak a 10 MeV-nál nagyobb energián felel meg, mivel az ionizációs kamra helyére a 10 MeV alatt használandó plánparallel (pl. Roos vagy Markus) kamrát nem lehet behelyezni. A méréseknél használt Farmer kamra térfogata talán túl nagy, ezért érdemes volna a méréseket megismételni kisebb térfogatú kamrával, vagy szilárdtest (pl. gyémánt) detektorral. Terveinkben szerepel olyan házilag elkészítendő fantom, amiben lenne tüdő- és csontekvivalens anyag, és alkalmas lenne plánparallel kamrás mérésre. A mérési eredmények alapján megállapítható, hogy a tüdőekvivalens anyagokban a Varian CadPlan számítási értéke jobban megfelel a mérési eredményeknek, viszont csont mögött egyik tervezőrendszer sem számol elég pontosan. C. A fantommal a mezőellenőrző képek jellemzőinek állandóságát vizsgáltuk. Az alapértékeket (referencia érték) a készülékek átvételi vizsgálatakor elvégzett alapvizsgálat során kell megállapítani (31/2001 EüM rendelet). Hasznos lenne, ha az EPID rendszereket gyártó cégek közölnék a felhasználókkal az általuk mért/javasolt referencia értékeket, mivel jelenleg nagyon kevés irodalmi adat található az MTF-ről, vagy a jel/zaj arányról. A 11

minőségbiztosításban a PTW EPID QC PHANTOM nemcsak az amorf-szilíciumos EPID-eknél használható, hanem a képminőséget elemezhetjük a Siemens BeamView Plus videó alapú berendezéseknél és a Varian PortalVision ionizációskamramátrixos EPID-nél is. A mérési protokollunkban meg kell határozni az alkalmazható fájlformátumot is, mivel ezeknél a rendszereknél a DICOM implementálása nem tökéletes. 6. Az értekezés témakörében megjelent publikációk 1. Pesznyák Cs, Fekete G, Mózes Á, Kiss B, Király R, Polgár I, Zaránd P, Mayer Á. (2009) Quality Control of Portal Imaging with PTW EPID QC Phantom, Strahlenther Onkol, 185: 56-60. IF: 3,005 2. Pesznyák Cs, Zaránd P, Mayer Á. (2007) Digitalization and Networking of Analog Simulators and Portal Images, Strahlenther Onkol, 183: 117-120. IF: 3,357 3. Pesznyák Cs, Weisz Cs, Király R, Kiss B, Zelić S, Polgár I, Zaránd P. (2009) Computertomográfiás készülékek minőségellenőrzése besugárzástervezés szempontjai alapján (Magyarországi helyzetelemzés), Magyar Onkológia, 53(3), 247-51. 4. Polgár I, Weisz Cs, Pesznyák Cs. Besugárzástervezés minőségbiztosítása In. Mayer Á. (szerk.) Uzsoki utcai levelek, Roche Kft. Budapest 2005: 10: 57-58. 12

5. Pesznyák Cs, Zaránd P, Baráti Zs, Párkányi T. MevaSim szimulátor hálózatban - DICOM RT, In: Éva Pintye (szerk.) X. Hungarian Medical Physics Conference & Workshop, Magyar Biofizikai Társaság, Budapest. 2003: 103-8. 6. Zaránd P, Pesznyák Cs, Baráti Zs, Párkányi T: Mezőkontroll port filmmel - DICOM RT kép, In: Éva Pintye (szerk.) X. Hungarian Medical Physics Conference & Workshop, Magyar Biofizikai Társaság, Budapest. 2003: 109-112. 7. Pesznyák Cs, Polgár I, Weisz Cs. A CT kalibráció szerepe a sugárterápiában In: P. Zaránd (szerk.), IX. Hungarian Medical Physics Conference & Workshop, Magyar Biofizikai Társaság, Budapest. 2002: 85-8. 8. Pesznyák Cs, Lövey K, Weisz Cs, Polgár I, Mayer Á. (2001) Elektronikus mezőellenőrzés lineáris gyorsítón, Magyar Onkológia, 45(4): 335-341. 9. Weisz Cs, Zaránd P, Polgár I, Pászkán A, Pesznyák Cs. (1997) Inhomogeneity correction. Comparison of measured and calculated values, Rad Közlemények, 33(1): 50-4. 10. Weisz Cs, Polgár I, Pesznyák Cs. (1996) A CADPLAN használatba vételével kapcsolatos tapasztalatok, Rad Közlemények, 32(1): 54-60. 13

Poszterabsztraktok 1. Pesznyák Cs, Polgár I, Zaránd P. (2009) Dosimetric verification of radiotherapy treatment planning systems in Hungary, Intl Conference on Advances in Radiation Oncology (ICARO), Vienna, Poster no. 147. 2. Pesznyák Cs, Polgár I, Zaránd P. (2007) Mezőellenőrző berendezések összehasonlítása és alkalmazása a minőségbiztosításban, MBFT Magyar Orvosfizikai Társaság XIV. konferenciája, Magyar Onkológia, 51(3): 247. 3. Pesznyák Cs, Polgár I, Zaránd P. (2007) Újgenerációs mezőellenőrző berendezések bemutatása, Magyar Sugárterápiás Társaság VIII. Kongresszusa, Magyar Onkológia, 51(3): 273. 4. Pesznyák Cs. (2005) Sugárbalesetek megelőzése, Magyar Sugárterápiás Társaság VII. Kongresszusa, Magyar Onkológia, 49(3): 272. 14