Szigorlati tételek Lineáris algebra és Diszkrét matematika tárgyakból

Hasonló dokumentumok
Bevezetés a számításelméletbe (MS1 BS)

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

Számítási módszerek a fizikában 1. (BMETE90AF35) tárgy részletes tematikája

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

1. feladatsor Komplex számok

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Záróvizsga tételek matematikából osztatlan tanárszak

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Matematika (mesterképzés)

Matematika A1a Analízis

Vizsga Lineáris algebra tárgyból. 2018/19 akadémiai év, I. félév

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Matematika tanmenet 11. évfolyam (középszintű csoport)

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Osztályozóvizsga követelményei

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

Tanmenet a évf. fakultációs csoport MATEMATIKA tantárgyának tanításához

ELTE IK Esti képzés tavaszi félév. Tartalom

Vektorok, mátrixok, lineáris egyenletrendszerek

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY

Tanmenet a Matematika 10. tankönyvhöz

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

1. Mit jelent az, hogy egy W R n részhalmaz altér?

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

TARTALOM. Előszó 9 HALMAZOK

Lineáris leképezések, mátrixuk, bázistranszformáció. Képtér, magtér, dimenziótétel, rang, invertálhatóság

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach/ 2005.

Az osztályozó vizsgák tematikája matematikából évfolyam

1. Az euklideszi terek geometriája

Osztályozó- és javítóvizsga. Matematika tantárgyból

Matematika 11. évfolyam


A gyakorlati jegy

Tanulmányok alatti vizsga felépítése. Matematika. Gimnázium

Osztályozóvizsga követelményei

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

TANMENET. a matematika tantárgy tanításához 11.E osztályok számára

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

MATEMATIKA tanterv emelt szint évfolyam

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika szigorlat június 17. Neptun kód:

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya

Diszkrét matematika 2.

ÖSSZEVONT ÓRÁK A MÁSIK CSOPORTTAL. tartósság, megerősítés, visszacsatolás, differenciálás, rendszerezés. SZÁMTANI ÉS MÉRTANI SOROZATOK (25 óra)

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Az osztályozó vizsgák tematikája matematikából

Összeállította: dr. Leitold Adrien egyetemi docens

Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom?

Matematika szóbeli érettségi témakörök 2017/2018-as tanév

Lineáris algebra. =0 iє{1,,n}

Összeállította: dr. Leitold Adrien egyetemi docens

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Diszkrét matematika 2.C szakirány

NÉVMUTATÓ. Beke Manó, 17 Bellman, R., 310, 398 Bevilacqua, R., 93 Boros Tibor, 459, 464 Boullion, T. L., 109 Bunyakovszkij, V. J.

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP és AP )

KOVÁCS BÉLA, MATEMATIKA I.

NT Matematika 11. (Heuréka) Tanmenetjavaslat

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

1. Gráfok alapfogalmai

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I márc.11. A csoport

nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek Vizsgatematika A szigorlat követelményei:

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

Numerikus módszerek 1.

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

YBL - SGYMMAT2012XA Matematika II.

MATEMATIKA. Szakközépiskola

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

Lin.Alg.Zh.1 feladatok

TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára

Diszkrét matematika II., 8. előadás. Vektorterek

Rang, sajátérték. Dr. Takách Géza NyME FMK Informatikai Intézet takach/ február 15

Alapfogalmak a Diszkrét matematika II. tárgyból

Lin.Alg.Zh.1 feladatok

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

TANMENET. Matematika

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, szeptember

Átírás:

Szigorlati tételek Lineáris algebra és Diszkrét matematika tárgyakból 2017 A vastag betűs fogalmak, tételek, különösen fontosak. Ezek megértése és alkalmazni tudása nélkül nem adható elégséges osztályzat. A (B) betű pedig azt jelzi, hogy a jó, és jeles osztályzathoz kell a bizonyítást tudni. 1.A. Vektoralgebra A 3 dimenziós vektorok tere. Lineáris kombináció fogalma. Síkbeli felbontási tétel (B). Térbeli felbontási tétel. Lineáris kombináció, koordináta fogalma. Speciális műveletek: skaláris szorzat, vektoriális szorzat és erre vonatkozó tételek, geometriai jelentésük. Sík normálvektoros egyenlete (B). Pont és sík távolsága. Vektor összetevőkre bontása és merőleges kiegészítő. 1.D. Hálók. Háló kétfajta definíciója. Tarski hálóelméleti fixpont tétele (a kimondásban szereplő definíciók) (B). 2.A. Lineáris függetlenség, összefüggőség. Lineáris függetlenség, összefüggőség fogalma. Vektorokból elvéve, hozzávéve, hogyan változik e tulajdonság (B). Bázis és generátorrendszer fogalma. Példák a legfeljebb másodfokú, és az m x n es mátrixok vektorteréből. 2.D. Struktúrák Struktúra, művelet, műveleti tulajdonságok, inverzelem, egységelem fogalma. Asszociatív művelet esetén ezen elemek egyértelműsége (B). Halmazok és ítéletkalkulus struktúrája: hálók. Kétfajta definíció ismertetése, ekvivalenciájuk. 3. A Lineáris tér. Lineáris tér (vektortér) fogalma. Axiómák következményei. Vektorrendszer függetlensége és rangja. Bázis, koordináták, dimenzió. Dimenzió ekvivalens megfogalmazásai. Kicserélési tétel (B). 3. D. Néhány fontos struktúra Csoport, kommutatív csoport, gyűrű, test, kapcsolatuk. Példák: a komplex számok és részhalmazainak struktúrája (komplex, valós, racionális, irracionális, egész, természetes számok halmaza és az értelmezett műveletek), n x m es, és n x n-es mátrixok struktúrája. Komplex egységgyökök struktúrája (B). 4.A. Mátrix algebra Mátrixok struktúrája. Műveletek (Inverz mátrix fogalma, számítási módszerei is). Egyenletrendszerek megoldása inverz mátrix segítségével. Inverz mátrix képlete, e képlet levezetése (B). Mátrix polinomok. Cayley-Hamilton tétel kimondása és példán keresztül illusztrálása. Mátrix-vektor szorzat mint lineáris kombináció. 4.D. Síkba rajzolható gráfok Síkba rajzolható gráf fogalma, színezése. Kromatikus szám. Egyszerű becslések és példák (teljes gráf, páros gráf) kromatikus számra. Négyszín tétel, ötszín tétel (B).

5.A Bilineáris formák. Kvadratikus alakok és szimmetrikus mátrixok. A sajátvektorok bázisában (ha létezik) felírt mátrix. Mátrixok otogonális diagonalizálása. Főtengelytranszformáció (B). Kúpszeletek, mint mértani helyek. Másodrendű görbék középponti egyenletei. 5.D. Nagyságrend Függvények növekedése, aszimptotikus közelítések, kis ordó, nagy ordó. Nagyságrend fogalma. Példa egyenlő nagyságrendekre. Exponenciális növekedés, ennek illusztrálása példával. (Nem kötelező: Algoritmusok bonyolultsága. Mátrix szorzás programjának bonyolultsága). 6. A. Komplex számok Komplex számok különböző alakjai, műveletek. Átszámolás az egyes alakok között. Hatványozás, Moivre- formula (B), gyökvonás. Konjugált. Egységgyök, primitív egységgyök fogalma, egységgyökök struktúrája (B). Komplex számokra vonatkozó Euler formula. Az algebra alaptétele. Komplex együtthatós másodfokú egyenlet megoldása 6.D. Elsőrendű logika. Szintaxis nullad-, és elsõrendben. Szemantika: kvantorok, interpretációk elsőrendben. Szemantikai következmény elsőrendben. Rezolúció alapelve elsőrendben. Példa rezolúciós levezetésre. 7. A. Vektortér, altér Vektortér és altér fogalma. Altér megállapítására vonatkozó tétel (B),.Nevezetes alterek: generátumok, képtér, magtér, sajátaltér, egyik bizonyítással. ( Nem kötelező: A merőleges kiegészítő altér. Példa merőleges kiegészítőre R 3 ban, geometriai jelentése.) Dimenzió tétel kimondása, a tételben szereplő defníciók ismertetése. A tétel illusztrálása konkrét példán keresztül. 7. D. Relációk. Reláció általános fogalma. Bináris reláció, nevezetes bináris relációk és tulajdonságaik. Példák rendezési és ekvivalencia relációkra. Ekvivalencia reláció és partíció kapcsolata. Hasonló transzformációk és tulajdonságaik (B). Példa hasonló transzformációkra. 8.A. Homogén lineris leképezések vektortere Homogén lineáris leképezések összege, szorzata, polinomja, lineáris tere, kapcsolata a (megfelelő típusú) mátrixok lineáris terével. Cayley-Hamilton tétel. 8. D. Halmazalgebra Műveletek. Halmaz részhalmazainak száma (B). Szita formula. Halmazelméleti azonosságok és bizonyítási módszer igazolásukra. Skatulya elv, példa a gráfelméletből (B). 9.A. Sajátérték, sajátvektor Sajátérték, sajátvektor fogalma. Sajátvektorok függetlenségének kritériuma. Speciális transzformációk mátrixai (szimmetrikus, ferdén szimmetrikus, ortogonális), sajátértékei, sajátvektorai. Hasonló mátrixok sajátértékei, sajátvektorai. Azonos sajátérékhez tartozó sajátvektorok alteret alkotnak (B). Sajátvektorok bázisában a transzf. mátrixa (B). 9. D. Nulladrendű logika. Műveletek, kiértékelési szabályok, interpretációk. Logikai (szemantikai) következmény fogalma, példák. A rezolúciós bizonyítás alapelve, a kétklózos rezolúció következtetési sémájának helyessége (B). Példák matematikai bizonyítási módszerekre.

10.A. Izomorfia Izomorf struktúrák, izomorf gráfok, izomorf vektorterek. Vektorterek izomorfiára vonatkozó szükséges és elégséges feltételei (B). A vektorterek közti izomorfia ekvivalencia reláció. Mátrixok lineáris terének és a lineáris leképezések terének kapcsolata. Példa: az (a, 0) (a R) alakú komplex számok és a valós számok izomorfiája. Az a+bi képlet magyarázata (B). 10. D. Számosságok Számosság fogalma, egyenlő, kisebb, nagyobb számosságok. A (0,1) intervallumbeli számok halmazának számossága (B). Cantor tétel (Halmaz és hatványhalmazának számossága közti összefüggés). A racionális számok számossága (B). Kontinuum hipotézis. 11.A Lineáris leképezések. Lineáris leképezés mátrixának definíciója, szerepe (B), példák. Speciális valós lineáris leképezések mátrixai: vetítés, forgatás. A trigonometrikus addíciós tételek bizonyítása forgatási mátrixokkal. A skalárszorzat, mint lineáris leképezés. A legfeljebb (n-1)-edfokú polinomok tere, és a polinomok deriválása, integrálása, mint lineáris leképezés, ezek mátrixai. Lineáris leképezések összege, skalárszorosa, példák. Homogén lineáris leképezések lineáris tere. Áttérés más bázispárra. Mátrixok diagonalizálása. 11.D Fák. Fa ekvivalens definíciói, éleinek száma. Prüfer kód. Feszítőfa fogalma. Cayley télele a feszítőfák számáról. Feszítőfa keresése egyszerű, összefüggő (súlyozatlan) gráfban: szélességi bejárás/keresés, mélységi bejárás/keresés. 12. A. Euklideszi tér. Bilineáris függvény fogalma. Példa: skalárszorzat fogalma, skalárszorzat R n -ben és C n - ben. Euklideszi tér definíciója. Skalárszorzat, norma, metrika, és ezek kapcsolata euklideszi terekben. Cauchy-Bunyakovszkij-Schwarz egyenlőtlenség euklideszi terekben (B) és speciálisan R n -ben. Szög fogalmának általánosítása. 12. D. Síkba rajzolható gráfok Euler poliéder tétele (B) és következményei. Síkba és gömbre rajzolhatóság összefüggése. Fáry-Wagner tétel. Kuratowski-tétel. Euler-kör/út és létezésére vonatkozó szükséges és elégséges feltétel, egyik irány bizonyítással. 13. A. Lineáris egyenletrendszerek. Lineáris homogén/inhomogén egyenletrendszer fogalma. Gauss elimináció, az algoritmus pontos ismertetése. Lineáris egyenletrendszer megoldhatóságának feltétele és mátrix rangja (B). Mátrix rangja, determinánsa és inverze létezésének összefüggése. Egyenletrendszer megoldása inverz mátrixszal. Lineáris egyenletrendszerek alkalmazása vektorok függetlenségének valamint generátorrendszer és bázis megállapítására. Mátrix inverz számítása Gauss eliminációval, bizonyítással. 13.D A Hálózati folyamok. Hálózat, folyam, vágás fogalma. Javító út. Ford-Fulkerson tétel.

14. A. Determinánsok. Definíció, tulajdonságok. Gauss elimináció alkalmazása determinánsokra. Inverz mátrix képlete. Inverz mátrix képletének levezetése (B). Három térvektor vegyes szorzata és geometriai jelentése (B). Determináns kifejtési és ferde kifejtési tétele. 14.D Kombinatorika Összeg- és szorzatszabály, permutáció (ismétléses, ismétlés nélküli), ismétlés nélküli permutáció képletének bizonyítása, variáció (ismétléses, ismétlés nélküli), egyik képletének bizonyítása, kombináció. (Jeleshez: B). Szita formula. Binomiális tétel (B). Binomiális együtthatók tulajdonságai. 15.A Komplex vektortér Komplex vektortér (C n ). Komplex skalárszorzat, norma, metrika fogalma, kapcsolatuk egymással és számításuk. Speciális komplex transzformációk (hermitikus, ferdén hermitikus, unitér) és tulajdonságaik (egy választott: (B)). 15. D. Irányítatlan és súlyozott Gráfok Irányítatlan és súlyozott gráf fogalma. Gráfok mátrixai. Élszám és fokszám összefüggése bizonyítással (kézfogási tétel). Speciális gráfok: fa, út, kör, teljes gráf, páros gráf. N pontú összefüggő gráfok élszámára, körök létezésére vonatkozó tételek (közülük egy választott B). Részgráfok. Izomorf gráfok. 16. A Ortogonalitás. Vektorterek és euklideszi terek kapcsolata. Ortogonális vektorok függetlenségésnek bizonyítása térvektorok és magasabb dimenziők esetén. Gram Schmidt ortogonalizáció ismertetése. Ortonormált bázis létezése. Térvektorok felbontása adott vektorral párhuzamos, illetve arra merőleges összetevőkre. Ortogonális mátrix fogalma. 16. D. Irányított és irányítatlan gráfok Összefüggő gráfok, összefüggő komponensek. Hamilton-kör/út, és létezéséhez elégséges feltételek (Dirac, Ore). Euler kör/út irányított gráfokra. Irányított gráfok összefüggősége. Irányított gráfok fokszáma és éleinek száma közti összefüggés bizonyítással (kézfogási tétel irányított gráfra). Irányított gráfok mátrixai. Dijkstra algoritmus irányított gráfokra. 17. A.Bázistranszformáció Transzformáció mátrixa, ha áttérünk másik bázisra. Mátrixok diagonalizálása. Algebrai és geometriai multiplicitás. A diagonalizálás elégséges feltétele. 17. D. Gráfok bejárása és súlyozott gráfok. Bináris fák bejárási módjai (műveleti fák). Súlyozott gráf fogalma. Kruskal, Prim, Dijkstra algoritmusok irányítatlan gráfokra.

Szigorlati írásbelivel kapcsolatos információk Az írásbeli főként feladatokból áll, melynek típusai alább találhatók. Mindenképpen szerepel pár elméleti kérdés is: ez lehet tétel kimondása, definíció megadása, vagy a definíció egyszerű alkalmazásával adódó bizonyítás (ezekre példák a fenti tételsorban találhatók (nem a (B), hanem a bizonyítás szóval jelöltek). Definíció/tétel visszakérdezése lehetséges feleletválasztásos feladattal, illetve a definíció/tétel egyszerű alkalmazásával is. Struktúrák: Adott objektumok és műveletek, függvények, esetén: csoport, test, vektortér, altér felismerése. Adott struktúrában adott műveletre vonatkozó egységelem, inverzelem megkeresése. Komplex számok: Egységgyökök megkeresése. Átszámolás egyes alakok között, különböző alakban adott komplex számokkal végzett műveletek (gyökvonás is). Komplex és valós együtthatós másodfokú egyenletek gyökeinek megkeresése. Relációk: Adott reláció típusának felismerése (rendezési-e, ekvivalencia-e). Hasse diagram megadása. Minimális, maximális, legkisebb, legnagyobb, alsó/felső korlát és megkeresése. Halmazelmélet: Műveletek elvégzése, illusztrálása Venn diagrammal, szita formula alkalmazása, azonosság bizonyítása kétoldali tartalmazással. Logika: Nulladrendű formulák kiértékelése. De Morgan szabályok bizonyítása mind halmazelméletben, mind a nulladrendű logikában. Egyszerűbb halmazelméleti összefüggések igazolása. Egyszerű feladatok nulladrendű rezolúcióra, formalizálásra. Interpretáció elsőrendben. Adott formula Skólemizálása (Skólem függvények és konstansok bevezetése) Vektortér: Függetlenség felismerése. Adott vektortér egy bázisának megadása. Bázis, generátorrendszer felismerése, bizonyítása. Skalárszorzat, vektoriális szorzat, vegyesszorzat kiszámítása, sík egyenletének felírása adott normálvektor és pont, illetve 3 pont esetén. Normálvektor megadása. Rang kiszámítása, egyenletrendszerek megoldhatóságánál alkalmazása. Adott leképezésről eldönteni, lineáris leképezés-e. A sík mátrix segítségével megadott lineáris transzformációinak felismerése, vagy a leképezés, transzformáció mátrixának megadása.

Fontos a spec. transzformációk (szimm, hermitikus, ferdén szimm., ferdén herm., ortogonális, unitér) felismerése, tulajdonságaik feladatokban való alkalmazása, sajátértékeik, sajátvektoraik kiszámítása mind valós mind komplex esetben. Altér felismerése, adott leképezés esetén képtér, magtér megadása. Egyszerűbb mátrixú transzformációk (pl. alsó háromszög nulla, vagy 2 x 2 es mátrixú) sajátértékének, sajátvektorának kiszámítása, komplex esetben is. Egyszerűbb geometriai transzformációk sajátvektorainak, sajátértékeinek felismerése számolás nélkül (pl. tükrözések, vetítések). Olyan (Minimál)polinom megadása egyszerű síkbeli transzformációk esetében, melynek gyöke az adott transzformáció. 2 x 2 mátrixú kvadratikus alakok diagonalizálása, a síkgörbe felismerése. 2 x 2 mátrix, vagy nagyon egyszerű struktúrájú (pl. alsó háromszög nulla) mátrixok diagonalizálása. Legfeljebb 3 x 3-as mátrix rangjának kiszámítása. Determináns, egyenletrendszer: Legfeljebb 3 x 3-as determináns értékének kiszámítása. Egyenletrendszer megoldása inverz mátrix segítségével (nagyon egyszerű mátrixok, vagy 2 x 2 -s esetben). Cramer szabály felírása adott egyenletrendszerre (annak megoldása nélkül). Kombinatorika: Egyszerűbb, képlet alapján könnyen kiszámítható kombinatorikai feladatok. Összeg- és szorzatszabály, permutáció, variáció, kombinációta vonatkozó formulák alkalmazása. Szita formula alkalmazása. Binomiális tétel alkalmazása. Binomiális együtthatók kiszámítása. A skatulya-elv alkalmazása. Függvények nagyságrendjének megállapítása. Gráfok: Kruskal, Prím, Dijkstra algoritmusok bemutatása példán keresztül. Euler út/kör keresése adott gráfban.. Izomorf gráfok felismerése, adott gráf Prüfer kódjának megadása. Prüfer kódból a gráf egy lehetséges lerajzolása. Adott gráfokra izomorfia megadása. Színezés megadása, Euler kör/út megadása, Hamilton kör/út létezésének eldöntése, egyszerűbb esetekben megadása.

Hálózati folyamok: Adott hálózat és folyam esetén folyam érték és minimális vágás megadása. Euklideszi terek: Eldönteni adott függvényről, hogy skalárszorzat-e, metirka-e, norma-e. Adott skalárszorzatból normát, metrikát származtatni. Adott Euklideszi térben skalárszorzat, norma, metrika kiszámítása. Egyszerűbb 2-, 3 dimenziós esetekben merőleges kiegészítő megadása. Ortogonalitás felismerése. Adott ortogonalizálási folyamatról felismerni, hogy helyes-e (Pl. ha éppen Gram-Schmidt, akkor helyes).