EMELT FIZIKA (gimnázium, 3x3x4x3)



Hasonló dokumentumok
HELYI TANTERV FIZIKA Tantárgy

VÁLASZTHATÓ FIZIKA 9. évfolyam (gimnázium, 2 óra)

HELYI TANTERV. Fizika

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Fizika. készült. a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-11./

FIZIKA NYEK reál (gimnázium, óra)

Fizika. Fejlesztési feladatok

mélységben elsajátítatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz.

mélységben elsajátítatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz.

9. tanév. Az éves órakeret felosztása:

Helyi tanterv a reál osztály (biológia-kémia) csoport számára (2x2x2)

TANTERV. A évfolyam emelt szintű fizika tantárgyához. 11. évfolyam: MECHANIKA. 38 óra. Egyenes vonalú egyenletes mozgás kinematikája

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Fizika a gimnáziumok évfolyama számára és Fizika a szakközépiskolák évfolyama számára (2+2+2)

Fizika. Tanmenet. 7. osztály. ÉVES ÓRASZÁM: 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz::

FIZIKA helyi tanterv Általános tantervű, 9-12 évfolyamos gimnáziumok számára. (készült a B kerettantervi változat alapján)

A Tanév itt kezdődik! EMBER ÉS TERMÉSZET MŰVELTSÉGTERÜLET A NAT-BAN ÉS A KERETTANTERVEKBEN

mélységben elsajátíttatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz.

FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK

Kompetencia alapú oktatás (tanári kompetenciák) NyME- SEK- MNSK N.T.Á

Ember és természet. műveltségterület. Fizika évfolyam

Feladataink, kötelességeink, önkéntes és szabadidős tevékenységeink elvégzése, a közösségi életformák gyakorlása döntések sorozatából tevődik össze.

Boros Sámuel Szakközépiskola, Szakiskola. Helyi tanterv 2. kötet

NT Fizika 9. (Fedezd fel a világot! Emelt szint) Tanmenetjavaslat

Előzetes megjegyzések

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

FIZIKA 7-8. évfolyam

Kandó Kálmán Szakközépiskola Miskolc, Palóczy utca 3. FIZIKA

Helyi tanterv Fizika az általános iskolák 7 8. évfolyama számára

TANMENET Fizika 7. évfolyam

NT Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat

Fizika a gimnázium évfolyama számára (2+2+2)

Fizika a gimnázium évfolyama számára (2+2+2)

ÚJGENERÁCIÓS FIZIKATANKÖNYV 7. ÉVFOLYAM

Célok és feladatok. Fejlesztési feladatok

Helyi tanterv fizika biztosítja a fizika belső logikájának megtartását az elmúlt évtizedekben bevált szemléletmódot és módszereket

A nevelés-oktatás tervezése I.

Fizika helyi tanterv

Futball Akadémia évf. Fizika

Eötvös József Általános Iskola és AMI Helyi tanterv 2013 FIZIKA

TÖRTÉNELEM 5-7. A felső tagozatos történelemtankönyv bemutatása

A fizika kétszintű érettségire felkészítés legújabb lépései Összeállította: Bánkuti Zsuzsa, OFI

Fizika. A tanítási-tanulási folyamat középpontjában a tanulók állnak, ezért: Padányi Katolikus Gyakorlóiskola 1

Didaktika 1. Tanügyi és iskolai szabályozás. 2. Tantervtípusok; NAT-ok

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

FIZIKA. helyi programja. tantárgy. Készült a Katolikus Pedagógia Szervezési és Továbbképzési Intézet által készített kerettanterv alapján.

FIZIKA 6 ÉVFOLYAMOS HELYI TANTERVE

egészségügyi, az agrárgazdasági és a közgazdasági szakmai tudás szilárd megalapozásában sem nélkülözhető a fizika jelenségkörének megismerése.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Fizika az általános iskolák 7 8. évfolyama számára

V e r s e n y f e l h í v á s

FIZIKA. Heti óraszámok. komm. Kéttan- nyelvű. Mat-fiz Biolkém. Oszt. típus. Élsport. Tehets. Dráma. Angol. Emelt. gond. emelt. 9.

FIZIKA 4 ÉVFOLYAMOS HELYI TANTERVE

HELYI TANTERV FIZIKA (B VÁLTOZAT) Tantárgy

Nemzeti tananyagfejlesztés és országos referenciaiskola hálózat kialakítása digitális kiegészítő oktatási anyagok létrehozása az új NAT hoz

Fizika tanterv a normál, kéttannyelvű és sportiskolai tantervi képzésben résztvevők számára 7 8.

Természetismeret. 1. A természettudományos nevelés folyamatában történő kompetenciafejlesztés lehetőségei az alsó tagozaton.

Bolyai János Általános Iskola, Óvoda és Alapfokú Művészetoktatási Intézmény Fizika

FIZIKA VIZSGATEMATIKA

HELYI TANTERV. Mechanika

Fizika vizsgakövetelmény

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

Speciális mozgásfajták

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)

Energetikai Szakgimnázium és Kollégium

IV. AZ ISKOLAI BESZÁMOLTATÁS, AZ ISMERETEK SZÁMONKÉRÉSÉNEK KÖVETELMÉNYEI ÉS FORMÁI

Fizika. Célok és feladatok

Célok és feladatok. Fejlesztési feladatok

Legyen képes egyszerű megfigyelési, mérési folyamatok megtervezésére, tudományos ismeretek megszerzéséhez célzott kísérletek elvégzésére.

Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Szabadon választható tantárgy: fizika évfolyam

Az OKNT-adhoc. bizottság kerettanterve. mindenkinek 2009

A TAPOLCAI BATSÁNYI GIMNÁZIUM ÉS KOLLÉGIUM HELYI TANTERVE FIZIKA

2. A választott kerettanterv feletti óraszám, a nem kötelező tanórai foglalkozások

Mit nevezünk nehézségi erőnek?

Az osztályozóvizsga követelményei fizika tantárgyból 9. osztály

Takács Katalin - Elvárások két értékelési területen. Az értékelés alapját képező általános elvárások. Az értékelés konkrét intézményi elvárásai

Kerettantervi ajánlás a helyi tanterv készítéséhez

Fejlesztendő területek, kompetenciák:

KOMPETENCIAFEJLESZTŐ PÉLDÁK, FELADATOK

Tartalomjegyzék. Tanmenetek és szakmódszertani felvetések. 1. Szakmódszertani felvetések, javaslatok! 2. Fizika tanmenet 9. osztály (heti 2 óra)

Ceglédi Kossuth Lajos Gimnázium. Intenzív csoportok

A tanulói tevékenységre alapozott fizikaoktatás változatos tevékenységkínálatával lehetővé teszi, hogy a tanulók kipróbálhassák és megismerhessék

INNOVATÍV ISKOLÁK FEJLESZTÉSE TÁMOP /

Helyi tanterv MELLÉKLET. Intézményünk helyi tantervének jogszabályi keretei:

Óratípusok. Dr. Nyéki Lajos 2016

Tanári tevékenységek Motiváció, környezet- és balesetvédelem

TÖRTÉNELEM 5-7. A felső tagozatos történelemtankönyvek bemutatása

TÖRTÉNELEM 5-6. A felső tagozatos történelemtankönyv bemutatása

Helyi tanterv. Fizika

Tankönyvkiadók konferenciája Fizika

A FELFEDEZTETŐ TANULÁS ELEMEI EGY KONKRÉT MODUL AZ ÖVEGES PROFESSZOR KÍSÉRLETEI KERETÉBEN

FÖLDRAJZ (gimnázium 2+2)

Társadalomismeret. Hogyan tanítsunk az új NAT szerint? Nemzeti Közszolgálati és Tankönyv Kiadó Zrt. Králik Tibor fejlesztő

FIZIKA EMELTSZINTŰ ÉRETTSÉGIRE VALÓ FELKÉSZÍTÉS

FÖLDRAJZ (szakközépiskola 3 óra)

Fizika évfolyam. tantárgy 2013.

A tartalmi szabályozás változásai

Az egyes évfolyamokon tanított tárgyak, kötelező és választható tanórai foglalkozások, ezek óraszámai, az előírt tananyag és követelmények

Különös közzétételi lista a nevelési oktatási intézmények részére. Szilvási Általános Iskola

PROJEKTTERV. Kovács Róbert Péterné. Technika, életvitel és gyakorlat

ALAPADATOK. KÉSZÍTETTE Balogh Gábor. A PROJEKT CÍME Hálózati alapismeretek

Átírás:

EMELT FIZIKA (gimnázium, 3x3x4x3) A természettudományos kompetencia középpontjában a természetet és a természet működését megismerni igyekvő ember áll. A fizika tantárgy a természet működésének a tudomány által feltárt legalapvetőbb törvényszerűségeit igyekezik megismertetni a diákokkal. A törvényszerűségek harmóniáját és alkalmazhatóságuk hihetetlen széles skálatartományát megcsodálva, bemutatja, hogyan segíti a tudományos módszer a természet erőinek és javainak az ember szolgálatába állítását. Olyan ismeretek megszerzésére ösztönözzük a fiatalokat, amelyekkel egész életpályájukon hozzájárulnak majd a társadalom és a természeti környezet összhangjának fenntartásához, a tartós fejlődéshez és ahhoz, hogy a körülöttünk levő természetnek minél kevésbé okozzunk sérülést. Nem kevésbé fontos, hogy elhelyezzük az embert kozmikus környezetünkben. A természettudomány és a fizika ismerete segítséget nyújt az ember világban elfoglalt helyének megértésére, a világ jelenségeinek a természettudományos módszerrel történő rendszerbe foglalására. A természet törvényeinek az embert szolgáló sikeres alkalmazása gazdasági előnyöket jelent, de ezen túl szellemi, esztétikai örömöt és harmóniát is kínál. A tantárgy tanulása során a tanulók megismerik az alapvető fizikai jelenségeket és az azokat értelmező modellek és elméletek történeti fejlődését, érvényességi határait, a hozzájuk vezető megismerési módszereket. A fizika tanítása során azt is be kell mutatnunk, hogy a felfedezések és az azok révén megfogalmazott fizikai törvények nemcsak egy-egy kiemelkedő szellemóriás munkáját, hanem sok tudós századokat átfogó munkájának koherens egymásra épülő tudásszövetét jelenítik meg. A törvények folyamatosan bővültek, és a modern tudományos módszer kialakulása óta nem kizárják, hanem kiegészítik egymást. Az egyre nagyobb teljesítőképességű modellekből számos alapvető, letisztult törvény nőtt ki, amelyet a tanulmányok egymást követő szakaszai a tanulók kognitív képességeinek megfelelő gondolati és formai szinten mutatnak be, azzal a célkitűzéssel, hogy a szakirányú felsőfokú képzés során eljussanak a választott terület tudományos kutatásának frontvonalába. A tantárgy tanulása során a tanulók megismerkedhetnek a természet tervszerű megfigyelésével, a kísérletezéssel, a megfigyelési és a kísérleti eredmények számszerű megjelenítésével, grafikus ábrázolásával, a kvalitatív összefüggések matematikai alakú megfogalmazásával. Ez utóbbi nélkülözhetetlen vonása a fizika tanításának, hiszen e tudomány fél évezred óta tartó diadalmenetének ez a titka. Fontos, hogy a tanulók a jelenségekből és a köztük feltárt kapcsolatokból leszűrt törvényeket a természetben újabb és újabb jelenségekre alkalmazva ellenőrizzék, megtanulják igazolásuk vagy cáfolatuk módját. A tanulók ismerkedjenek meg a tudományos tényeken alapuló érveléssel, amelynek része a megismert természeti törvények egy-egy tudománytörténeti fordulóponton feltárt érvényességi korlátainak megvilágítása. A fizikában használatos modellek alkotásában és fejlesztésében való részvételről kapjanak vonzó élményeket és ismerkedjenek meg a fizika módszerének a fizikán túlmutató jelentőségével is. A tanulóknak fel kell ismerniük, hogy a műszaki-természettudományi mellett az egészségügyi, az agrárgazdasági és a közgazdasági szakmai tudás szilárd megalapozásában sem nélkülözhető a fizika jelenségkörének megismerése. A gazdasági élet folyamatos fejlődése érdekében létfontosságú a fizika tantárgy korszerű és további érdeklődést kiváltó tanítása. A tantárgy tanításának elő kell segítenie a közvetített tudás társadalmi hasznosságának megértését és technikai alkalmazásának jelentőségét. Nem szabad megfeledkeznünk arról, hogy a fizika eszközeinek elsajátítása nagy szellemi erőfeszítést, rendszeres munkát igénylő tanulási folyamat. A Nemzeti Alaptanterv természetismeret kompetenciában megfogalmazott fizikai ismereteket nem lehet egyenlő mélységben elsajátítatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a 1

fiatalokkal, és mi az, amit mélyebben feldolgoz. Az Alkalmazások és a Jelenségek címszavak alatt felsorolt témák olyanok, amelyekről fontos, hogy halljanak a tanulók, de mindent egyenlő mélységben - ebben az órakeretben - nincs módunk tanítani. Ahhoz, hogy a fizika tantárgy tananyaga személyesen megérintsen egy fiatalt, a tanárnak a tanítás módszereit a tanulók, tanulócsoportok igényeihez, életkori sajátosságaihoz, képességeik kifejlődéséhez és gondolkodásuk sokféleségéhez kell igazítani. A jól megtervezett megismerési folyamat segíti a tanulói érdeklődés felkeltését, a tanulási célok elfogadását és a tanulók aktív szerepvállalását is. A fizika tantárgy tanításakor a tanulási környezetet úgy kell tehát tervezni, hogy az támogassa a különböző aktív tanulási formákat, technikákat, a tanulócsoport összetétele, mérete, az iskolákban rendelkezésre álló feltételek függvényében. Így lehet reményünk arra, hogy a megfelelő kompetenciák és készségek kialakulnak a fiatalokban. A tehetséges diákok egy részének nincs lehetősége, hogy hat- vagy nyolc évfolyamos gimnáziumba járjon, bár egyértelműen felfedezhető a reál-műszaki érdeklődése. Az ilyen fiatalok számára kínál az érdeklődésüknek megfelelő optimális felkészülési és fejlődési programot a négy évfolyamos tehetséggondozó gimnáziumok fizika tanterve. A négy évfolyamos tehetséggondozó gimnáziumok sajátos lehetősége, hogy a különböző iskolákból érkező tanulók tudását egységes szintre hozzák, ezt követően megfelelő fizikaképzésben részesüljenek, hogy felkészüljenek a továbbtanulásra. A kerettantervben több helyen teremtettünk lehetőséget, hogy a fizika tanítása során a diákok személyes aktivitására lehetőség nyíljon, ami feltétele a fejlesztésnek. Ezt az aktivitást kívánja segíteni félévente legalább 2 2 mérési gyakorlat beiktatása a tantervbe. Ezek tárgyát a tanár a félév aktuális témájához illeszkedve, az iskola lehetőségei és a tanulócsoport sajátosságai alapján választhatja meg. Hangsúlyozottan ajánlott, hogy a méréscsoport magját az érettségi mérési feladatai adják. A kerettanterv évente egy terjedelmesebb, kiscsoportos keretek közt megoldandó projektmunkát is tartalmaz. Ennek feladataira ajánlásokat fogalmaz meg. A kötelező órakereten kívül szervezett szakköri foglalkozásokon segítheti a tanár a tanulók felkészülését. A foglalkozások témáinak feldolgozásakor figyeljünk arra, hogy kapcsolódjanak az egyes tanulók személyes érdeklődéséhez, továbbtanulási irányához, többi természettudományi (pl. kémia, biológia és földrajz) tantárggyal való együttműködésre. Célok és feladatok A középiskolai fizikaoktatás alapvető célja az általános műveltséget megszilárdító, illetve az azt elmélyítő pályaválasztási szakasz során az általános iskolában megszerzett tudáselemek megszilárdítása, elmélyítése, az elvontabb gondolkodást igénylő eljárások elsajátítása, a nagyobb áttekintőképességet igénylő összetettebb természeti és mesterséges rendszerek megismerése, a mélyebb pl. a tudományok eredményei és a társadalom közötti összefüggések megértése. Ezek révén annak elérése, hogy a tanulók felnőtt életük során képesek legyenek tudásukat, egyéni sorsukat, közvetlen vagy tágabb környezetüket érintő döntések meghozatala, állásfoglalásuk kialakítása során mozgósítani, ezeket érvekre, bizonyítékokra alapozzák; képesek legyenek felelősségteljes magatartást kialakítani saját életmódjuk és környezetük iránt. Ennek érdekében a következő feladatok megvalósítása szükséges: Annak tudatosítása a tananyag feldolgozása során, hogy a fizika része a természettudományoknak; s eredményeivel jelentősen hozzájárult a természet megismeréséhez, más tudományágak fejlődéséhez és jelentős hatása van mind az egyének életére, mind a társadalmi-történelmi folyamatokra, pl. a közlekedés, a hírközlés, az 2

informatika, az űrkutatás, egyes művészeti ágak területén. Tudatosítani kell továbbá, hogy a fizika és általában a természettudomány ezen túlmenően is az egyetemes emberi kultúra szerves része, így megismerési módszereivel, gondolkodásmódjával, eredményeivel általában is hatást gyakorol a világ egészéről, az ember és természet viszonyáról alkotott képünkre, és ebből koronként más és más filozófiai és etikai kérdések is adódnak, amelyekkel az egyes egyének is szembesülhetnek életük során. A tananyag feldolgozása során szükséges figyelembe venni a tanulók többségére érvényes életkori sajátosságokat, a fejlődéslélektan kutatási eredményeit. A tanulók ebben a korban már egyre több területen képesek az elvont (absztrakt, formális) gondolkodásra is. A fizika oktatása során ezért segítenünk kell a tanulókat gondolkodásuk fejlődésében, amire a fizika különösen jó lehetőséget nyújt. Ezért a tananyag feldolgozása során célszerű elsődlegesen a konkrét tényekből, tapasztalatokból, kísérleti, mérési eredményekből kiindulva, fokozatosan haladni az általánosított, absztrakt fogalmak felé. E tevékenységek során szükséges a különböző típusú információforrások használatához, értelmezéséhez, az adatok, információk különböző szempontok szerint történő rendszerezéséhez, elemzéséhez szükséges képességek fejlesztése, az egyre nagyobb fokú önállóságra törekvés. Ezzel összhangban, a fizika tanítása-tanulása során a középiskolában is szükséges biztosítani a korábbi, konkrét, az iskolában és iskolán kívül szerzett tapasztalatok, előismeretek számbavételét, felfrissítését; a tapasztalatok kiegészítését kísérletekkel, mérésekkel. Célszerű minél több tanulói kísérletezést is beiktatni, a természettudományok vizsgálati és következtetési módszereinek további megismerését, gyakorlását. Ezért a tanári kísérletek, mérések eredményeinek elemzésébe is szükséges a tanulók bevonása. A tanulók még középiskolában is számos olyan elképzeléssel, részáltalánosítással rendelkeznek, amelyek ellentmondásban vannak (vagy csak részben felelnek meg) a későbbi fizikai tanulmányaikkal. A tanítás során nemcsak az új fizikai ismeretek megértéséről, megerősítéséről kell gondoskodnunk, hanem a téves elképzelések helyesbítéséről is. A tanítás egyik módszere lehet éppen ezeknek az előzetes elképzeléseknek az összegyűjtése (a tanulók elmarasztalása nélkül), majd az állítások megvitatása, kísérletekkel való fokozatos alakítása. A tanulók fizikai ismereteinek bővítése során történik képességeik fejlesztése is. Ennek érdekében a tanítást a sokoldalú tanulói tevékenységekre kell építeni; a hasonló jellegű fogalmakat, összefüggéseket (például a hányados jellegű fizikai mennyiségeket) azonos vagy hasonló módon ajánlatos kialakítani, megerősíteni; az alapvető fizikai fogalmakat a kapcsolódó összefüggések, témakörök tanításakor szükséges ismételten megerősíteni; az ismeretek alkalmazását, megerősítését szolgáló feladatokat célszerű úgy megválasztani, hogy azok különféle módon szolgálják az egyes képességek fejlesztését (gyakorlati jellegű kérdések; számításos feladatok; problémamegoldás stb.). A kísérletek, mérések végzésekor (akár tanári, akár tanulói) el kell érni, hogy a tapasztalatok rögzítése, az adatfeldolgozás, a következtetések levonása egyre nagyobb mértékben önálló tevékenységgé váljon. Ez lehetővé teszi, hogy az iskolai keretek között ténylegesen el nem végezhető kísérletek, mérések is közvetlen tapasztalat nélkül is alapul szolgálhassanak az adott jelenségkör feldolgozásához. Segíteni kell a tanulókat abban, hogy elsajátítsák a hatékony tanulás módszereit, az önálló ismeretszerzést az audiovizuális eszközökből, az ismeretterjesztő könyvekből, a szakirodalomból, az internetről és más forrásokból. A fizikatanulmányok keretében e források felhasználásával a tanulók aktív közreműködésével szükséges tájékoztatást kapniuk a fizika korszerű gyakorlati alkalmazásairól. Ugyanakkor és erre a középiskolában a tanulók életkori sajátosságai különösen jó lehetőséget teremtenek ki kell alakítani a kritikai viszonyulást a használt forrásokhoz, az ellenőrzés igényét. A fizika oktatásának hozzá kell járulnia a környezetvédelem és az energiatakarékosság célszerű és ésszerű megoldásainak a megismeréséhez, s annak a meggyőződésnek a 3

kialakításához, hogy mindenkinek a maga lehetőségéhez képest szükséges segítenie az ezzel járó problémák megoldását. Az ehhez szükséges felelősségérzet vonatkozik a tanuló saját egészségének megóvására, a helyes életvitel kialakítására is, amelynek lényeges része a tudatos fogyasztó magatartás kialakulásának elősegítése is az erre alkalmas tematikai egységek kapcsán. Mivel a műveltségterület kiemelt feladata a természettudományos kompetencia fejlesztése, az alábbi fejlesztési feladatok a Nemzeti alaptantervnek a természettudományos kompetenciáról, illetve ennek ismeret-, képesség- és attitűdjellegű összetevőiről szóló leírása felépítését követik. 1. Tájékozódás a tudomány technika társadalom kölcsönhatásairól, a természettudományról, a tudomány és a tudományos megismerés természetéről. A tanulók tudják összekapcsolni a tudományos eredményeket az adott társadalmi kérdésekkel, legyenek képesek ismereteik alapján állást foglalni, ezt érvekkel alátámasztani, vitában képviselni. Ismerjék meg a természet egységét kifejező, átfogó tudásrendszereket, általános fogalmakat és törvényeket. Tudják elhelyezni a tudományt a megismerési folyamatban. Legyenek ismereteik a világról alkotott tudományos és nem tudományos modellekről, és lássák a tudományos fejlődést, a tudományos vizsgálódások hatékonyságát, fontosságát. Ismerjék meg a természettudomány néhány jeles képviselőjének életét és munkásságát. 2. Természettudományos megismerés A tanulókban alakuljon ki a tudományos ismeretszerzés iránti igény. Tudjanak önállóan és csoportmunkában megfigyeléseket, méréseket, vizsgálatokat, kísérleteket tervezni és végezni, ezek eredményeit feldolgozni, következtetéseket levonni. Ismerjék és balesetmentesen tudják használni a mérésekhez, kísérletekhez szükséges eszközöket. Tudják használni tantárgyi ismeretszerzésre a számítógépet, illetve multimédiás eszközöket, önállóan és csoportmunkában. Legyenek képesek adott olvasnivalóból meghatározott szempontok szerint információkat kigyűjteni, megadott témához forrásokat keresni. Kapcsolódjanak be a kísérletek eredményeinek elemzésébe. A megfigyelések, tapasztalatok által megszerzett ismereteket tudják nyelvtanilag helyesen megfogalmazni szóban vagy írásban, vázlatrajzban, ábrán, grafikonon, táblázatban rögzíteni. Legyenek képesek a különféle módon megszerzett ismereteiket egymással összehasonlítani, csoportosítani, rendszerezni, elemezni. Legyenek képesek az előzetes elképzelések, az előrejelzések és a mért értékek közötti eltérések felismerésére és magyarázatára. 3. Tájékozódás az élő és élettelen természetről Anyag A részecskeszemlélet továbbfejlesztése, a kettős természet megismerése. A szerkezet és tulajdonság között fennálló ok-okozati kapcsolat felfedezése. Az anyag különböző megjelenési formáinak, a tömeg és energia kapcsolatának ismerete. Energia Ismerjék a természet energiaátalakító folyamatait, tudjanak értelmezni konkrét fizikai folyamatokat. Legyenek tisztában az ember által használt energiaforrásokkal, az alapvető energiagazdálkodási és ezekkel kapcsolatos környezeti problémákkal, a fenntartható fejlődés kérdéseivel. Információ 4

Tudják a kísérletek, mérések eredményeit különböző formákban (táblázatban, grafikonon, rajzon) rögzíteni. Tudják kész grafikonok, táblázatok, rajzok adatait leolvasni, értelmezni, ezekből következtetéseket levonni. Ismerjék és tudatosan használják fel az internetes információáramlás lehetőségeit, tudjanak különböző forrásokból (lexikonok stb.) megadott témához információt keresni, a különböző forrásokból szerzett információkat összehasonlítani, értékelni. A tér Használják a különböző mérőeszközöket, tudjanak kiigazodni a folyamatok térbeli jellemzőiben, értsék a viszonyítási rendszer jelentőségét. Legyen szemléletes képük a nagyságrendi viszonyokról (az atomok méretétől az Univerzum léptékéig). Idő és a mozgás Tudják leírni, összehasonlítani a tanult mozgásfajtákat. Ismerjék a Föld történetét és az Univerzum kialakulásáról alkotott elképzelést. Ismerjék fel a kapcsolatot a fizikai folyamatok iránya és az idő között. Legyen képük az anyag változásainak sokféleségéről. Rendszer Tudják rendszerezni az anyagokra jellemző tulajdonságokat és a jelenségeket különböző szempontok szerint. Ismerjék fel a dolgok, jelenségek közötti kölcsönhatásokat. Legyenek képesek a tanultak alapján természetes és mesterséges rendszerek felismerésére, jellemzésére különböző szempontok szerint. A természettudományos kompetencia középpontba állítása mellett a tantárgynak nem kevésbé fontos feladata a NAT-ban meghatározott többi kulcskompetencia fejlesztése és a kiemelt fejlesztési célok követése is. Ezek közül az anyanyelvi kommunikáció, a hatékony, önálló tanulás, a matematikai kompetencia fejlesztése, illetve a tanulás tanítása csaknem minden tartalom feldolgozása és tanítási-tanulási tevékenység végzése közben végezhető és végzendő feladat. Más kompetenciaterületek és fejlesztési feladatok egyes tartalmakhoz, illetve tevékenységtípusokhoz köthetők. Például az énkép, önismeret fejlesztése a fejlesztő értékelés révén és a különböző társas tevékenységek során (csoport- és projektmunkában, vitákban való részvétel, állásfoglalások kialakítása) történhet. Ez utóbbiak alkalmasak a szociális és állampolgári kompetencia, a kezdeményezőképesség és vállalkozói kompetencia alakítására, a demokráciára nevelésre is. A hon- és népismeret, valamint az európai azonosságtudat egyetemes kultúra fejlesztési feladatok elsősorban a fizika-, technika- és kultúrtörténeti vonatkozásokkal kapcsolhatók össze. A gazdasági nevelés, a környezettudatosságra nevelés, a testi-lelki egészséggel kapcsolatos fejlesztési célok az egyes tartalmak (pl. a fizikai jelenségek hasznosíthatósága, ezeknek az élő és élettelen környezetre, az emberi szervezetre gyakorolt hatása) e szempontok szerinti tudatos feldolgozása révén érhetők el. A digitális kompetencia fejlesztésére a fizika különösen sok lehetőséget kínál: pl. a számítástechnika felhasználása a mérésekben, az adatfeldolgozásban; szimulációs programok használata; az internet használata információkeresésben; közös digitális tudásbázis létrehozása; prezentációk, képgyűjtemények stb. készítése. A tanulók értékelése A tanulók értékelése az iskola pedagógiai programjában rögzített elvek alapján történik. Ennek alapján kell meghatározni a Fizika tantárgyban is az iskolai értékelés főbb összetevőit, így például az értékelés legfontosabb szempontjait, az értékelés kritériumait, a főbb értékelendő teljesítményeket (tevékenységeket, produktumokat), továbbá azt is, hogy az adott 5

évfolyamon, az adott tanulási szakaszban milyen formában és milyen rendszerességgel érdemes értékelni. Az értékelés szempontjai: a tanuló milyen mértékben sajátította el a tananyagtartalmakat (ismereteket, eljárásokat, következtetési módokat); mennyire önállóan tudja ezeket alkalmazni feladat- és problémamegoldásban, állásfoglalások kialakításában; mennyire képes az önálló kifejtésre (a tanult fogalmak, szakkifejezések szabatos használatára, gondolatmenetek reprodukálására és alkotására szóban és írásban, egyéb kifejezési és megjelenítési formák grafikonok, ábrák stb. használatára és készítésére, indoklásra és érvelésre); milyen mértékben és hogyan vesz részt a közös tanulási folyamatban (csoport-munkában végzett kísérletek és egyéb tevékenységek, feladatvállalás, közös értékelés, véleménynyilvánítás, a vitákban való részvétel). Az értékelés módjai A tanár a tanórai munka során folyamatos és intenzív kapcsolatban van a tanulókkal. Állandó a formatív, szóbeli értékelés. Nem minősítés, hanem az egyéni előmenetelt segítő biztatás, illetve a hiányosságok feltárása, ami segíti a tanulóban az önértékelés kialakulását, fejleszti önismeretét. Kiváló, sokirányú nevelő hatása van a különböző produktumok közös, a tanulók bevonásával történő szóbeli értékelésének is, amelyhez a tanulók is javasolhatnak értékelési szempontokat. Írásbeli értékelés Az írásos tanári értékelésben egyaránt megjelenhetnek a formatív és a szummatív értékelés elemei. Az osztályzatoknál a mégoly rövid (lapszéli) írásos megjegyzések is pontosabb tájékoztatást nyújtanak, rámutathatnak bizonyos problémákra, és javaslatokat tehetnek a fejlesztésre. A tanulók írásos önértékelése pedig többcélú órai feladat is lehet. Az osztályozás Fontos szem előtt tartani, hogy az osztályzattal történő értékelés szummatív, a tantervi követelmények megvalósulását számon kérő értékelés legyen. Nagy zavart okoz, ha az osztályzat hol a biztatás eszköze (formatív értékelés), hol pedig a tudás minősítése. A szummatív típusú felmérő, összegző, záró minősítések csak akkor hitelesek, ha objektívek, ha következetesek, ha pontosan meghatározott kritériumok alapján történnek. Ez különösen érvényes a nagyobb témaegységeket összefoglaló témazáró dolgozatokra adott érdemjegyekre, illetve az év végi osztályzatokra. Előbbiek esetében azonban ki lehet és ki is kell használni az írásbeli és a szóbeli formatív értékelés lehetőségeit is. Helyi és központi értékelés Az értékelés iskolai elveinek kidolgozása az iskola pedagógiai programjának, műveltség-területi, tantárgyi szinten pedig a helyi tantervének feladata. A központi mérések országos szinten, teljes körűen, azonos követelményekre épülő feladatsorokkal vizsgálják a tanulók képességeit. Ezért meghatározó a tanulók fejlesztésében, hogy az iskola és az egyes tanár is figyelemmel kísérje az évente egy alkalommal történő központi mérések eredményeit: így a fejlesztő tevékenységében alkalmazza a 10. évfolyamon az Országos Kompetenciamérés (szövegértés és matematika) az iskolára, a tanulócsoportokra, az egyes tanulókra érvényes eredményeinek tanulságait. A fizikára ugyanis mindkét kompetencia esetében alapvető 6

feladatok hárulnak. Ugyanez érvényes az érettségi vizsgák eredményeiből levonható tanulságokra is. A tankönyvek kiválasztásának elvei A tankönyv kiválasztása sok odafigyelést, körültekintő választást igényel, mert a jó tankönyvnek fontos szerepe van a tantárgyon keresztül a természet megszerettetésében. Ezért olyan tankönyvet válasszunk, amely a tantervi célkitűzésnek megfelelően a természeti és társadalmi jelenségeket a tanulók meglévő és megszerezhető tapasztalatain keresztül, a közvetlen és tágabb környezetből származó ismeretekkel, problémákkal összeköthetően mutatja be. A könyv tematikája fejlessze a térbeli és az időbeli tájékozódás képességét is. A megértést és képességfejlesztést változatosan tevékenykedtető feladatok, kérdések segítsék. A kiegészítő olvasmányok ne csak érdekesek legyenek, hanem az adott jelenségkör fontos és jellemző vonásaival ismertessenek meg (a törvényszerűségek érvényesülése, ezek megfigyelhetősége a mindennapi tapasztalatokban is, mai felhasználása). A tankönyv elsődlegesen nem a tananyag otthoni felidézésére szolgál, hanem a tanórai munka legfontosabb eszköze. Ezért a képek, ábrák ne csupán illusztratív szerepet töltsenek be: legyenek alkalmasak elemzésre, a tananyaghoz kapcsolódó irányított vagy önálló tanulói ismeretszerzésre. A képekre, ábrákra is vonatkozzanak kérdések, feladatok. Kerüljük a zsúfolt, nehezen áttekinthető képeket, ábrákat tartalmazó tankönyveket! A képekről, ábrákról történő ismeretszerzésre a színes nyomású könyvek több lehetőséget nyújtanak. A taníthatóság-tanulhatóság feltétele a tankönyv jó tagoltsága. Különüljenek el a különböző didaktikai funkciójú szövegrészek (pl. törzsanyag, kísérletek, olvasmányok, kidolgozott feladatok, kérdések, feladatok). A tanulást különféle kiemelések segítsék. A túlzott tagoltság és sok kiemelés azonban már nehezíti a tanulást. Előnyös, ha a leckéket összegző kérdések, feladatok zárják. A könyv nyelvezete legyen érthető, olvasmányos a tanulók számára. Ne tartalmazzon fölöslegesen sok fogalmat és tényt, ugyanakkor biztosítson minél több és többféle lehetőséget a tanulói tevékenységekre, a képességfejlesztésre (kérdések, feladatok, kidolgozott feladatok, mérési kísérletek). Ösztönözze és segítse az önálló tanulói ismeretszerzés tankönyvön belüli és tankönyvön kívüli formáit. Előny, ha a tankönyvhöz készültek tanítást segítő eszközök, pl. útmutató és tanmenetjavaslat, feladatok részletes megoldásai, digitális tananyag is. A leginkább ideillő tankönyvek: 17135 Csajági S. Fülöp F.: Fedezd fel a világot Fizika 9. Emelt szintű képzéshez 17235 Póda L. Urbán J.: Fedezd fel a világot Fizika 10. Emelt szintű képzéshez 17335 Dégen Cs. Elblinger F. Simon P.: Fedezd fel a világot Fizika 11. Emelt szintű képzéshez 17435 Csajági S. Dégen Cs. Elblinger F. Fülöp F. Simon P.: Fedezd fel a világot Fizika 12. Emelt szintű képzéshez 7

Tantárgyi struktúra és óraszámok Óraterv a kerettantervekhez gimnázium, emelt Tantárgyak 9. évf. 10. évf. 11. évf. 12. évf. Fizika (reál, emelt szint) 3 3 4 3 9 10. évfolyam A gimnáziumi fizikatanítás első ciklusában a közös szintre hozást, az ismerkedést szolgálja az alapozó mérési gyakorlatok beiktatása. Az egyes témák feldolgozása minden esetben a korábbi ismeretek, hétköznapi tapasztalatok összegyűjtésével, a kísérletezéssel, méréssel indul, de az ismertszerzés fő módszere a tapasztalatokból szerzett információk rendszerezése, matematikai leírása, igazolása, ellenőrzése és az ezek alapján elsajátított ismeretanyag alkalmazása. Ez utóbbi lényegi része a feladatmegoldás és esetenként az eredmények kísérleti ellenőrzése is. Figyeljünk arra, hogy a tanulók matematikai tudásának megfelelő apparátust használjunk, és ne maradjanak le a tanulásban a diákok. A 9. évfolyamon először a kinematika, majd a dinamika, végül a folyadékok és gázok témaköre kerül feldolgozásra, sok kísérlettel, gyakorlati alkalmazással, lassan fokozódó tempóban. Célunk a korszerű természettudományos világkép alapjainak és a mindennapi élet szempontjából fontos gyakorlati fizikai ismeretek kellő mértékű elsajátítása. A tanuló érezze, hogy a fizikában tanultak segítséget adnak számára, hogy biztonságosabban közlekedjen, hogy majd energiatudatosan éljen, olcsóbban éljen, hogy a természeti jelenségeket megfelelően értse és tudja magyarázni, az áltudományos reklámok ígéreteit helyesen tudja kezelni stb. Ennek hatékony módja lehet a tanár által jól választott problémamegoldás, továbbá például a fakultatív felkészülés után tartott tanulói feldolgozások és kiselőadások, ismeretterjesztő szakanyagok közös megtekintése és megbeszélése. A kerettanterv részletesen felbontott óraszámához hozzászámítandó 10% (azaz 22 óra) szabad tanári döntéssel felhasználható órakeret, továbbá 24 óra ismétlésre és számonkérésre ajánlott órakeret. Ezekből adódik össze a kétéves teljes 216 órás tantárgyi órakeret. 8

9. évfolyam Tematikai egység/ fejlesztési cél Előzetes tudás További feltételek A tematikai egység nevelési-fejlesztési céljai Ismeretek/ Fejlesztési követelmények Pedagógiai eljárások, módszerek, szervezési és munkaformák Kapcsolódási pontok Taneszközök Kulcsfogalmak/ fogalmak Alapozó mérési gyakorlatok Órakeret 10 óra Alapmértékegységek. Személyi: fizika szakos tanár Tárgyi: digitális tábla, számítógép internetes hozzáféréssel, projektor. Az általános iskolában tanultak ismétlése, alapvető kísérletező, mérő kompetencia fejlesztése. Hosszúság, terület, térfogat, tömeg, sűrűség, idő, erő mérése (laboratóriumi formában). Mérések a szabadban: nagy távolságok mérése digitális fotó alapján (a kamera látószögre való kalibrálása alapján). Távolságmérés lézeres kézi mérőműszerrel. Időmérés a közlekedésben. Mikroszkopikus távolságok mérése (pl. számítógépes szoftver és kamera segítségével). Időmérési feladatok a közlekedésben és a sportudvaron. A tanuló legyen tisztában a mérésekkel kapcsolatos alapvető elméleti ismeretekkel. Tudjon mérési jegyzőkönyvet készíteni. Ismerje a mérés lényegi jellemzőit, a szabványos és a gyakorlati mértékegységeket, a mérési pontosság fogalmát, a hiba okait. Legyen képes gyakorlatban alkalmazni a megismert mérési módszereket. Előzetes (általános iskolai és iskolán kívül szerzett) ismeretek felmérése, felidéztetése. Tanári magyarázat. Tanári kísérlet. Mérések, kísérletek csoportmunkában. A tapasztalatok közös megbeszélése, értelmezése. Csoportos és egyéni problémamegoldás. Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés, mértékegységek. Történelem, társadalmi és állampolgári ismeretek: a mértékegységek kialakulása. Tanulói kísérleti eszközök. Tanári kísérleti és demonstrációs eszközök. Szimuláció, modell, gyűjtőmunka bemutatásához számítógépes rendszer. Mérés, mérőeszköz, érzékenység, pontosság, mérési hiba, mértékegység. 9

Tematikai egység/ fejlesztési cél Előzetes tudás További feltételek A tematikai egység nevelési-fejlesztési céljai Ismeretek/ Fejlesztési követelmények Mozgástan Órakeret 20 óra Hétköznapi mozgásokkal kapcsolatos gyakorlati ismeretek. A 7 8. évfolyamon tanult kinematikai alapfogalmak, az út- és időmérés alapvető módszerei, függvényfogalom, a grafikus ábrázolás elemei, egyenletrendezés. Személyi: fizika szakos tanár Tárgyi: digitális tábla, számítógép internetes hozzáféréssel, projektor. A kinematikai alapfogalmak, mennyiségek kísérleti alapokon történő kialakítása, illetve bővítése, az összefüggések (grafikus) ábrázolása és matematikai leírása. A természettudományos megismerés Galilei-féle módszerének bemutatása. A kísérletezési kompetencia fejlesztése a legegyszerűbb kézi mérésektől a számítógépes méréstechnikáig. A problémamegoldó képesség fejlesztése a grafikus ábrázolás és ehhez kapcsolódó egyszerű feladatok megoldása során (is). A tanult ismeretek gyakorlati alkalmazása hétköznapi jelenségekre, problémákra (pl. közlekedés, sport). A köznapi testek mozgásformái: haladó mozgás és forgás. A kiterjedt testek tömegpont közelítése, tömegközéppont. A tanuló legyen képes a mozgásokról tanultak és a köznapi jelenségek összekapcsolására, a fizikai fogalmak helyes használatára, egyszerű számítások elvégzésére. Hely, hosszúság és idő mérése. Jelenségek, gyakorlati alkalmazások: földrajzi szélesség meghatározása a delelő Nap állásából, helymeghatározás háromszögeléssel. Nagy távolságok mérése látószögmérés alapján. Csillagászati távolságmérések, becslések (Eratoszthenész, Arisztarkhosz mérései). Mikroszkópos távolságmérések. Ókori időmérés (napóra, vízóra). Olimpiai rekordidők relatív mérési pontossága. Ismerje a mérés lényegi jellemzőit, a szabványos és a gyakorlati mértékegységeket, a mérési pontosság fogalmát, a hiba okait. Legyen képes gyakorlatban alkalmazni a megismert mérési módszereket. A mozgás viszonylagossága, a vonatkoztatási rendszer (koordinátarendszer). Galilei relativitási elve. Mindennapi tapasztalatok egyenletesen mozgó vonatkoztatási rendszerekben (autó, vonat). Földrajzi koordináták meghatározása a Nap állásából; GPS; helymeghatározás, távolságmérés radarral. Egyenes vonalú egyenletes mozgás kísérleti vizsgálata. Grafikus leírás. Sebesség, átlagsebesség. Grafikus feladatmegoldás. Egyenes vonalú egyenletesen változó mozgás kísérleti vizsgálata. Ismerje a változó mozgás általános fogalmát, értelmezze az átlag- és 10

Pedagógiai eljárások, módszerek, szervezési és munkaformák Kapcsolódási pontok Taneszközök Kulcsfogalmak/ fogalmak pillanatnyi sebességet. Ismerje a gyorsulás fogalmát, vektor-jellegét. Tudja ábrázolni az s-t, v-t, a-t grafikonokat. Tudjon egyszerű feladatokat megoldani. A szabadesés vizsgálata. A nehézségi gyorsulás meghatározása. Ismerje Galilei modern tudományteremtő, történelmi módszerének lényegét: a jelenség megfigyelése, értelmező hipotézis felállítása, számítások elvégzése, az eredmény ellenőrzése célzott kísérletekkel. Összetett mozgások. Egymásra merőleges egyenletes mozgások összege. Vízszintes hajítás kísérleti vizsgálata, értelmezése összetett mozgásként. Ismerje a mozgások függetlenségének elvét és legyen képes azt egyszerű esetekre (folyón átkelő csónak, vízszintes hajítás) a sebesség vektorjellegének kiemelésével alkalmazni. Egyenletes körmozgás. A körmozgás, mint periodikus mozgás. A mozgás jellemzői (kerületi és szögjellemzők). A centripetális gyorsulás értelmezése. Ismerje a körmozgást leíró kerületi és szögjellemzőket és tudja alkalmazni azokat. Értelmezze a centripetális gyorsulást. Mutasson be egyszerű kísérleteket, méréseket. Tudjon alapszintű feladatokat megoldani. Tanári kísérlet. Tanári magyarázat. Mérés, kísérlet csoportmunkában. Az eredmények közös értelmezése. A gyűjtőmunka és az eredmények feldolgozása projektmunkában. A produktumok közös megbeszélése, értékelése megadott szempontok szerint. Megbeszélés, vita, tanári reflexió. Matematika: függvény fogalma, grafikus ábrázolás, egyenletrendezés. Informatika: függvényábrázolás (táblázatkezelő használata). Testnevelés és sport: érdekes sebességadatok, érdekes sebességek, pályák technikai környezete. Biológia-egészségtan: élőlények mozgása, sebességei, reakcióidő. Művészetek; magyar nyelv és irodalom: mozgások ábrázolása. Technika, életvitel és gyakorlat: járművek sebessége és fékútja, követési távolság, közlekedésbiztonsági eszközök, technikai eszközök (autók, motorok), GPS, rakéták, műholdak alkalmazása, az űrhajózás célja. Történelem, társadalmi és állampolgári ismeretek: Galilei munkássága; a kerék feltalálásának jelentősége. Földrajz: a Naprendszer szerkezete, az égitestek mozgása, csillagképek, távcsövek. Tanári kísérleti és demonstrációs eszközök. Szimuláció, modell, gyűjtőmunka bemutatásához számítógépes rendszer. Sebesség, átlagsebesség, pillanatnyi sebesség, gyorsulás, vektorjelleg, mozgások összegződése, periódusidő, szögsebesség, centripetális gyorsulás. 11

Tematikai egység/ fejlesztési cél Előzetes tudás További feltételek A tematikai egység nevelési-fejlesztési céljai Ismeretek/ Fejlesztési követelmények Pontszerű testek és pontrendszerek dinamikája Órakeret 30 óra Kinematikai alapfogalmak, függvények. Személyi: fizika szakos tanár Tárgyi: digitális tábla, számítógép internetes hozzáféréssel, projektor. Az ösztönös arisztotelészi mozgásszemlélet tudatos lecserélése a newtoni szemléletre. Az új szemlélet beépítése a diákok személyes gondolati hálójába, a tanulókban élő esetleges prekoncepciók, illetve naiv elméletek hibás elemeit megváltoztatva, nem csak a fizikához kötődve. (Az új szemlélet kialakításakor jól alkalmazható a kognitív konfliktus létrehozásának módszere.) Az általános iskolában megismert sztatikus erőfogalom felcserélése a dinamikai szemléletűvel, rámutatva a két szemlélet összhangjára. Az erő fogalma. Az erő alak- és mozgásállapot-változtató hatása. Erőmérés rugós erőmérővel. Ismerje a tanuló az erő alak- és mozgásállapot-változtató hatását, az erő mérését, mértékegységét, vektor-jellegét. Legyen képes erőt mérni rugós erőmérővel. Erővektorok összegzése, felbontása. Gyakorlatban tudja alkalmazni az erővektorok összegezését és felbontását, szerkesztéssel, (számítással), kísérleti igazolással kiegészítve. A tehetetlenség törvénye (Newton I. axiómája). Az űrben, űrhajóban szabadon mozgó testek. Legyen képes az arisztotelészi mozgásértelmezés elvetésére kognitív alapon. Ismerje az inercia-(tehetetlenségi) rendszer fogalmát. Ismerje és a gyakorlatban tudja alkalmazni az egyensúlyi állapot feltételét több erő együttes hatása esetén. Az erő mozgásállapot-változtató (gyorsító) hatása Newton II. axiómája. Ismerje a tehetetlen tömeg fogalmát. Ismerje a lendület fogalmát, vektor-jellegét, a lendületváltozás és az erőhatás kapcsolatát. Tudja a lendülettételt. A kölcsönhatás törvénye (Newton III. axiómája). Ismerje, és egyszerű példákkal tudja illusztrálni, hogy az erő két test közötti kölcsönhatás. Tudjon értelmezni egyszerű köznapi jelenségeket a párkölcsönhatás esetén a lendület megmaradásának törvényével. Jelenségek, gyakorlati alkalmazások: golyók, labdák, korongok ütközése. Ütközéses balesetek a közlekedésben. Miért veszélyes a koccanás? Az utas biztonságát védő technikai megoldások (biztonsági öv, légzsák, a gyűrődő karosszéria). Sebességmérés, tömegmérés ütköztetéssel. Sebességmérés ballisztikus ingával. A lendületmegmaradás törvényét alkalmazva legyen képes egyszerű számítások és mérési feladatok megoldására. Az erőhatások függetlensége. Erőtörvények, a dinamika alapegyenlete. A rugó erőtörvénye. 12

Pedagógiai eljárások, módszerek, szervezési és munkaformák Kapcsolódási pontok Taneszközök A nehézségi erő és hatása. A tömegközéppont fogalma. Tapadási és csúszási súrlódás. Kényszererők. Jelenségek, gyakorlati alkalmazások: járművek indulása, fékezése, közlekedésbiztonság, a súrlódás haszna és kára; kötélsúrlódás stb. Tudja, hogy több erő együttes hatása esetén a test gyorsulását az erők vektori eredője határozza meg. Ismerje, és tudja alkalmazni a tanult egyszerű erőtörvényeket. Legyen képes egyszerű feladatok megoldására és a kapott eredmény kísérleti ellenőrzésére néhány egyszerű esetben: állandó erővel húzott test; mozgás lejtőn, a súrlódás hatása; mérleg a liftben, a súlytalanság állapota. Az egyenletes körmozgás dinamikája. Jelenségek, gyakorlati alkalmazások: vezetés kanyarban, hullámvasút; függőleges síkban átforduló kocsi; centrifuga. Értse, hogy az egyenletes körmozgás gyorsulását (a centripetális gyorsulást) a ható erők centrális komponenseinek összege adja. Ennek ismeretében legyen képes egyszerű feladatok megoldására csoportmunkában. Pontrendszerek mozgásának vizsgálata, dinamikai értelmezése. Tudja, hogy az egymással kölcsönhatásban lévő testek mozgását az egyes testekre ható külső erők és a testek közötti kényszerkapcsolatok figyelembevételével lehetséges értelmezni. Legyen képes ennek alapján egyszerű esetek (pl. Atwood-féle ejtőgép, kiskocsi gyorsítása csigán átvetett súllyal) elemzésére. Az impulzusmegmaradás zárt rendszerben. A rakétameghajtás elve. Ütközések. Legyen képes az impulzusmegmaradás törvényének alkalmazására, egyszerű kísérletek, számítások elvégzésére egyéni és csoportmunkában. Értse a rakétameghajtás lényegét. Tanulói kísérlet csoportmunkában. Közös megbeszélés, tanári magyarázat. Tanári kísérlet. Szemléltetés. Bemutatók közös értékelése. Vita, megbeszélés. Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés. Technika, életvitel és gyakorlat: Takarékosság; légszennyezés, zajszennyezés; közlekedésbiztonsági eszközök, közlekedési szabályok, GPS, rakéták, műholdak alkalmazása, az űrhajózás célja. Biztonsági öv, ütközéses balesetek, a gépkocsi biztonsági felszerelése, a biztonságos fékezés. Nagy sebességű utazás egészségügyi hatásai. Biológia-egészségtan: reakcióidő, az állatok mozgása (pl. medúza). Földrajz: a Naprendszer szerkezete, az égitestek mozgása, csillagképek, távcsövek. Tanulói kísérleti eszközök. Tanári kísérleti és demonstrációs eszközök. Szimuláció, modell, gyűjtőmunka bemutatásához 13

Kulcsfogalmak/ fogalmak számítógépes rendszer. Erő, párkölcsönhatás, lendület, lendületmegmaradás, erőtörvény, mozgásegyenlet, pontrendszer, rakétamozgás, ütközés. 14

Tematikai egység/ fejlesztési cél Előzetes tudás További feltételek A tematikai egység nevelési-fejlesztési céljai Ismeretek/ Fejlesztési követelmények Pedagógiai eljárások, módszerek, szervezési és munkaformák Kapcsolódási pontok Taneszközök Kulcsfogalmak/ fogalmak Testek egyensúlya statika Órakeret 10 óra Kinematikai alapfogalmak, Newton I. és II. törvénye, az erőhatások függetlenségének elve, erők vektori összegzése, eredő erő, forgatónyomaték. Személyi: fizika szakos tanár Tárgyi: digitális tábla, számítógép internetes hozzáféréssel, projektor. A mindennapi és a műszaki, továbbá az egészségügyi gyakorlatban fontos alkalmazott fizikai ismeretek elsajátítása. Az egyensúly fogalmának kiterjesztése, mélyítése. Pontszerű test egyensúlya. A tanuló ismerje és egyszerű esetekre tudja alkalmazni a pontszerű test egyensúlyi feltételét. Legyen képes erővektorok összegzésére, komponensekre bontására, egyszerű szerkesztési feladatok elvégzésére. A merev test mint speciális pontrendszer. Merev testek egyensúlyának feltétele. Ismerje az erő forgató hatását, a forgatónyomaték fogalmát, a merev test egyensúlyának kettős feltételét. Legyen képes egyszerű számítások, mérések, szerkesztések elvégzésére. Eemelők, tartószerkezetek, építészeti érdekességek (pl. gótikus támpillérek, boltívek, műszaki szerkezetek méretezési szabályai). Ismerje a tömegközéppont fogalmát és legyen képes annak meghatározására egyszerű esetekben. Deformálható testek egyensúlyi állapota. Ismerje Hooke törvényét, értse a külső és belső erők egyensúlyát, a rugalmas alakváltozás és a belső erők kapcsolatát. Mérések végzése és eredmények rögzítése csoportban. Tanári kísérlet. Tanári magyarázat. Eredmények prezentálása megadott formában. Közös értékelés megadott szempontok szerint. Tanári reflexió. Történelem, társadalmi és állampolgári ismeretek: tudománytörténet. Matematika: alapműveletek, egyenletrendezés, műveletek vektorokkal. Testnevelés és sport: kondicionáló gépek, az egészséges emberi testtartás. Technika, életvitel és gyakorlat: erőátviteli eszközök, technikai eszközök, technikai eszközök stabilitása. Tanulói kísérleti eszközök. Tanári kísérleti és demonstrációs eszközök. Szimuláció, modell, gyűjtőmunka bemutatásához számítógépes rendszer. Egyensúly, forgatónyomaték, tömegközéppont, merev test, deformálható test, rugalmas megnyúlás. 15

Tematikai egység/ fejlesztési cél Előzetes tudás További feltételek A tematikai egység nevelési-fejlesztési céljai Ismeretek/ Fejlesztési követelmények Pedagógiai eljárások, módszerek, szervezési és munkaformák Kapcsolódási pontok Taneszközök Kulcsfogalmak/ fogalmak Mechanikai munka, energia Órakeret 10 óra Erő, elmozdulás, az állandó erő munkája. Személyi: fizika szakos tanár Tárgyi: digitális tábla, számítógép internetes hozzáféréssel, projektor. Az általános iskolában tanult munka- és mechanikai energiafogalom elmélyítése és bővítése, a mechanikai energiamegmaradás igazolása speciális esetekre és a mechanikai energiamegmaradás törvényének általánosítása. Az elméleti megközelítés mellett a fizikai ismeretek mindennapi alkalmazásának bemutatása, gyakorlása. Mechanikai munka és teljesítmény. Mechanikai energiafajták (helyzeti energia, mozgási energia, rugalmas energia). Munkatétel. A fékút és a sebesség kapcsolata, a követési távolság meghatározása. A mechanikai energiamegmaradás törvénye. Mozgás gördeszkás görbült lejtőn, síugrósáncon. Amikor a mechanikai energiamegmaradás nem teljesül a súrlódási erő munkája. Tudja egyszerű zárt rendszerek példáin keresztül értelmezni a mechanikai energiamegmaradás törvényét. Tudja, hogy a mechanikai energiamegmaradás nem teljesül súrlódás, közegellenállás esetén, mert a rendszer mechanikailag nem zárt. Egyszerű gépek, hatásfok. Érdekességek, alkalmazások. Ókori gépezetek, mai alkalmazások. Az egyszerű gépek elvének felismerése az élővilágban. Energia és egyensúlyi állapot. Ismerje a stabil, labilis és közömbös egyensúlyi állapot fogalmát és tudja alkalmazni egyszerű esetekben. Tanári kísérlet. Tanári magyarázat. Szemléltetés modellel vagy számítógépes szimulációval. Egyéni vagy csoportban kialakított vélemények kifejtése, érvelés, vita. Csoportos és egyéni problémamegoldás. Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés. Testnevelés és sport: sportolók teljesítménye, sportoláshoz használt pályák energetikai viszonyai és sporteszközök energetikája. Technika, életvitel és gyakorlat: járművek fogyasztása, munkavégzése, közlekedésbiztonsági eszközök, technikai eszközök (autók, motorok). Biológia-egészségtan: élőlények mozgása, teljesítménye. Tanári kísérleti és demonstrációs eszközök. Szimuláció, modell, gyűjtőmunka bemutatásához számítógépes rendszer. Munkavégzés, energia, helyzeti energia, mozgási energia, rugalmas energia, munkatétel, mechanikai energiamegmaradás. 16

Tematikai egység/ fejlesztési cél Az égi és földi mechanika egysége Órakeret 10 óra Előzetes tudás Nehézségi gyorsulás, szabadesés, körmozgás, a dinamika alapegyenlete, ellipszis. További feltételek Személyi: fizika szakos tanár Tárgyi: digitális tábla, számítógép internetes hozzáféréssel, projektor. A tematikai egység nevelési-fejlesztési céljai Annak bemutatása, hogy a newtoni mozgástörvények és Newton gravitációs törvénye egységbe fogták az égi és a földi mechanikát. A newtoni világkép tudománytörténeti jelentősége, hangsúlyozva, hogy a klasszikus mechanika több száz éves törvényei ma is Ismeretek/ Fejlesztési követelmények Pedagógiai eljárások, módszerek, szervezési és munkaformák Kapcsolódási pontok Taneszközök Kulcsfogalmak/ fogalmak maradéktalanul érvényesek. A kopernikuszi világkép. A bolygók mozgása. Kepler törvényei. A tanuló ismerje Kepler törvényeit, tudja azokat alkalmazni a Naprendszer bolygóira és mesterséges holdakra. Ismerje a geocentrikus és heliocentrikus világkép kultúrtörténeti dilemmáját és konfliktusát. Newton gravitációs törvénye. A nehézségi gyorsulás változása a Földön. Az árapály-jelenség kvalitatív magyarázata. A mesterséges holdak mozgása és a szabadesés. A súlytalanság értelmezése az űrállomáson. Jelenségek az űrhajóban. Geostacionárius műholdak, hírközlési műholdak. A műholdak szerepe a GPS-rendszerben. Tudja, hogy a gravitációs kölcsönhatás a négy alapvető fizikai kölcsönhatás egyike, meghatározó jelentőségű az égi mechanikában. Ismerje a gravitációs erőtörvényt és tudja azt alkalmazni egyszerű esetekre. Értse a gravitáció szerepét az űrkutatással, űrhajózással kapcsolatos közismert jelenségekben. Tanári magyarázat. Egyénileg vagy csoportban végzett információgyűjtés bemutatása. Csoportos és egyéni problémamegoldás. Szemléltetés modellel vagy számítógépes szimulációval. Földrajz: a Naprendszer szerkezete, az égitestek mozgása, csillagképek, távcsövek, űrállomás, űrtávcső, az űrhajózás célja. Technika, életvitel és gyakorlat: GPS, rakéták, műholdak alkalmazása a távközlésben, a meteorológiában. Történelem, társadalmi és állampolgári ismeretek: Galilei és Newton munkássága. Tanári demonstrációs eszközök. Szimuláció, modell, gyűjtőmunka bemutatásához számítógépes rendszer. Heliocentrikus világkép, általános tömegvonzás, mesterséges hold, súlytalanság 17

Tematikai egység/ fejlesztési cél Előzetes tudás További feltételek A tematikai egység nevelési-fejlesztési céljai Ismeretek/ Fejlesztési követelmények Folyadékok és gázok mechanikája Órakeret 18 óra Hidrosztatikai és aerosztatikai alapismeretek, sűrűség, nyomás, légnyomás, felhajtóerő, kémia: anyagmegmaradás, halmazállapotok, földrajz: tengeri, légköri áramlások. Személyi: fizika szakos tanár Tárgyi: digitális tábla, számítógép internetes hozzáféréssel, projektor. A témakör jelentőségének bemutatása, mint a fizika egyik legrégebbi területe és egyúttal a legújabb kutatások színtere (pl. tengeri és légköri áramlások, a vízi- és szélenergia hasznosítása). A megismert fizikai törvények összekapcsolása a gyakorlati alkalmazásokkal. Önálló tanulói kísérletezéshez szükséges képességek fejlesztése, hétköznapi jelenségek fizikai értelmezésének gyakoroltatása. Pascal törvénye, hidrosztatikai nyomás, felhajtóerő nyugvó folyadékokban és gázokban. Hidraulikus gépek. A tanuló legyen képes egyszerű mérőkísérletek elvégzésére. Tudja alkalmazni hidrosztatikai ismereteit köznapi jelenségek értelmezésére, egyszerű számításos feladatok megoldására. A tanult ismeretek alapján legyen képes önálló forráskutatáson alapuló ismeretbővítésre és az új ismeretek bemutatására (pl. hidraulikus gépek alkalmazásainak bemutatása). Molekuláris erők folyadékokban (kohézió és adhézió). Felületi feszültség. Habok különleges tulajdonságai, mosószerek hatásmechanizmusa. Ismerje a felületi feszültség fogalmát és mérésének módját. Tudja alkalmazni a tanultakat egyszerű köznapi jelenségek értelmezésére. Legyen tisztában a felületi jelenségek fontos szerepével az élő és élettelen természetben. Légnyomás, felhajtóerő levegőben. A légnyomás változásai. A légnyomás szerepe az időjárási jelenségekben, a barométer működése. Léghajó, hőlégballon. Ismerje a légnyomás fogalmát, legyen képes a légnyomás jelenségének egyszerű kísérleti bemutatására. Ismerjen a levegő nyomásával kapcsolatos, gyakorlati szempontból is fontos néhány jelenséget. Folyadékok és gázok áramlása Légköri áramlások, a szél értelmezése a nyomásviszonyok alapján, nagy tengeráramlásokat meghatározó környezeti hatások. Kontinuitási egyenlet, anyagmegmaradás. Tudja, hogy az áramlások oka a nyomáskülönbség. Legyen képes köznapi áramlási jelenségek kvalitatív fizikai értelmezésére. Tudja értelmezni az áramlási sebesség változását a keresztmetszettel az anyagmegmaradás (kontinuitási egyenlet) alapján. Bernoulli-hatás. Szárnyprofil, Magnus-hatás, versenyautók formája. Ismerje a Bernoulli-hatást és tudja azt egyszerű kísérlettel demonstrálni, legyen képes kvalitatív szinten alkalmazni a törvényt köznapi 18

Pedagógiai eljárások, módszerek, szervezési és munkaformák Kapcsolódási pontok Taneszközök Kulcsfogalmak/ fogalmak jelenségek magyarázatára. A viszkozitás fogalma. Kvalitatív szinten ismerje a viszkozitás fogalmát és néhány gyakorlati vonatkozását. Erőhatások áramló közegben. Az áramló közegek energiája, a szél- és a vízi energia hasznosítása. Ismerje a közegellenállás jelenségét, tudja, hogy a közegellenállási erő sebességfüggő. Legyen tisztában a vízi és szélenergia jelentőségével hasznosításának múltbeli és korszerű lehetőségeivel. Legyen képes önálló internetes forráskutatás alapján konkrét ismeretek szerzésére e megújuló energiaforrások aktuális hazai hasznosításairól. Tanulói kísérlet csoportmunkában. Közös megbeszélés, tanári magyarázat. Tanári kísérlet. Szemléltetés. Bemutatók közös értékelése. Vita, megbeszélés. Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés. Kémia: folyadékok, felületi feszültség, kolloid rendszerek, gázok, levegő, viszkozitás, alternatív energiaforrások. Történelem, társadalmi és állampolgári ismeretek: hajózás szerepe, légiközlekedés szerepe. Technika, életvitel és gyakorlat: vízi járművek legnagyobb sebességeinek korlátja, légnyomás, repülőgépek közlekedésbiztonsági eszközei, vízi és légi közlekedési szabályok. Biológia-egészségtan: Vízi élőlények, madarak mozgása, sebességei, reakcióidő. A nyomás és változásának hatása az emberi szervezetre (pl. súlyfürdő, keszonbetegség, hegyi betegség). Tanulói kísérleti eszközök. Tanári kísérleti és demonstrációs eszközök. Szimuláció, modell, gyűjtőmunka bemutatásához számítógépes rendszer. Hidrosztatikai nyomás, felhajtóerő, úszás, viszkozitás, felületi feszültség, légnyomás, légáramlás, áramlási sebesség, aerodinamikai felhajtóerő, közegellenállás, szél- és vízienergia, szélerőmű, vízierőmű. 19

Továbbhaladás feltételei A tanuló legyen képes megadott célú megfigyelések, egyszerű mérések (hosszúság, idő, tömeg, erő) önálló elvégzésére. Legyen képes a tapasztalatok, mérési adatok rögzítésére (vázlatos szövegben, táblázatban, grafikusan). Tudjon besorolni konkrét mozgásokat a tanult mozgástípusokba. Tudja alkalmazni az út-idő és sebesség-idő összefüggéseket az egyenes vonalú egyenletes és egyenletesen változó mozgásra és a körmozgásra egyszerű feladatok megoldásában is. Tudja értelmezni a Newton-törvényeket egyszerű esetekben, feladatok megoldásában is. Ismerje a súly és súlytalanság fogalmát, a bolygómozgás alaptörvényeit. Tudja megfogalmazni az egyensúly feltételeit konkrét esetekben merev testekre is. Ismerje fel a tanult energiafajtákat konkrét esetekben. Ismerje fel a tanult megmaradási törvények alkalmazhatóságát egyszerű esetekben. Tudja használni a teljesítmény és a hatásfok fogalmát. 20