1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

Hasonló dokumentumok
XX. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Megoldások 9. osztály

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II. forduló osztály

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Az 1. forduló feladatainak megoldása

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC.

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]

Egybevágóság szerkesztések

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

Vektoralgebra feladatlap 2018 január 20.

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa

A kör. A kör egyenlete

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása

1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA)

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Számelmélet Megoldások

Érettségi feladatok: Síkgeometria 1/6

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

III. Vályi Gyula Emlékverseny december

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

5. előadás. Skaláris szorzás

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Koordináta-geometria feladatok (emelt szint)

4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Elemi matematika szakkör

1. Feladatlap - VEKTORALGEBRA. Műveletek vektorokkal. AD + BC = BD + AC. Igaz ez az összefüggés

Koordináta-geometria feladatok (középszint)

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.

XXII. Vályi Gyula Emlékverseny április 8. V. osztály

MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi

Koordinátageometriai gyakorló feladatok I ( vektorok )

Koordinátageometria Megoldások

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Bizonyítási módszerek - megoldások. 1. Igazoljuk, hogy menden természetes szám esetén ha. Megoldás: 9 n n = 9k = 3 3k 3 n.

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek

Analitikus térgeometria

NULLADIK MATEMATIKA ZÁRTHELYI

10. Koordinátageometria

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6

Helyvektorok, műveletek, vektorok a koordináta-rendszerben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram)

Hatvány, gyök, normálalak

FELADATOK ÉS MEGOLDÁSOK

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

3. előadás. Elemi geometria Terület, térfogat

FELVÉTELI VIZSGA, szeptember 12.

Koordináta - geometria I.

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK

Megyei matematikaverseny évfolyam 2. forduló

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5

Vektorok összeadása, kivonása, szorzás számmal, koordináták

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint

Bartha Gábor feladatjavaslatai az Arany Dániel Matematika Versenyre

NULLADIK MATEMATIKA ZÁRTHELYI

Középpontos hasonlóság szerkesztések

Átírás:

10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős egyenlőtlenséget bontsuk két részre és végezzünk ekvivalens átalakításokat. ( a + b + c) 3 4 ab + bc + ca 3 ( ab + bc + ca) ( a + b + c) 4( ab + bc + ca) a) Bizonyítsuk először a bal oldalt: 3 (ab + bc + ca ) ( a + b + c ) (1), amiből a + b + c ab bc - ca 0. Kettővel való beszorzás, és a tagok csoportosítása után kapjuk, hogy (a b ) + ( b - c) + ( c - a) 0, ami minden valós a, b, c értékre. igaz., így az (1) egyenlőtlenség is igaz. Egyenlőség akkor és csak akkor, ha a = b = c, azaz szabályos a háromszög. b) Nézzük most a jobb oldalt (a + b + c) 4 (ab + bc + ca ) () egyenlőtlenséget ekvivalensen alakítjuk tovább. Így azt kell belátnunk, hogy a + b + c (ab + bc + ca). Mivel (ab + bc + ca) = a (b+c) + b (a+c) + c (b+a), a háromszög-egyenlőtlenségek felhasználásával kapjuk, hogy a < a (b+c), b < b (a +c), c < c (b+a), amiből már következik a bizonyítandó állítás. Így az ekvivalens átalakítások miatt a () egyenlőtlenség is igaz, sőt egyenlőség soha nem állhat fent! Mivel az átalakítások ekvivalensek, ezért a bizonyítást a visszafelé bizonyítás módszerére való hivatkozással lehet befejezni.

. Oldjuk meg a következő egyenletrendszert a valós számok halmazán! 3 4x 3y = xy 3 x + x y = y Balázsi Borbála, Beregszász.Ha x = 0 vagy = 0 y, kapjuk a ( ;0) 0 megoldást. Ha x 0 és y 0, az első egyenletet szorozzuk meg x -tel, a másodikat y -nal és adjuk össze őket. 4 4x 3x y + x y = y 3 x + x y = y Első egyenletet szorzattá alakítva ( y x )( y + x ) = 0 3 x + x y = y y = x vagy y = x Ezeket a második egyenletbe írva és kihasználva a kezdeti feltételt kapjuk, hogy x = 1 x = 1 y = 1 és x 40 = x = y = 4 Összesítve: három megoldás van: ( 0 ;0); ( ;1) 0 1 1 ; 40; 0.

3. Az AB szakaszon vegyük fel a C és D pontokat úgy, hogy AC = CD = DB legyen és legyen CDEF egy tetszőleges paralelogramma. Legyen G az AE és DF, H pedig a BF és CE metszéspontja. Bizonyítsuk be, hogy AB = 9GH. Olosz Ferenc, Szatmárnémeti Legyen O a paralelogramma átlóinak metszéspontja és legyen DK CE, CL DF, K BF, L AE. F E A paralelogramma átlói felezik egymást, ezért a DFK háromszögben (OH) középvonal és DK = OH. L G O H K A CBH háromszögben (DK) középvonal és CH = DK = 4 OH, ahonnan CO = 3 OH. A C D B Hasonlóan bizonyítjuk, hogy DO = 3 OG. A COD és HOG háromszögek hasonlóságából következik CO DO CD = = = 3 HO GO HG CD = 3 GH és AB = 3 CD, tehát AB = 9 GH.

4. Egy n oldalú, szimmetria középponttal rendelkező konvex sokszöglap (P) csúcspontjai közül kiválasztunk hármat, jelöljük őket A, B, C-vel. Igazoljuk, hogy az ABC háromszög t területe nem nagyobb, mint T, ahol T a P sokszöglap területét jelöli. Dályay Pál Péter, Szeged Jelölje O a P szimmetria középpontját és A', B', C rendre az A, B, C pontok O-ra vonatkozó szimmetrikusait. Három esetet lehetséges: 1. Eset. Ha O illeszkedik az ABC háromszög egyik oldalára, akkor ez csakis az oldal felezőpontja lehet, hiszen ellenkező esetben a konvex sokszög kettőnél több csúcsa is illeszkedne az illető oldal egyenesre, ami konvex sokszög esetén kizárt. Ha a háromszög harmadik csúcsát tükrözzük a szemközti oldal felezőpontjára (a szimmetria középpontra) nézve, akkor egy paralelogrammát kapunk, amelynek csúcsai a sokszög csúcsai közül valók, így a paralelogramma része a konvex sokszöglapnak, így területe nem nagyobb mint T, ami ebben az esetben igazolja a feladat állítását.. Eset. Ha O az ABC háromszöglapon kívül van, akkor az O ponton át húzhatunk egy olyan egyenest, amelyik nem metszi a háromszöglapot. Az A, B, C pontok és az A', B', C tükörképek az egyenes különböző oldalán helyezkednek el. Tehát az ABC és A'B'C egybevágó háromszöglapoknak nincs közös pontjuk és mindkettő a konvex sokszög része, így ebben az esetben t < T/. 3. Eset. Ha O az ABC háromszöglap belső pontja (lásd a mellékelt ábrát), akkor mivel az A,B,C,A',B',C pontok a konvex sokszög csúcsai, következik, hogy AC'BA'CB' egy konvex hatszöglap, amely része a konvex sokszöglapnak. Nyilvánvalóan ahhoz, hogy a csúcsok tükörképei a háromszöglapon kívül kerüljenek, szükséges, hogy a szimmetria középpont az ABC háromszög középponti háromszögének belsejében legyen. Jelölje rendre x, y, z az O pontnak a BC, CA, AB egyenesektől mért távolságát, a, b, c a BC, CA, AB oldalak hosszát, míg m a, m b, m c a megfelelő magasságokat, így mivel t OBC + t OCA + t OAB = t, következik, hogy ax by cz + + = t Könnyen belátható, hogy d(a',bc) = m a - x, d(b',ac) = m b - y és d(c, AB) = m c - z. Ezek alapján kiszámítható a konvex hatszöglap területe. t = t + t + t + t = AC ' BA' CB' AC ' B BA' C CB' A ( m z) a( m x) b( m y) c c a b = + + + t = = 4t ( ax + by + cz) = 4t t = t Mivel a konvex hatszöglap része az eredeti konvex sokszöglapnak, következik, hogy t T, ami igazolja a feladat állítását ebben az esetben is.

. Hány olyan egyenlőszárú trapéz létezik, amelynek a kerülete 011 és az oldalak mérőszáma egész szám? Szabó Magda, Szabadka A trapéz oldalai legyenek ebben a sorrendben feladat szerint a + c + b = 011 a ; c; b; c és a b a párhuzamos oldalak. A a + b = 011 c Tehát a párhuzamos oldalak összege páratlan szám, azaz nem lehetnek egyformák. Tehát a > b biztosan. Igaz a következő egyenlőtlenség is: a < c + b + c azaz a < a + c + b + c a + c + b 011 a < = Tehát az a valamely rögzített értékére az {1,,3,...100}halmazból a b értéke bármely a-nál kisebb érték lehet, de paritásban különbözőnek kell lenni, hiszen az összegük páratlan szám. a Ennek alapján a lehetőségek száma és ekkor a c értéke egyértelmű, hiszen 011 a b c = Tehát a trapéz is egyértelműen meghatározott az oldalaival. A trapézok keresett száma: 100 a 0 1 1... 01 01 0 0 = + + + + + + + + + = a= 1 0 03 = 1+ + 3 +... + 0 = = ( ) 06

6. Adott nyolc különböző pozitív egész szám a tízes számrendszerben. Képezzük bármely kettő (pozitív) különbségét, majd az így kapott 8 számot szorozzuk össze. 6-nak melyik az a legnagyobb kitevőjű hatványa, amivel ez a szorzat biztosan osztható? Kiss Sándor, Nyíregyháza A következő állítások igazak: Egy szám akkor és csak akkor osztható 6-tal, ha osztható -vel és 3-mal. Két szám különbsége csak akkor osztható -vel, ha azok paritása megegyezik (mindkettő páros vagy mindkettő páratlan. Belátható, hogy négy páros és négy páratlan szám megadása esetén lesz a lehető legkevesebb páros tényező, ugyanis x 8 x 4 + A négy párosból és a négy páratlanból is 6-6 darab -vel osztható tényezőt lehet képezni, a többi társítás páratlan lesz. Ez azt jelenti, hogy -nek a 1. hatványával biztosan osztható lesz a 8 szám szorzata. A hárommal való oszthatóság szempontjából a természetes számok algebrai alakja 3 k, 3k + 1, 3k + lehet. Az azonos algebrai alakú számok különbsége osztható 3-mal. Legkevesebb 3-mal osztható tényezőt akkor kapunk, ha a fenti alakú számok eloszlása 3, 3,, valamilyen sorrendben. Ha valamelyik típusból 3 darab van, akkor abból 3 db hárommal osztható számot tudunk képezni. Ha valamelyikből csak, akkor 1 darab 3-mal oszthatót készíthetünk. Így a 3 kitevője legalább 3 + 3 + 1 lesz, vagyis a 3 hetedik hatványával még biztosan osztható. Összegezve: a 8 darab feladatbeli tényező a 6 hetedik hatványával még biztosan osztható. A nyolcadikkal viszont nem feltétlenül, mert például az {,,3,...8} csak a 7. hatványával osztható. 1 esetén a szorzat csak 3-nak