Ag + +Cl - AgCl (1) HCl + NaOH NaCl + H 2 O (2)



Hasonló dokumentumok
A gyakorlat célja: Csapadékos titrálás felhasználása a gázelemzésben a vízelemzésben és halogén tartalmú szilárd anyagok vizsgálatára.

Hulladékos csoport tervezett időbeosztás

7. gyak. Szilárd minta S tartalmának meghatározása égetést követően jodometriásan

Ecetsav koncentrációjának meghatározása titrálással

Ivóvíz savasságának meghatározása sav-bázis titrálással (SGM)

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Titrimetria - Térfogatos kémiai analízis -

5. gyak. Titrimetria III: Vízminta kémiailag oxidálható szerves anyag tartalmának meghatározása (Kémiai oxigénigény (KOI)

Sav bázis egyensúlyok vizes oldatban

Számítások ph-val kombinálva

1. feladat Összesen: 7 pont. 2. feladat Összesen: 16 pont

5. sz. gyakorlat. VÍZMINTA OXIGÉNFOGYASZTÁSÁNAK ÉS LÚGOSSÁGÁNAK MEGHATÁROZÁSA MSZ és MSZ 448/11-86 alapján

Klasszikus analitikai módszerek:

HInd Ind + H + A ph érzékelése indikátorokkal

ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :

ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :

1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk?

Analitikai kémiai gyakorlatok Anyagmérnök BSc hallgatók számára

1. feladat Összesen: 18 pont. 2. feladat Összesen: 9 pont

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Közös elektronpár létrehozása

9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel

1.1. Reakciósebességet befolyásoló tényezők, a tioszulfát bomlása

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

LEHETSÉGES ZH KÉRDÉSEK ÉS FELADATOK

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Dr. Abrankó László. Gravimetria, titrimetria

O k t a t á si Hivatal

Kémiai reakciók. Közös elektronpár létrehozása. Általános és szervetlen kémia 10. hét. Elızı héten elsajátítottuk, hogy.

O k ta t á si Hivatal

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

v2.0 Utolsó módosítás: Analitika példatár

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3

laboratóriumi technikus laboratóriumi technikus laboratóriumi technikus

Minőségi kémiai analízis

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

2011/2012 tavaszi félév 3. óra

4.Gyakorlat Oldatkészítés szilárd sóból, komplexometriás titrálás. Oldatkészítés szilárd anyagokból

Oldatkészítés, ph- és sűrűségmérés

Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion

Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása

Titrálási feladatok számításai. I. Mintafeladatok

Általános Kémia GY, 2. tantermi gyakorlat

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

T I T - M T T. Hevesy György Kémiaverseny. országos dönt. Az írásbeli forduló feladatlapja. 8. osztály. 2. feladat:... pont. 3. feladat:...

O k t a t á si Hivatal

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam

Oldódás, mint egyensúly

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.

v1.04 Analitika példatár

Jegyzőkönyv. Konduktometria. Ungvárainé Dr. Nagy Zsuzsanna

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam

KÉMIA FELVÉTELI KÖVETELMÉNYEK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYÉSZ ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

Pufferrendszerek vizsgálata

23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan

a. 35-ös tömegszámú izotópjában 18 neutron található. b. A 3. elektronhéján két vegyértékelektront tartalmaz. c. 2 mól atomjának tömege 32 g.

MUNKAANYAG. Stankovics Éva. Térfogatos elemzés. A követelménymodul megnevezése: Laboratóriumi technikus és vegyipari technikus alapfeladatok9

Elektro-analitikai számítási feladatok 1. Potenciometria

Oldódás, mint egyensúly

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyz jeligéje:... Megye:...

Általános Kémia. Sav-bázis egyensúlyok. Ecetsav és sósav elegye. Gyenge sav és erős sav keveréke. Példa8-1. Példa 8-1

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel

Automata titrátor H 2 O 2 & NaOCl mérésre klórmentesítő technológiában. On-line H 2 O 2 & NaOCl Elemző. Méréstartomány: 0 10% H 2 O % NaOCl

7. osztály 2 Hevesy verseny, országos döntő, 2004.

EGYÉB GYAKORLÓ FELADATOK Összetétel számítás

KÉMIA FELVÉTELI DOLGOZAT

Környezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése

Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)

Curie Kémia Emlékverseny 9. évfolyam III. forduló 2018/2019.

O k t a t á si Hivatal

1. feladat. Aminosavak mennyiségi meghatározása

A mennyiségi analízis klasszikus analitikai módszerei

Labor elızetes feladatok

Név: Dátum: Oktató: 1.)

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Vizes oldatok ph-jának mérése

Általános Kémia GY 3.tantermi gyakorlat

3. feladat. Állapítsd meg az alábbi kénvegyületekben a kén oxidációs számát! Összesen 6 pont érhető el. Li2SO3 H2S SO3 S CaSO4 Na2S2O3

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997

Főzőpoharak. Desztillált víz. Vegyszeres kanál Üvegbot Analitikai mérleg Fűthető mágneses keverő

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2000

1. feladat Összesen: 7 pont. 2. feladat Összesen: 8 pont

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003.

6. Melyik az az erős oxidáló- és vízelvonó szer, amely a szerves vegyületeket is roncsolja?

O k t a t á si Hivatal

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 8. osztály. 2. feladat:... pont. 3. feladat:...

Vezetőképesség meghatározása

Oldatkészítés, ph- és sűrűségmérés

KONDUKTOMETRIÁS MÉRÉSEK

LABORATÓRIUMI OKTATÁSI SEGÉDLET

1. feladat Összesen: 10 pont. 2. feladat Összesen: 11 pont

O k t a t á si Hivatal

O k t a t á si Hivatal

Szent-Györgyi Albert kémiavetélkedő Kód

- x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x - o - x -

KÖRNYEZETVÉDELMI GYAKORLATOK. Általános laborszámítások

Átírás:

3. gyak. Titrimetria I: Sósav mérőoldat készítése, pontos koncentrációjának meghatározása (faktorozása). Vízminta karbonát ill. hidrogén-karbonát tartalmának meghatározása. (Levegő CO 2 tartalmának meghatározása gáztitrimetriás módszerrel) A gyakorlat célja: A mérőoldat készítés és a sav bázis titrálás alkalmazásának megismerése a gáz, oldat és szilárd anyag savas ill. bázikus komponenseinek meghatározásánál. A festékindikátorok használata a titrálás végpontjának jelzésére. A módszer elve: Titrimetria névvel azokat a vizsgálatokat illetjük, amelyeknél valamelyik komponens mennyiségi meghatározását úgy végezzük, hogy a minta adott részletéhez bürettából ismert koncentrációjú mérőoldatot adunk, mindaddig amíg a lejátszódó reakció sztöchiometriai arányait figyelembe véve az egyenlővé nem válik a mérendő komponenssel. Ezt az állapotot a titrálás végpontjának nevezzük. A végpontot vagy megfelelően megválasztott festékindikátorral, vagy műszeres módszerrel (ph mérés, elektród vagy redox potenciál mérés, vezetőképesség mérés stb) tesszük érzékelhetővé. Festékindikátor alkalmazásakor tudnunk kell, hogy a végpont hol jelentkezik (pl sav-bázis titrálásnál milyen ph-nál és olyan indikátort kell választanunk, amelyik ennek a ph-nak az elérésekor szint vált). A műszeres módszereknél a görbe alakból (inflexióspont, a titrálási görbe deriváltja esetén a maximum) lehet az ekvivalenciapontot megállapítani. A titrálást leggyakrabban vizes oldatok vizsgálatára alkalmazzuk, de végezhetők titrálások nemvizes (szerves oldószeres ) közegben is. A fentiekből következik, hogy titrálással a szilárd anyagok összetételét oldás után, a gáz összetételét pedig a megfelelő reagensben történő elnyeletést követően határozhatjuk meg. A titrimetriás módszereket a meghatározni kívánt mintakomponens és a mérőoldat között lejátszódó reakció alapján szokás csoportosítani. Így az alábbi titrimetriás módszereket lehet megkülönböztetni: Csapadékos titrálás: a reakcióban a vizsgált komponens és a mérőoldat reagense rosszul oldódó csapadékot képez. A legjelentősebb ilyen módszer az ezüst és a halogén ionok közötti csapadékképződési reakciót használja ki. Ag + +Cl - AgCl (1) Sav- bázis titrálás: A mérés során vagy savat mérünk bázist tartalmazó mérőoldattal vagy fordítva. Az erős savak és az erős bázisok jól mérhetők. A gyenge savak és bázisok mérhetősége attól függ, hogy disszociációjuk hogyan viszonylik az oldószer, a víz disszociációjához. Minél közelebb van ahhoz, annál kevésbé titrálhatók. A sav bázis reakciót a sósav és a nátrium-hidroxid esetére az alábbi reakció mutatja. HCl + NaOH NaCl + H 2 O (2) Fontos látnunk azt, hogy minden sav-bázis reakció ha ionegyenletként írjuk fel az alábbi reakcióra egyszerűsíthető. H + +OH - H 2 O (3) Ez azt mutatja, hogy minden sav bázis reakció lényeg ugyanaz, a lényegi reakciót tekintve különbség a különböző savak és a különböző bázisok között abban van, hogy mennyire disszociálnak (erősek, vagy gyengék) ill. egy vagy több értékűek, azaz hány lépében diszzociálnak). Komplexometria: A Lewis féle sav bázis elmélet szerint a komplex képződési reakciók a sav bázis reakciók speciális esetét jelentik. A komplex vegyület képződéséhez az kell, hogy legyen olyan részecske, amelyik elektronrendszerében elektronpárok hiányoznak (központi 1

atom) és legyen olyan, amelyiknek szabad elektronpárja van, vagy elektronpárjai vannak (ligandum). A koordinatív kötés kialakulása e két részecske között úgy jön létre, hogy a betöltetlen helyekkel rendelkező központi atom befogadja a ligandumok elektronpárjait. Mivel a központi atom elektron pár befogadó képessége és a közönséges reakciókban rá jellemző vegyértéke között (hány elektront ad le vagy vesz fel) nincs egyértelmű kapcsolat a vegyülés sztöchiometriája eltér a klasszikus (a fenti két) esettől. (A vegyülés sztöchiometriáját az fogja meghatározni, hogy a központi atomon hány elektronpár befogadására van hely, ill. a központi atommal reagáló vegyületben hány olyan atom van, amely szabad elektronpárral rendelkezik.). Van olyan ligandum amelyikben csak egy szabad elektronpárral rendelkező atom van. A legismertebb ilyen ligandumként működő részecske a vízmolekula (H 2 O), amiben az oxigén atomnak van koordinatív kötésben felhasználható elektronpárja. (A legtöbb kationokat tartalmazó vizes oldat tulajdonképpen olyan komplex vegyület amelyben a vízmolekula ligandumként szerepel. A színes oldat jelleg is ettől ered.) A vízhez hasonló egy eletronpár átadásra képes ligandum az ammónia (NH 3 ), itt a nitrogén atomnak van magános elektronpárja. Vannak olyan molekulák amelyekben több olyan csoport is lehet amely ilyen szabad elektronpárral rendelkező atomokat tartalmaz. Ilyen molekula volt a nikkel gravimetriás meghatározásánál használt dimetilglioxim, de ilyen a komplexometriás titrálásoknál leggyakrabban hasznát EDTA (etilén-diamin-tetraecetsav) amelyben hat olyan csoport van amelyik koordinatív kötést létesíthet. Az a tény, hogy egy molekula több koordinatív kötést tartalmaz előnyösen hat a komplex stabilitására, növeli azt, ami a titrálás szempontjából is előnyös. Ezért részesítik előnyben mérőoldatként az EDTA-t a más egy koordinatív kötés kialakítására alkalmas vegyületekkel szemben. Az EDTA, mint hatfunkciós ligandum (2 nitrogén+4 karboxil oxigén atom) működését 4-es és 6-os koordinációban az alábbi ábra szeélteti: CH 2 -COO - N-CH 2 -COO - (CH 2 ) 2 Me 2+ N-CH 2 -COO - CH 2 -COO - EDTA 4-es koordinációban CH 2 -COO - N-CH 2 -COO - (CH 2 ) 2 Me 2+ N-CH 2 -COO - CH 2 -COO - EDTA 6-os koordinációban 1. ábra Fémion-EDTA komplexek szerkezete Redoxi titrálások: A mérés során redox reakció játszódik le (elektronleadás és felvétel). A mérőoldat oxidálószer vagy redukálószer. Oxidálószerként leggyakrabban a permanganát iont (MnO 4- ) a kromát iont (CrO 4 2- ), jódoldatot (I 2 ) használják. Redukálószerként az Sn(II) iont, az As(III) iont, jodid (I - ) iont, tioszulfát(s 2 O 3 2- )-iont az aszkorbinsavat (C-vitamin) alkalmazzák. A redox titrálásokat a mérőoldat szerint további típusokba lehet sorolni. A permanganát mérőoldat felhasználásakor permanganometriáról, kromát mérőoldatnál kromatometriáról, jód mérőoldat esetén jodometriáról beszélünk. A permanganometriás mérések során az alábbi reakciók játszódnak le: 2

- Erősen savanyú közegben: MnO 4 +8H + + 5e - Mn 2+ + 4H 2 O +1,52 V - Gyengén savanyú közegben: MnO 4 +4H + + 3e - MnO 2 + 2H 2 O +1,67 V - Gyengén lúgos közegben: MnO 4 + e - 2- MnO 4 +0,54 V A fentiekből látható, hogy a ph- nak fontos szerepe van a redox reakciókban és vegyük észre azt is, hogy a ph változásával nem csak az oxidálóképesség változik, hanem sztöchiometriai viszonyok is, azaz egy permanganát- ion egyre kevesebb vizsgálandó anyagot képes oxidálni. Permanganometriás mérésnél indikátorra a permanganát színe miatt nincs szükség. Ez a szín 10-5 koncentrációnál már látszik. Kromatometriás mérésnél az alábbi reakció játszódik le: 2- Cr 2 O 7 14 H + +6e - 2 Cr 3+ +7 H 2 O +1,36 V Ez a reakció kerül felhasználásra a kémiailag oxidálható szerves anyag tartalom (KOI) meghatározásánál. Savas bikromát oldaton átbuborékoltatva a levegőt és az elhasznált kromátot visszamérve meghatározhatjuk a levegő szerves anyag tartalmát. Ezen az elven működött régebben az alkoholszonda is, itt a keletkező Cr(III) zöld színe jelezte, hogy szerves anyag (nem biztos, hogy csak alkohol) van a kilélegzett levegőben. A jodometriás méréseknél az alábbi reakciók mennek végbe: I 2 +2 e - 2 I - +0,62 V 2-2- 2 S 2 O 3 S 4 O 6 +2e - +0,17 V A titrálásokhoz, mint a fentiekből kiderült mérőoldatok szükségesek. Ezeket a mérőoldatokat a vizsgálandó komponens koncentrációjától függően 1mól/l- 0,001 koncentráció tartományban szoktuk elkészíteni. Sajnos sok esetben a mérőoldatok egyszerűen a reagensek pontos bemérésével nem készíthetők el vagy az elkészített oldatok koncentrációja időben változik ezért a vizsgálatok elvégzése előtt szükség van a mérőoldat pontos koncentrációjának meghatározására. Ezt faktorozásnak hívjuk. (Az elnevezés abból ered, hogy a pontos koncentráció = faktor x névleges koncentráció) Pl c = 0,1126 = 1,1126x 0,1). A faktorozáshoz olyan anyagot használunk amelyiknek tömege jól mérhető, stöchiometriája állandó (pl nem nedvszívó, a levegő alkotóival nem reagál stb.) Titrimetriás mérőoldat készítése a mérőoldat pontos koncentrációjának meghatározása (mérőoldat faktorozása) Sav bázis titrálásoknál leggyakrabban HCl és NaOH vagy KOH mérőoldatokat használnak. Egyik mérőoldat sem készíthető el pontosan, a sósav illékony a NaOH, a KOH nedvszívó ill. a levegő CO 2 tartalmával reagál, karbonátosodik. Ezért az elkészített oldatok pontos koncentrációját külön méréssel, valamilyen jól mérhető állandó összetételű vegyület segítségével kell meghatározni. A sav mérőoldatok pontos koncentrációját KHCO 3 -ra szokás meghatározni. A lejátszódó reakció: KHCO 3 + HCl KCl + H 2 CO 3 A sav mérőoldat pontos koncentrációját az alábbi összefüggéssel számíthatjuk: KHCO 3 móljainak száma = a titrálásra fogyott sav móljainak száma m KHCO3 / Ms KHCO3 = c sav V fogyás /1000 A KHCO 3 móltömege 100g így a számolás is egyszerű, 0,1 g KHCO 3 ra 10 HCl fogy, ha a sósav koncentrációja pontosan 0,1. Ha a sav mérőoldat koncentrációja így ismertté vált a lúg mérőoldat pontos koncentrációját ennek a savnak a felhasználásával határozhatjuk meg. Másfajta mérőoldat másfajta faktoranyagot igényel, pl. a permanganát mérőoldat faktorozásának segédanyaga az oxálsav, amelyet a permanganát széndioxiddá oxidál. 3

2+ (COO) 2 2CO 2 +2e - eközben a Mn(VII) +5 e- Mn(II) -vé redukálódik. Jodometriánál a kálium jodát a faktoranyag. Az elv az, hogy az alábbi reakcióban jódot állítunk elő és ezt tioszulfáttal titráljuk. A jodát koncentrációját ismerve tudjuk a jód pontos koncentrációját, a titrálásnál mért fogyásból számolni lehet a tioszulfát mérőoldat koncentrációját. A tioszulfát ismeretében meghatározható a jód mérőoldaté. IO 3 - + 5I - +6 H + 3 I 2 +3H2O A gyakorlat során sósav mérőoldat pontos koncentrációját kell meghatározni úgy, hogy KHCO 3 titrálunk, metilnarancs jelenlétében a közelítőleg 0,1 koncentrációjú sósav mérőoldattal. 1. feladat: Sósav mérőoldat készítés, faktorozása: A mérőpár közösen készítsen el 500 0,1 mol/ l sósav mérőoldatot a fülke alatt lévő cc. HCl felhasználásával. A szükséges cc. sósavat mérőhengerrel mérje be az 500 -es mérőlombikba.(a cc. HCl 37 m/m %-os, sűrűsége 1,182 gcm -3 ) A szükséges számításokat mindenki maga végzi el és szerepelteti a jegyzőkönyvben. Ezt követően hallgatónként két Erlenmeyer lombikba mérjen be négy tizedes pontossággal 0,1 g Kálium-hidrogén karbonátot. Adjon hozzá 50 kiforralt desztillált vizet és három csepp metilnarancs indikátort és titrálja meg a faktorozandó sósavval. A faktorozandó sósavat bürettába kell tölteni, miután leeresztette a benne lévő vizet. Az első feltöltés a büretta mosására szolgál, ezt engedje ki, mérésre a második feltöltést használja. Ügyeljen arra, hogy a büretta buborékmentesen legyen feltöltve a mérőoldattal. A fogyás alapján számolja ki sósav pontos koncentrációját koncentrációban. A két titrálás adatai alapján számoljon átlagot és szórást. A mérés eredményeit táblázatban adja meg. 2. Vízminta karbonát és hidrogén karbonát tartalmának meghatározása: Két Erlenmeyer lombikba mérjen be 20-20 -t a kiadott mintából. Adjon hozzá 30 kiforralt desztillált vizet és két csepp fenolftalein indikátort. Titrálja meg az ismert koncentrációjú sósavval elszíntelenedésig. Olvassa le a fogyást. Ezután adjon hozzá három csepp metilnarancs indikátort és folytassa a titrálást az újabb színátcsapásig. (Forralja ki forrkő jelenlétében az oldatot és a titrálást a lehűtött oldatban a mérőoldatot kis részletekben adagolva fejezze be, (ezt a lépést most elhagyjuk).) Ha a vízben nincs karbonát a fenolftalein nem lesz vörös, ekkor csak a hidrogén karbonátot lehet mérni. Fenolftalein mellett végzett titráláskor, ha van a rendszerben szabad lúg, elreagál a szabad lúg és a karbonát hidrogén karbonátig lesz megtitrálva (lásd a 12 egyenletet). Na 2 CO 3 + HCl NaHCO 3 + Na Cl (12) Ha a titrálást metilnarancs mellett folytatjuk a sósav fogyás a hidrogén karbonát titrálására fordítódik. NaHCO 3 + HCl NaCl + H 2 CO 3 (13) A gyakorlat arra szeretne rávilágítani, hogy az indikátor megválasztásának fontos szerep jut a titrálással kapott eredmény pontossága szempontjából. Ha az indikátor hamarabb vált szint, mint kellene akkor kevesebb fogyást kapunk, mint amennyi a mérendő komponenssel ekvivalens. (Ha lúgoldatot titrálunk és a titrálást a fenolftalein átcsapásakor abbahagynánk a lúg koncentrációt a karbonátok jelenléte miatt kisebbnek állapítanánk meg). A fenti két indikátoros titrálást a gyakorlatban felhasználják a vizek elemzésénél. Fenolftalein mellett sósavval titrálva a vizet kapják a,,p lúgosság,, értékét, ami a karbonát tartalmat jelenti ha nincs szabad lúg, metilnarancs indikátor jelenlétében titrálva a vizet kapják az,,m 4

lúgosság,, értékét, amiből a karbonát és hidrogén- karbonát tartalom összegét lehet meghatározni. A fogyások és a sav pontos koncentrációjának ismeretében számítsa ki a minta karbonát és hidrogén karbonát tartalmát. A párhuzamos mérésekből számoljon átlagot és szórást. A mérési adatokat és a számított adatokat táblázatban adja meg. 3.Csapvíz karbonát és hidrogén tartalmának meghatározása Vegyen 100 csapvizet adjon hozzá 3 csepp fenolftalein indikátort, ha rózsaszínű lett, titrálja óvatosan színtelenig, olvassa le a fogyást. Ha az oldat színtelen maradt vagy elszíntelenedésig titrálta, adjon hozzá 3 csepp metilnarancs indikátort és titrálja színátcsapásig. Olvassa le a fogyást és számítsa ki a víz karbonát és hidrogén-karbonát tartalmát -ben és g/l-ben. Zh kérdések. 1. Mit ért titrimetrián és milyen fajtái vannak? 2. Miért kell a mérőoldatokat faktorozni és mi a sósav mérőoldat faktorozás elve? 3. Milyen végpont indikálási módszereket használhatunk és hogyan lehet az ekvivalencia pontot megállapítani? 4. Számítsa ki a sósav oldat pontos koncentrációját ha 0,01 g kálium-hidrogén karbonátot titrálva 20 volt a sósav fogyása. 5. Számítsa ki a nátrium hidroxid pontos koncentrációját ha 20 -t titrálva 19,5 0,1125 sósav fogyott. 6. Egy vízminta 100 -nek titrálásakor fenolftalein mellett 1 0,1 sósav metilnarancs mellett további 11 0,1 sósav fogyott. Mennyi a minta karbonát és hidrogén karbonát koncentrációja. 4. Titrimetriás mérések a gázanalízisben, levegő CO 2 tartalmának meghatározása Az egyik leggyakrabban analizált gázminta az élethez nélkülözhetetlen levegő. Természetes összetételét az 1. táblázat tartalmazza. A levegő összetételének leggyakoribb változása az oxigén és a széndioxid mennyiségének változása. Ez köszönhető a biológiai folyamatoknak, de számos a szerves anyag égésével összefüggő művelet is előidézheti. 1. táblázat: A száraz levegő természetes összetétele. Összetevők Koncentráció, v/v Koncentráció, % m/m % Nitrogén 78,1 73,51 Oxigén 20,93 23,01 Argon 0,9325 1,286 Széndioxid 0,03 0,04 Neon 0,0018 0,0012 Helium 0,0005 0,00007 Kripton 0,0001 0,0003 Hidrogén 0,00005 0,000004 Xenon 0,000009 0,00004 Römp: Vegyészeti lexikon, 57 old. Műszaki Kiadó Budapest,1983. A táblázat arra is rávilágít, hogy a levegő alkotói jelentősen különböző koncentrációban vannak jelen így nem meglepő, hogy a levegő komponensek meghatározására annak koncentrációjától függően különböző mérési elveket használunk. Ezeket a következőképpen csoportosíthatjuk: Abszorpciót követő tömegmérés (gáz gravimetria, lásd. nedvesség tartalom mérése) Abszorpciót követő titrimetrés mérés ( gáztitrimetria, lásd. levegő széndioxid tartalmának, kromáton átbuborékoltatva szerves anyag tartalmának meghatározása) Abszorpció vagy adszorpció következtében bekövetkező nyomás változás mérése (a levegő széndioxid tartalmát így is mérhetnénk. A megkötött széndioxid nyomáscsökkenést eredményez egy zárt rendszerben, érzékeny nyomásmérő kell) 5

Abszorpciót következtében bekövetkező gáztérfogat csökkenés mérése (gáz volumetrikus módszer, lásd füstgázok összetételének mérése. Ilyen elven működik a volumetrikus C tartalom meghatározás, amikor az égetés után kapott CO 2 -t lúgban elnyeletjük, vagy ilyen az Orsat készülék alkalmazása a füstgáz széndioxid, oxigén és szénmonoxid tartalmának meghatározásakor.) A gáztitrimetriás eljárásokban a gázelegy pontosan mért részletét alkalmas kémszerrel reagáltatjuk. Két eset lehetséges vagy a keletkezett vegyület mennyiségét, vagy visszamaradt elreagálatlan kémszer mennyiségét határozzuk meg. A gáztitrimetriás eljárást akkor használjuk, ha a meghatározandó gázkomponens mennyisége kicsi. A gáz elnyeletéskor adódó térfogatváltozás mérésén alapuló (gázvolumetrikus) módszer ebben az esetben ugyanis pontatlan (1000 -es gázbürettánál a 0,1%-ban jelenlévő komponens elnyelődésekor adódó térfogatcsökkenés 1 ). A levegőben a széndioxid 0,03 v/v %- ban van jelen, lásd 1. táblázat. Az 1 % alatti mennyiségek mérést kis mennyiségben jelenlévő komponens meghatározási feladatnak tekintjük. A szabad levegő széndioxid tartalma kb 0,03 %. Zárt helységben ez nagyságrenddel nagyobb is lehet. A munkahelyi légterekben a széndioxid koncentrációja ettől eltérhet, ha a levegő a nem megfelelő légcsere miatt,, elhasználódott,,. A levegő széndioxid koncentrációjának ellenőrzése a légcsere hatékonyságára is enged következtetni. Munkahelyi légtérben a széndioxid meghatározása egészségügyi szempontból ezért jelentős feladat. Noha erre műszeres módszerek is rendelkezésre állnak a vizsgálat műszer hiányában egyszerű sav-bázis titrálással elvégezhető. A vizsgálat az alábbi reakción alapszik: Ba(OH) 2 + CO 2 = BaCO 3 + H 2 O A megmaradt Ba(OH) 2 -ot HCl-al visszatitráljuk. Levegő CO 2 tartalmának meghatározása: Gázmosóba helyezett 25 kb. 0,1 Ba(OH) 2 oldaton 5 liter levegőt szívatunk át. A mintavétel folyamatábráját az 2. ábra adja meg. A gázmosót levéve a buborékoltató szárat bemossuk. 2 csepp fenolftaleint hozzáadva az oldat felületére 5 csepp pentánt rétegezve (ez gátolja meg, hogy a levegő CO 2 -je tovább reagáljon a Ba(OH) 2 -al) 0,1 sósavval megtitráljuk az oldatot. A titrálás végét a fenolftalein elszíntelenedése jelzi. A fogyásból az el nem reagált Ba(OH) 2 -ot számíthatjuk ki. A CO 2 re elhasználódott mennyiség a Ba(OH) 2 kezdeti koncentráció és a megmaradt különbsége. 1 2 3 2. ábra. A mintavétel folyamatábrája. (1) elnyelető oldat, (2) áraásmérő, (3) szivattyú. 6

(Ha a fenolftalein mellett végzett titrálás után a színtelen oldathoz 3 csepp metilnarancs indikátort adunk s a mintát tovább titráljuk, amíg a metilnarancs színátcsapást nem mutat a fogyásból a Ba(OH) 2 kezdeti koncentrációját kapjuk). A fogyásokból számítsa ki a Ba(OH) 2 kezdeti és CO 2 elnyeletés utáni koncentrációját ben, és számítsa ki a levegő CO 2 tartalmát térfogatszázalékban. Zh kérdések: 1. Sorolja fel hogyan csoportosíthatja a gázanalitikai módszereket és mikor melyiket célszerű alkalmazni? 2. Milyen elven határozhatja meg a levegő széndioxid tartalmát? Írja fel a reakció egyenleteket is. Miért nem a gáztérfogatmérés módszerét alkalmazza? 3. Mennyi a Ba(OH) 2 koncentrációja, ha 10 -re 20 0,05 sósav fogyott? 4. Hány g és hány mól széndioxidot kötött meg a Ba(OH) 2, ha 10 -re 10 0,05 sósav fogyott. A Ba(OH) 2 kezdeti koncentrációja 0,05 volt. 5.Mennyi a levegő széndioxid tartalma v/v %-ban ill. g/l-ben ha az 4. feladat eredménye 10 l normál állapotú levegőre vonatkozik. 7

3. gyakorlat (Titrimetria I.) 1. Fülke alatt a számításai alapján szükséges cc. HCl-at mérőhengerbe mérve készítse el az 500 kb. 0,1 sósav mérőoldatot. Jól rázza össze. 2. A bürettában lévő vizet engedje le, mossa át a sósav mérőoldattal, majd töltse jelig. 3. Az elkészített sósav pontos koncentrációjának meghatározásához analitikai mérlegen tárázza ki az Erlenmeyer lombikot és mérjen bele négy tizedes pontossággal kb. 0,1 g kálium-hidrogén karbonátot. 4. Adjon a lombikba 50 desztillált vizet és 3 csepp metilnarancs indikátort és titrálja színátcsapásig. A táblázatban rögzítse az adatokat. A fogyásból számítsa ki a sósav pontos koncentrációját. A minta száma: m KHCO 3, g Fogyás 0,1 HCl, 1. 2. 3. Átlag - - Szórás - - c HCl, 5. A kiadott mintát töltse fel jelig. Pipettázzon ki 20-20 -t a mintából Erlenmeyer lombikba. Adjon hozzá 20 vizet, két csepp fenolftalein indikátort és titrálja elszíntelenedésig. Olvassa le a fogyást. Adjon a lombikba három csepp metilnarancs indikátort és folytassa a titrálást színátcsapásig Olvassa le a fogyást. Táblázatban rögzítse az adatokat és számolja ki a vízminta karbonát és hidrogén-karbonát koncentrációját -ben. (A fenolftalein mellett végzett titrálás fogyása a karbonát tartalommal, a metil- narancs és fenolftalein mellett végzett titrálások fogyásainak különbsége a karbonát és a hidrogén-karbonát tartalom összegével egyenértékű) A minta száma: Fogyás 0,1 HCl, (fenolftalein) 1. 2. 3. Átlag Szórás Karbonát ion koncentráció, Fogyás 0,1 HCl, (metilnarancs) Hidrogén -karbonát ion koncentráció, 6. Az 5. pontban leírtakat ismételje meg 100 csapvízzel. 1. A minta száma: Fogyás 0,1 HCl, (fenolftalein) Karbonát ion koncentráció, Fogyás 0,1 HCl, (metilnarancs) Hidrogén -karbonát ion koncentráció, 7. A levegő CO2 tartalmának meghatározása c. gáztitrimetriás mérésre idő hiányában nem kerül sor. Elméletét viszont ismerni kell. 8