A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Hasonló dokumentumok
A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Elektromosság, áram, feszültség

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

Az elektromos töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1, C (azért -, mert negatív)

Elektromos töltés, áram, áramkörök

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

Elektrosztatikai alapismeretek

1. Elektromos alapjelenségek

Elektromos alapjelenségek

Elektromos áram, áramkör

Elektromos töltés, áram, áramkör

Elektromos áram, áramkör

Elektrosztatika tesztek

Elektrosztatika Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám

Vezetők elektrosztatikus térben

Elektromos áram, egyenáram

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Elektromos áram, egyenáram

Elektromos áram, áramkör, kapcsolások

FIZIKA ÓRA. Tanít: Nagy Gusztávné

Elektromos ellenállás, az áram hatásai, teljesítmény

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1. SI mértékegységrendszer

Elektromos áram. Vezetési jelenségek

Elektromos ellenállás, az áram hatásai, teljesítmény

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Az elektromosságtan alapjai

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Elektromos áram, egyenáram

Elektrotechnika. Ballagi Áron

Elektrosztatikai jelenségek

Elektromos áram, egyenáram

É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása. Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása

Mágneses mező jellemzése

Elektromos áram, áramkör, ellenállás

Q 1 D Q 2 (D x) 2 (1.1)

Fizika A2 Alapkérdések

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Vegyes témakörök. 9. Bevezetés az elektronikába - alapfogalmak, Ohm törvény, soros és párhuzamos kapcsolás

Mágneses mező jellemzése

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Fizika A2 Alapkérdések

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

1. ábra. 24B-19 feladat

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

Elektrotechnika 9. évfolyam

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Időben állandó mágneses mező jellemzése

Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

Elektromágnesség tesztek

Elektrosztatika tesztek

Töltődj fel! Az összes kísérlet egyetlen eszköz, a Van de Graaff-generátor, vagy más néven szalaggenerátor használatát igényli.

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

A testek részecskéinek szerkezete

W = F s A munka származtatott, előjeles skalármennyiség.

HIDROSZTATIKA, HIDRODINAMIKA

Newton törvények, lendület, sűrűség

Elektromos áramerősség

TestLine - Fizika 8. évfolyam elektromosság 2. Minta feladatsor

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük.

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés

Fizika Vetélkedő 8 oszt. 2013

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

Munka, energia Munkatétel, a mechanikai energia megmaradása

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.

TARTALOMJEGYZÉK. Előszó 9

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika minta feladatsor

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

Bevezető fizika (VBK) zh2 tesztkérdések

Ex Fórum 2009 Konferencia május 26. robbanásbiztonság-technika 1

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, május-június

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

Elektrosztatika tesztek

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

1. Cartesius-búvár. 1. tétel

= Φ B(t = t) Φ B (t = 0) t

Orvosi Fizika 12. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály

Newton törvények, erők

Mit nevezünk nehézségi erőnek?

Fogorvosi anyagtan fizikai alapjai 9. Hőtani, elektromos és kémiai tulajdonságok

Elektromágnesség tesztek

Átírás:

Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást, különbözőek vonzzák egymást. Két fajta elektromos állapot hozható létre: elnevezésük: pozitív (+) és negatív ( ) Az azonosak (+ + vagy ) taszítják egymást, a különbözőek (+ ) vonzzák egymást.

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test pozitív töltéssel rendelkezik. A vonzás, taszítás jelenségek magyarázata: A testek, tárgyak atomjai, molekulái + protonokat és elektronokat tartalmaznak. Ha nincsenek elektromos állapotban, akkor ezek száma azonos, kiegyenlítik egymást, a tárgy semleges. A tárgyak szoros érintkezésekor a negatív elektronok képesek leválni az atomról és átmenni az egyik tárgyról a másik tárgyra. Ekkor az egyiken elektron hiány, a másikon elektron többlet alakul ki. Egy töltött test közelében a semleges testben a töltések megoszlanak. Mivel a vonzás akkor nagyobb, ha a töltések közelebb vannak, a külső töltés nagyobb erővel vonzza a semleges testben közelebb levő ellenkező töltéseket, mint ahogy taszítja a távolabbi azonosakat, ezért az egész semleges testet vonzza.

A töltés jele: Q, mértékegysége: C (Coulomb) A legkisebb töltés (elemi töltés): 1 elektron töltése: - 1,6 10-19 C (azért -, mert negatív) 1 proton töltése: 1,6 10-19 C Elektromos állapot mérésére szolgáló eszköz: elektroszkóp Az elektroszkóp mutatója kitér, mivel azonos töltésű lesz a tartó rúddal, ezért taszítják egymást. Minél nagyobb a kitérése, annál nagyobb töltéssel lett feltöltve. Vezető anyag: amelyben a töltések könnyen tudnak mozogni. Elektromos állapotú tárggyal érintkezve az elektromos állapotot könnyen átveszik. Pl. fémek, oldatok, víz, emberi test Szigetelő anyagok: amelyben a töltések nem, vagy csak nehezen tudnak kimozdulni a helyükből, ezért a külső elektromos állapotú testtel érintkezve az elektromos állapotot nem veszik át. Pl. gumi, műanyag, porcelán, üveg, desztillált víz, száraz fa Földelés: Ha egy tárgyat vezető anyaggal összekötünk a Földdel, akkor a tárgyra kerülő töltések levezetődnek a tárgyról a Földbe, és a tárgy semleges lesz. Pl. háztartási eszközök földelt vezetéke

Példák az elektrosztatikus vonzás, taszítás alkalmazására: Lézernyomtató, fénymásoló: A forgó hengeren olyan bevonat van, ami a lézerfény hatására elektromosan feltöltött lesz. Erre rávetítik a szöveget. Ez a réteg magához vonzza az ellenkező töltéssel feltöltött festékszemeket. A henger tovább forog a papírhoz, ahol egy újabb elektromos vonzóhatás áthúzza a festékszemeket a papírra. Elektrosztatikus légszűrő, füstszűrő: A semleges füstszemeket két ellentétesen feltöltött lemez magához vonzza, és azon a füst kirakódik. Elsősorban ipari üzemekben, kéményekben alkalmazzák, így a füst nagy része megköthető, és nem jut ki a környezetbe. A villám, és a szikra keletkezése: Két ellentétesen feltöltött tárgy között a nagy térerősség hatására a levegő semleges részecskéiből ionpárok, ionok lesznek, amelyek a két tárgy felé indulnak a vonzás hatására. Közben ütköznek más levegő részecskékkel, azt ionizálják, így azok is áramlanak a másik tárgy felé, így töltések gyors áramlása, töltéslavina alakul ki a két tárgy között. Ez a szikra. Ha a felhőkben levő vízrészecskék a súrlódás hatására feltöltődnek, akkor ez a töltéslavina a felhők között, vagy a felhők és a Föld között jön létre, ez a villám.

Coulomb törvény Két töltés közötti vonzó vagy taszító erő akkor nagyobb, ha a két töltés nagyobb, vagy távolságuk kisebb. Vagyis az erő egyenesen arányos a töltések nagyságával, és fordítottan arányos a távolságuk négyzetével. Képletben: Q 1 és Q 2 a két töltés, r a távolságuk, k egy arányossági tényező: 9 10 9 N m 2 /C 2 Ha egy töltésre több töltés is hat, akkor a rá ható elektromos erőket irányuk szerint összegezni kell. (Pl. azonos irányúakat összeadni, ellentétesek kivonni.) Elektromos térerősség Bármely elektromos test körül elektromos mező, tér alakul ki. Ha ebbe a mezőbe egy kis pontszerű töltést rakunk, akkor arra erő hat. Az elektromos térerősség megadja a mező egy pontjába helyezett 1 C nagyságú töltésre ható erő nagyságát. Jellemzi az elektromos mező erősségét egy-egy pontban. Képletben: E = F/Q, ahol az F a Q töltésre ható erő. Az elektromos térerősség jele: E, mértékegysége N/C

Ponttöltés által létrehozott elektromos mező térerőssége Mivel a Q1 pontszerű töltés a tőle r távolságban levő Q 2 -re F=k Q 1 Q 2 /r 2 nagyságú erővel hat, a Q 1 töltés elektromos térerőssége r távolságban E=F/Q 2, vagyis: Elektromos térerősség vonalak Az elektromos teret jellemezhetjük térerősség vonalakkal. Az erővonalak iránya minden pontban megegyezik a térerősség irányával, az erővonalak sűrűsége ott nagyobb, ahol a térerősség nagyobb. Homogén elektromos tér: Az E térerősség minden pontban ugyanakkora. A térerősség vonalak párhuzamos egyenesek.

Példák elektromos mezők erővonalaira a) + ponttöltés el.tere b) ponttöltés el.tere e) + és töltések el.tere c) + lemez el. tere d) lemez el. tere f) + és lemezek el. tere (A c), a d) és az f) homogén elektromos tér) Elektromos feszültség, elektromos munka Az elektromos térben levő töltésre erő hat, emiatt elmozdul az A pontból a B pontba, az elektromos tér munkát végez (munka=erő út). A munkavégzés egyenesen arányos a töltés nagyságával. Az 1 C töltés A pontból B pontba történő mozgatásához szükséges munka az elektromos tér e két pontjára jellemző érték: az A és B pont közti feszültség. Jele: U, mértékegysége V (volt)

Potenciál, potenciálvonalak Ha az elektromos mező egy pontjának ( A pont) feszültségét egy választott 0 ponthoz viszonyítjuk (pl. a végtelen pontja, ahol az elektromos térerősség nulla), akkor az A pont feszültségét a 0 -hoz képest az A pont potenciáljának nevezzük. Jele: U A0 vagy U A. Így két pont feszültsége = a két pont potenciáljának különbségével: U AB = U A U B Ha az azonos potenciálú pontokat összekötjük potenciálvonalakat kapunk, amelyek jellemzik az elektromos tér feszültségeit. Hasonlóság a gravitációs térhez: potenciál tengerszinthez viszonyított magasság feszültség két magasság közti különbség potenciálvonalak azonos magasságú szintvonalak a térképen az elektromos tér munkát végez, ha egy töltést mozgat az egyik potenciálú helyről a másikra a gravitációs tér is munkát végez, ha elmozdít egy tárgyat magasabbról alacsonyabb helyre. Mindkét esetben a tárgyat vagy töltést a munka felgyorsítja.

Töltések elhelyezkedése vezető anyagban A vezetőre vitt többlettöltés mindig a vezető felületére csoportosul a taszítás miatt. Így a vezető belsejében a térerősség nulla, belül nincs elektromos tér. Elektromos árnyékolás Mivel a vezető belsejében nincs elektromos tér, ha egy vezető anyag vesz körül egy térrészt, akkor abban a térrészben nincs elektromos tér akkor sem, ha a vezető burok feltöltődik (elnevezése: Faraday kalitka). A vezető anyagú burok leárnyékolja a külső elektromos teret. Ezt hívják elektromos árnyékolásnak. Felhasználása: Fém autóban, repülőben utazókat nem éri a villámcsapás, fémburok árnyékolás védi a külső elektromos zajoktól a híradástechnikai vezetékeket (pl. antennakábel, hangszerek, erősítők vezetékei), szabadban álló gáztartályokat fémkerettel védik,...

Csúcshatás A vezető anyag felületén elhelyezkedő töltések sűrűbben helyezkednek el ott, ahol a tárgy keskenyebb, csúcsos kialakítású. Ezért ott a töltések jobban vonzzák a levegőben levő ionokat és a semleges részecskéket. Tehát a csúcs odavonzza a környezetében levő részecskéket, ezért azok nem máshova mennek, hanem a csúcsba. Példák a csúcshatás felhasználására: Villámhárító: A csúcsos vezeték magához vonzza a levegőben levő részecskéket és levezeti az elektromos felhőből jövő töltéseket a Földbe. Gépszíjak elektromos semlegesítése Szíjáttétellel meghajtott gépeknél a szoros érintkezés miatt a gépszíj feltöltődik. Ahol a szétválasztott töltések közötti esetleges szikrakisülés robbanásveszélyt jelent, ott földelt fémfésűvel szívják le a töltéseket.

Kondenzátor Két egymással szemben álló vezető anyagú lemezt feltöltünk + és töltéssel. A két lemez között homogén elektromos tér alakul ki. A két lemez között feszültség (U) jön létre, ami annál nagyobb, minél nagyobb töltéssel (Q) töltjük fel a lemezeket. A létrejövő feszültség és a töltés egymással egyenesen arányos. A töltés és a feszültség hányadosa az adott kondenzátorra jellemző állandó: a kondenzátor kapacitása A kondenzátor kapacitása Jele: C, mértékegysége F (Farad) Képlete: A kondenzátor kapacitása függ a lemezek nagyságától (A), és távolságától (d), és a köztük levő anyagtól: egy állandó. a benne levő anyag dielektromos állandója, megadja, hogy hányszorosa lesz a kondenzátor kapacitása ahhoz képest, mintha csak levegő lenne benne.

Kondenzátorok soros kapcsolása - A sorosan kapcsolt kondenzátor mindegyikén azonos a töltésmennyiség. Q = Q 1 = Q 2 = Q 3 - A kondenzátorra jutó feszültségek összeadódnak, a teljes feszültség megoszlik rajtuk. U = U 1 + U 2 + U 3 + - A kondenzátorok eredő kapacitásának reciproka az egyes kapacitások reciprokának összege:

Kondenzátorok párhuzamos kapcsolása - A párhuzamosan kapcsolt kondenzátor mindegyikére ugyanakkora feszültség jut. U = U 1 = U 2 = U 3 - A kondenzátorokon levő töltések összeadódnak, a teljes össztöltés megoszlik rajtuk. Q = Q 1 + Q 2 + Q 3 + - A kondenzátorok eredő kapacitása, az egyes kapacitások összege: C eredő = C 1 + C 2 + C 3 +

Kondenzátor energiája A kondenzátor két lemezének feltöltéséhez elektromos munkát kell végezni. Amikor pedig a Q töltéssel feltöltött, U feszültségű kondenzátor leadja töltését és semleges lesz, akkor az elektromos tere a töltések áramlását idézi elő és ehhez munkát végez. Tehát feltöltésekor munkavégző képessége, vagyis energiája lesz. Az U feszültségre feltöltött kondenzátor energiája: Kondenzátorokat használnak az elektronikai áramkörökben feszültség tárolásra, feszültség szabályozásra. Készítik különböző méretekben, alakokban.

Egyéb példák a kondenzátor felhasználására: A kondenzátor arra is használható, hogy feltöltve képes tárolni a töltését, feszültségét, majd egy alkalmas pillanatban ezt a töltést leadja és így rövid ideig tartó nagy áramot (töltésmozgást) tud előidézni. Vaku: A kondenzátort az akkumulátor feltölti töltéssel, majd hirtelen kisül, hirtelen leadja töltését egy erős fényű lámpának, ami felvillan. Defibrillátor: Hasonlóan a vakuhoz, az akkumulátor feltölti a kondenzátort, majd az hirtelen leadja töltését, és rövid ideig tartó áramot (kis áramütést) hoz létre.