ENZIMTECHNOLÓGIA. Kémiai technológia laboratóriumi gyakorlat. kémiatanár szakos hallgatók számára. ELTE Kémiai Intézet, Szerves Kémia Tanszék

Hasonló dokumentumok
ENZIMTECHNOLÓGIA. Környezettechnológiai laboratóriumi gyakorlat. ELTE Kémiai Intézet, Szerves Kémia Tanszék

Kémiai technológia laboratóriumi gyakorlatok M É R É S I J E G Y Z Ő K Ö N Y V. című gyakorlathoz

Ecetsav koncentrációjának meghatározása titrálással

1.1. Reakciósebességet befolyásoló tényezők, a tioszulfát bomlása

Környezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése

Ivóvíz savasságának meghatározása sav-bázis titrálással (SGM)

Általános Kémia GY 3.tantermi gyakorlat

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások

1. feladat Összesen: 7 pont. 2. feladat Összesen: 16 pont

Hulladékos csoport tervezett időbeosztás

Oldatkészítés, ph- és sűrűségmérés

Reakciókinetika és katalízis

Titrimetria - Térfogatos kémiai analízis -

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel

XXIII. SZERVES KÉMIA (Középszint)

KEMÉNYÍTŐ IZOLÁLÁSA ÉS ENZIMATIKUS HIDROLÍZISÉNEK VIZSGÁLATA I-II. Kémiai technológiai laboratóriumi gyakorlat

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam

4.Gyakorlat Oldatkészítés szilárd sóból, komplexometriás titrálás. Oldatkészítés szilárd anyagokból

1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk?

7. gyak. Szilárd minta S tartalmának meghatározása égetést követően jodometriásan

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

Számítások ph-val kombinálva

Az oldatok összetétele

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Gyógyszertári asszisztens szakképesítés

Labor elızetes feladatok

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Általános Kémia GY, 2. tantermi gyakorlat

1. feladat Összesen: 10 pont. 2. feladat Összesen: 11 pont

Oldatkészítés, ph- és sűrűségmérés

Sav bázis egyensúlyok vizes oldatban

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2000

Elektro-analitikai számítási feladatok 1. Potenciometria

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

O k t a t á si Hivatal

Az oldatok összetétele

ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások

VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Titrálási feladatok számításai. I. Mintafeladatok

5. sz. gyakorlat. VÍZMINTA OXIGÉNFOGYASZTÁSÁNAK ÉS LÚGOSSÁGÁNAK MEGHATÁROZÁSA MSZ és MSZ 448/11-86 alapján

Laboratóriumi technikus laboratóriumi technikus Drog és toxikológiai

Kémia fogorvostan hallgatóknak Munkafüzet 9. hét

Általános Kémia. Sav-bázis egyensúlyok. Ecetsav és sósav elegye. Gyenge sav és erős sav keveréke. Példa8-1. Példa 8-1

O k t a t á si Hivatal

1. Bevezetés 2. Kémiai oxigénigény meghatározása feltárt iszapmintákból vagy centrifugátumokból 2.1. A módszer elve

Az 2009/2010. tanévi ORSZÁGOS KÖZÉPISKOLAI TANULMÁNYI VERSENY első (iskolai) fordulójának. feladatmegoldásai K É M I Á B Ó L

Javítókulcs (Kémia emelt szintű feladatsor)

Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Szerves Kémiai Problémamegoldó Verseny

ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :

Vegyjel, képlet 1. Mi az alábbi elemek vegyjele: szilicium, germánium, antimon, ón, rubidium, cézium, ólom, kripton, szelén, palládium

2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló KÉMIA. II. KATEGÓRIA Javítási-értékelési útmutató

O k t a t á si Hivatal

Általános Kémia Gyakorlat II. zárthelyi október 10. A1

Kémiai reakciók sebessége

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

Oktatáskutató és Fejlesztő Intézet TÁMOP / XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz KÉMIA 2.

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Szent-Györgyi Albert kémiavetélkedő Kód

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3

KEMÉNYÍTŐ IZOLÁLÁSA ÉS ENZIMATIKUS HIDROLÍZISÉNEK VIZSGÁLATA I-II. Kémiai technológiai laboratóriumi gyakorlat

O k t a t á si Hivatal

ROMAVERSITAS 2017/2018. tanév. Kémia. Számítási feladatok (oldatok összetétele) 4. alkalom. Összeállította: Balázs Katalin kémia vezetőtanár

1. feladat Összesen: 8 pont. 2. feladat Összesen: 12 pont. 3. feladat Összesen: 14 pont. 4. feladat Összesen: 15 pont

Curie Kémia Emlékverseny 2016/2017. Országos Döntő 9. évfolyam

a. 35-ös tömegszámú izotópjában 18 neutron található. b. A 3. elektronhéján két vegyértékelektront tartalmaz. c. 2 mól atomjának tömege 32 g.

Kémiai alapismeretek 6. hét

Vizes oldatok ph-jának mérése

a) 4,9 g kénsavat, b) 48 g nikkel(ii)-szulfátot, c) 0,24 g salétromsavat, d) 65 g vas(iii)-kloridot?

O k ta t á si Hivatal

KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004.

Biotechnológiai alapismeretek tantárgy

A 2007/2008. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója

Jegyzőkönyv. Konduktometria. Ungvárainé Dr. Nagy Zsuzsanna

Többértékű savak és bázisok Többértékű savnak/lúgnak azokat az oldatokat nevezzük, amelyek több protont képesek leadni/felvenni.

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ

7. Kémia egyenletek rendezése, sztöchiometria

1. feladat Összesen: 18 pont. 2. feladat Összesen: 9 pont

O k ta t á si Hivatal

Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása

Kémia OKTV I. kategória II. forduló A feladatok megoldása

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

VEBI BIOMÉRÖKI MŰVELETEK KÖVETELMÉNYEK. Pécs Miklós: Vebi Biomérnöki műveletek. 1. előadás: Bevezetés és enzimkinetika

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

1. Egy ismeretlen só azonosítása (az anion és kation meghatározása).

A csoport B csoport C csoport D csoport E csoport Sebestyén Timári Sarolta / Lihi Norbert Várnagy Katalin Nagy Zoltán Tóth Zoltán vegyészmérnök,

TRIPSZIN TISZTÍTÁSA AFFINITÁS KROMATOGRÁFIA SEGÍTSÉGÉVEL

Méz diasztázaktivitásának meghatározására szolgáló módszerek összehasonlítása. Nagy István, Kiss Írisz, Kovács Józsefné NÉBIH ÉLBC Kaposvári RÉL

(Kémiai alapok) és

Allotróp módosulatok

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

1. B 6. C 11. E 16. B 2. E 7. C 12. C 17. D 3. D 8. E 13. E 18. D 4. B 9. D 14. A 19. C 5. C 10. E 15. A 20. C Összesen: 20 pont

Kinetika. Általános Kémia, kinetika Dia: 1 /53

23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban

Átírás:

ENZIMTECHNOLÓGIA Kémiai technológia laboratóriumi gyakorlat kémiatanár szakos hallgatók számára ELTE Kémiai Intézet, Szerves Kémia Tanszék

Bevezetés Az enzimek Az enzimek az élő szervezetekben végbemenő kémiai reakciók fehérje típusú katalizátorai (biokatalizátorok). Katalitikus tulajdonságuk a szervetlen katalizátorokéhoz hasonlóan a reakciósebesség növelésében nyilvánul meg, új reakcióút megnyitásával (1. ábra). A kémiai reakciók egyensúlyi állapotát az enzimek nem befolyásolják, csupán az egyensúly kialakulását gyorsítják meg más katalizátorokhoz hasonlóan. Energia E akt (nem katalitikus) ΔE akt E akt (katalitikus) Reaktánsok Termék(ek) 1. ábra Más fehérjékhez hasonlóan, az enzimek is egyszerűek (proteinek) vagy összetettek (proteidek) lehetnek. A proteineket csak polipeptidlánc alkotja. A proteidek közé tartozó enzimek fehérjerészből (apoenzim) és nem fehérjetermészetű részből (koenzim) épülnek fel. Az apoenzim és a koenzim együttesét holoenzimnek nevezzük. Az apoenzim nem képes funkcióját ellátni a koenzim nélkül. Az enzimmolekulák azon részét, amely közvetlenül részt vesz a katalízisben aktív centrumnak nevezzük. Az aktív centrumot a kötőhely és a katalitikus hely együttese alkotja. A kötőhelyen történik a szubsztrátmolekula (azon molekula, amelynek átalakulását az enzim katalizálja) megkötése másodrendű kötések kialakításával, a kötőhelyet képező aminosavoldalláncok segítségével. A kötőhely közelében lévő katalitikus helyen olyan aminosavoldalláncok találhatók, amelyek közvetlenül közreműködnek a szubsztrát katalitikus átalakításában. Az összetett enzimeknél a koenzim is részt vesz a katalitikus hely felépítésében. 2

Aktív centrum katalitikus hely kötőhely S S P E E E E (ES) x E + P S: Szubsztrát E: Enzim P: Termék ES: Enzim szubsztrát komplex 2. ábra Az enzimek esetében többféle specifitásról beszélhetünk: 1.) szubsztrátspecifitás: pl. a glükózizomeráz csak a glükóz-fruktóz átalakulást katalizálja, más aldóz-ketóz átalakulást nem; 2.) reakcióspecifitás: különböző enzimek más-más úton alakítják át ugyanazt az anyagot, pl. az α-amiláz a keményítőlánc belsejében segíti elő a hidrolízist, így termékként dextrinek képződnek, ezzel szemben a β-amiláz hatására a keményítőmolekulák végeiről maltóz egységek hasadnak le; 3.) sztereospecifitás: királis vegyületek esetében csak meghatározott konfigurációjú molekulák átalakítása történik meg, vagy meghatározott konfigurációjú termék képződhet csak. Az enzimek katalitikus hatásának számszerű jellemzésére szolgál az enzimaktivitás. Ez megadja, hogy adott idő alatt, adott mennyiségű enzim mennyi anyagot képes átalakítani szigorúan definiált körülmények (T, ph stb.) között. Az enzimes katalízist számos tényező befolyásolja. A szubsztrát mennyisége, a hőmérséklet, ph stb. mind hatással vannak a reakció-sebességre (enzimaktivitásra). Egy-egy tényező hatása a többi állandó értéken tartása mellett vizsgálható. Az enzimaktivitás ph-függését a 3. ábrán láthatjuk. A gyakorlat során az amiloglükozidáz enzimaktivitásának ph-függésére enzimaktivitás is hasonló görbét kell kapnunk. A reakciósebesség ph-függését több tényező eredményezheti. Bármely disszociációra képes enzim- vagy szubsztrát-molekularész szerkezetét ugyanis befolyásolja a ph 3. ábra ph. 3

Az enzimek ipari alkalmazása Biotechnológiai eljárásokról beszélhetünk, ha biológiai rendszereket alkalmaznak ipari folyamatok során. Ez jelentheti mikroorganizmusok felhasználását (mikrobiológiai technológia) vagy enzimkészítmények alkalmazását (enzimtechnológia). A biológiai rendszerek felhasználásának előnyei: 1.) bonyolult kémiai reakciókat tudnak végrehajtani a szintetikus megoldásnál egyszerűbben; 2.) enyhébb reakciókörülmények között mehet végbe a reakció. Az előzőek az enzimek nagymértékű specifitásának és aktivitásának köszönhetőek. Sok esetben használják fel immobilizált alakban a biológiai rendszereket, ilyenkor a sejteket vagy enzimeket szilárd hordozóhoz rögzítik, így töltenek meg velük egy oszlopot, amelyen átengedik a szubsztrát oldatát. Az immobilizáció révén megoldható a biológiai rendszerek újrahasznosítása, továbbá a folyamatos üzemmód is biztosított. Ezek a tényezők a termelés gazdaságosságát növelik. Ismert enzimtechnológiai eljárás az izocukor előállítása. Az izocukor glükóz-fruktóz elegy tömény vizes oldata, amelyet az élelmiszeriparban édesítőszerként használnak. Előnyös tulajdonsága, hogy nehezen kristályosodik, illetve erős nedvszívó képessége miatt megakadályozza a készítmény vízvesztését. Magyarországon nagy mennyiségben gyártanak izocukrot Szabadegyházán. A felhasznált nyersanyag: kukorica. A szemekből eltávolítják a fehérjetartalmú csírát, amelyet állati takarmányként hasznosítanak. A csírátlanított szemeket megőrlik, és a keményítőt elkülönítik, majd gondosan tisztítják. Ezután α-amiláz enzimet adnak hozzá, és 85-94 C-on, 5-6 ph-n előhidrolizálják a keményítőt. Ezt az enzimet hevítéssel inaktiválják, és a lehűtött oldathoz amiloglükozidáz-készítményt adnak, amely glükózig viszi tovább a hidrolízist. Az így kapott glükóz-oldatot immobilizált glükózizomeráz enzimmel feltöltött oszlopokon engedik át, aminek hatására egyensúlyi reakció során a glükóz egy része fruktózzá izomerizálódik. A kapott oldatot tisztítják és töményre (kb. 64 m/m %-osra) bepárolják. 4

Gyakorlati munka A gyakorlat célja: Az ipari izocukor-előállítás folyamatainak vizsgálata az amiloglükozidáz enzim katalizáló hatásának tanulmányozásával (enzimaktivitás ph-függésének mérése). Amiloglükozidáz-enzimaktivitás ph-függésének mérése: A felhasználásra kerülő keményítőoldat elkészítésénél desztillált vízben 100 cm 3 -enként 1 g, α-amilázzal előhidrolizált keményítőt oldottunk fel, amely vizet és kis mennyiségű glükózt is tartalmazott, ezért nem egyezik meg az oldat tényleges keményítőtartalma az 1 vegyes %-os bemérési koncentrációval. Három, előre lemért csiszolatos bemérőedénybe mérjünk be analitikai pontossággal egyenként 0,5 g vízoldható keményítőt, majd helyezzük az edénykéket 100 C-ra beállított szárítószekrénybe. Másfél óra elteltével helyezzük át az edénykéket exszikkátorba, majd kb. 15 perc elteltével mérjük le újból az edények tömegét. Négyszer 50 cm 3 keményítőoldat ph-ját állítsuk be állandó kevertetés közben négy különböző értékre, ph = 3-6 intervallumban 1 M nátrium-acetát és 1 M ecetsav-oldatok felhasználásával. A ph értékek beállításánál a gyakorlatvezető által megadott módon adagoljuk a nátriumacetát és/vagy ecetsav-oldatokat, attól függően, hogy melyikre van szükség, és jegyezzük fel, hogy hány cm 3 -re higítottuk fel ez által az eredeti keményítőoldatot. Az egyik beállított ph-jú oldatot öntsük a 60 C-on temperált reaktorba. Miután felvette a reaktor hőmérsékletét (5 perc), kevertetés közben adjunk hozzá 1 cm 3 amiloglükozidázoldatot. Az enzimoldat hozzáadásától számítva pontosan 5 perc múlva (stopper!) pipettázzunk a reaktor tartalmához 5 M nátrium-hidroxid-oldatot, hogy a ph eltolásával leállítsa az enzim működését. A ph=3 körüli értékre beállított oldathoz az 5 M NaOH-ból 2 cm 3 -t, a többihez 1 cm 3 -t adjunk. További fél percig kevertessük az oldatot, majd pipettával vegyünk háromszor 5 cm 3 mintát az enzimaktivitás meghatározásához (mindegyik ph-n három párhuzamost vizsgálunk). Mossuk el alaposan a reaktort és a keverőt, majd végezzük el a mérést a következő ph-jú oldattal. 5

Az enzimaktivitás meghatározása Az amiloglükozidáz enzimaktivitása megadható azzal a glükóz- koncentrációval, amely kialakul adott enzimmennyiség hatására, adott idő alatt (esetünkben 1 cm 3 enzimoldat hatására, 5 perc alatt). A glükóztartalom meghatározása jodometriásan történik lúgos oldatban a jódból hipojodit keletkezik, ami a glükóz formilcsoportját karboxilcsoporttá oxidálja; az oldathoz adott jód feleslegét savanyítás után tioszulfát-oldattal mérjük vissza; a tioszulfátos titrálás végpontjának jelzésére az amiloglükozidáz által érintetlenül hagyott keményítőtartalom szolgál. A gyakorlat során az eredeti keményítő-oldat szabad glükóz-tartalmát is meghatározzuk jodometriásan. A jodometriás mérés menete A reaktorból vett 5 cm 3 mintát desztillált vízzel 25 cm 3 -re hígítjuk, majd hozzáadunk 4 cm 3 1 M NaOH-oldatot és bürettából 5 cm 3 0,05 M I 2 -oldatot. Ezután 20 percig állni hagyjuk sötétben, majd 10 cm 3 0,5 M kénsavval savanyítjuk és 0,1 M tioszulfát-oldattal titráljuk. Mérjük meg három párhuzamost vizsgálva 5-5 cm 3 kiindulási keményítőoldat glükóztartalmát is a fenti recept szerint. Reakcióegyenletek I 2 + 2OH- = OI- + I- + H 2 O ~ CHO + OI- + OH- = ~ COO- + I- + H 2 O ~ CHO + I 2 + 3OH- = ~ COO- + 2I- + 2H 2 O OI- + I- + 2H + = I 2 + H 2 O 2S 2 O 2-3 + I 2 = S 4 O 2-6 + 2I- Az enzimaktivitás számítása A tioszulfát mérőoldat fogyásai alapján, a jód- és tioszulfátoldat faktorának figyelembevételével számítsuk ki a reaktorból vett minták és az eredeti keményítőoldat glükóztartalmát mmol/dm 3 -ben. Számítsuk ki, hogy milyen glükózkoncentráció alakult volna ki az egyes ph-értékeken, ha nem hígítottuk volna fel az eredetileg 50 cm 3 térfogatú mintaoldatot. Ehhez az alábbi képlet használható fel: Vössz 3 50 cm.c( higított oldat ) = c,, 6

ahol V össz = 50 cm 3 + a ph beállításához felhasznált nátrium-acetát és/vagy ecetsav térfogata + az enzimműködés leállítására a reaktor tartalmához adott 5 M NaOH térfogata + 1 cm 3 (enzimoldat). A hígulás figyelembevételével kapott glükózkoncentrációk és a keményítőoldat glükóztartalmának különbségei adják az enzimaktivitás értékeket. Ábrázoljuk ezeket a ph függvényében! A görbe megrajzolásához vegyünk fel még egy pontot a koordinátarendszerben: ph = 0-nál az enzimaktivitást tekintsük zérussal egyezőnek. A hidrolízis mértékének kiszámítása Számítsuk ki a bemérés alapján 1 vegyes százalékosnak tekintett keményítőoldat tényleges keményítőtartalmát a 100 cm 3 -enként bemért 1 g anyag víztartalmának, valamint a titrálás révén meghatározott glükóztartalmának levonásával. Számítsuk ki, hogy a kapott keményítőmennyiség 100%-os hidrolízise esetén milyen glükózkoncentráció alakulna ki, az alábbi egyenlet figyelembevételével. (C 6 H 10 O 5 ) n + n H 2 O = n C 6 H 12 O 6 A keményítőmolekulák láncvégein lévő glükózegységeket elhanyagoljuk. Adjuk meg, hogy a maximálisan lehetséges glükózkoncentráció hány százalékát képezik az enzimaktivitásokat jellemző glükózkoncentrációk, tehát milyen mértékű volt a hidrolízis az enzim hatására az egyes ph értékeken. A ph-enzimaktivitás görbe és a hidrolízis végbemenetelének százalékos értékei alapján adjuk meg az amiloglükozidáz enzim működésének optimális ph-tartományát. A gyakorlat során elvégzendő feladatok (3 főre) 1) A vízoldható keményítő nedvességtartalmának meghatározása és az enzimaktivitás nyomon követése ph = 3 3,5 közötti tartományban 2) vízoldható keményítő szabad glükóztartalmának meghatározása és az enzimaktivitás nyomon követése ph = 4 4,5 közötti tartományban 3) Az enzimaktivitás nyomon követése ph = 4,5 5,0 és ph = 5,0 5,5 közötti tartományban. Az 1. feladatcsoportot végző hallgató a jegyzőkönyv adatlap 1-3. oldalát, a 2. feladatcsoportot végző a jegyzőkönyv 1., 4-5. oldalát míg a 3. feladatcsoportot végző hallgató a jegyzőkönyv 1., 6. és 7. oldalát nyomtassa ki a gyakorlatra. 7

Jegyzőkönyv A jegyzőkönyvnek tartalmaznia kell: - a munka rövid leírását, - a számolásokat, - a ph-enzimaktivitás görbét, - a különböző ph-értékeknél kiszámított hidrolízis mértéket (%-ban), - az amiloglükozidáz enzim optimális ph-tartományának megadását Számolási minta Az alábbi példán a számolás menete látható, a piros szín a jegyzőkönyv adatlap kitöltési útmutatóját jelöli. Jód Konc.: 0,05 M Faktor: 0,986 f*c= 0,05*0,986=0,0493 Fogyások 1. 2,1 cm 3 2. 2,2 cm 3 5 cm 3 3. 2,3 cm 3 Anyagmennyiség: 0,0493*0,005= 2,47*10-4 mol..1... MINTA ph =...3,17... Tioszulfát Higítások: Konc.: 0,1 M Faktor: 1,003 f*c= 0,1*1,003 = 0,1003 Átlag: (2,1+2,2+2,3)/3= 2,2 cm 3 Anyagmennyiség: 0,0022*0,1003 = 2,20*10-4 mol /2 2,20*10-4 /2 = 1,10*10-4 mol 50 cm 3 keményítő oldat...0.. cm 3 NaAc...2...cm 3 Hac 1 cm 3 enzim...2... cm 3 NaOH Összesen:...55... cm 3 Anyagmennyiség: 2,47*10-4 - 1,10*10-4 = 1,37*10-4 mol = 0,137 mmol Minta térfogata: 5cm 3 = 0,005 dm 3 Koncentráció 0,137/0,005 = 27,4 mmol/dm 3 Glükózkonc. hígítás nélkül 55*27,4/50 = 30,1 mmol/dm 3 Enzimaktivitás 30,1-2,1* = 28,0 mmol/dm 3 * a keményítőoldat glükóztartalmára kapott érték: 2,1 mmol/dm 3 Hidrolízis mértéke: 1 g/100 cm 3 keményítő Víztartalom:...10,5...% = 1*0,105 g/100 cm 3 = 0,105 g/100 cm 3 Keményítőoldat glükóztartalma: 2,1 mmol/dm 3 = 2,1 *180 mg/dm 3 = 378 mg/dm 3 =0,0378 g/100 cm 3 Keményítőoldat keményítő-tartalma: 1 g/100 cm 3 víztartalom glükóztartalom = 1 0,105 0,0378 = 0,8572 g/100 cm 3 (C 6 H 10O 5 ) n + nh 2 O = nc 6 H 12O 6 moláris tömegek: 162 g/mol.180 g/mol......0,857.. g/100 cm 3...0,952... g/100 cm 3...0,00529.. mol/100 cm 3 =...52,9...mmol/dm 3 Minta ph Enzimaktivitás Hidrolízis mértéke 1 3,17 28,0 28,0/52,9=0,529 =52,9% 8

Ellenőrző kérdések 1. Milyen feladatokat kell elvégezniük a gyakorlaton? (Mind az 5 feladatrészben összesítve) 2. Mi a gyakorlat célja? 3. Milyen enzimmel dolgozunk a gyakorlaton? 4. Mit nevezünk enzimnek? 5. Milyen módon befolyásolják a kémiai reakciókat az enzimek? 6. Milyen enzimspecificitások lehetségesek? 7. Mondjon példát egy szubsztrátspecifikus enzimre! 8. Mondjon példát egy reakcióspecifikus enzimre! 9. Mit jelent, ha egy enzim sztereospecifikus? 10. A gyakorlaton használt enzimet melyik specificitási csoportba lehet sorolni? 11. Mit nevezünk proteidnek? 12. Milyen részei vannak a proteidnek? 13. Mit nevezünk az enzimeknél aktív centrumnak? Milyen részekből áll? 14. Mit nevezünk enzimaktivitásnak? 15. Milyen tényezők befolyásolhatják az enzimaktivitást? 16. Milyen módszerrel határozzuk meg az enzimaktivitást a gyakorlaton? 17. Hány különböző ph-n fogunk enzimaktivitást mérni a gyakorlat során? (Mind az 5 feladatrészben összesítve) 18. Milyen oldatokkal állítják be a keményítőoldat ph-ját a gyakorlaton? 19. Mi a ph? 20. Ismertesse az üvegelektród működésének elvét! 21. Miért van szükség NaOH reaktor tartalmához való hozzáadására a gyakorlaton? 22. Mit nevezünk biotechnológiának? 23. Melyek a biotechnológia felhasználásának az előnyei? 24. Mit nevezünk izocukornak? 25. Hogyan állítják elő az izocukrot? 26. Milyen mérőoldatokat használunk a titrálás során? 27. Milyen végpontjelzést alkalmazunk a titrálásnál a gyakorlaton? 28. Ismertesse a gyakorlat során alkalmazott titrálás menetét! 29. Ismertesse a gyakorlat során alkalmazott titrálás egyenleteit! 30. Mi a keményítő? 31. Milyen részekből áll a keményítő? 9

32. Mi a különbség az amilóz és az amilopektin között? 33. Hogyan határozzuk meg a keményítő nedvességtartalmát? 34. Miért van szükség a keményítő nedvességtartalmának ismeretére? 35. Mi a keményítő hidrolízisének az egyenlete? 36. Számítsuk ki, hogy x vegyes%-os keményítő oldat (x g keményítő / 100 ml vízben) teljes hidrolízise során milyen glükózkoncentráció alakul ki! 37. 5 cm 3 ismeretlen koncentrációjú glükózoldatot jodometriásan titrálunk. A mintát desztillált vízzel hígítjuk, majd NaOH-ot adunk hozzá. Bürettából 5 cm 3 0,05 M I 2 - oldatot adunk hozzá, 20 percig állni hagyjuk, majd kénsavval megsavanyítva 0,1 M tioszulfátoldattal titráljuk. A fogyás x ml. Számítsuk ki a minta glükózkoncentrációját! (A mérőoldatok faktora: f(i 2 ) = 0,980, f(s 2 O 2-3 ) = 1,045) A gyakorlat anyagát képezik "Gerecs Árpád: Bevezetés a kémiai technológiába (Tankönyvkiadó, Budapest)" című tankönyvének ide vonatkozó fejezetei is: "Mikrobiológiai iparok termékei" (429-454. oldal) és "Keményítőgyártás" (517-523. oldal)!!! 10