3. Energiahordozók nem hagyományos bányászata, előállítása (palaolaj, homokolaj, palagáz)

Hasonló dokumentumok
PCP, Műanyag hulladékok energetikai hasznosítása

ENERGIA. Üzemanyag szénből. Közbenső elgázosítás. Tárgyszavak: szén; szénhidrogén; földgáz; Fischer-Tropsch reakció.

Energia- és Minőségügyi Intézet Tüzeléstani és Hőenergia Intézeti Tanszék. Energiahordozók

Tüzeléstan előadás Dr. Palotás Árpád Bence

A nem-hagyományos szénhidrogének mi a helyzet a világban és itthon? május 26.

Specialitások: Nem-konvencionális kutatás/termelés, rétegrepesztés Piet Van Assche ügyv. DELCUADRA Szabó György ügyv. Falcon-TXM

Hagyományos és modern energiaforrások

Innovációs leírás. Hulladék-átalakító energiatermelő reaktor

Üzemanyag gyártás szerves hulladékból

GÁZTISZTÍTÁSI, GÁZNEMESÍTÉSI ELJÁRÁSOK ÖSSZEHASONLÍTÁSA

A GEOTERMIKUS ENERGIA

Bio Energy System Technics Europe Ltd

G L O B A L W A R M I N

T Á J É K O Z T A T Ó

A biomassza rövid története:

Ambrus László Székelyudvarhely,

Levél a döntőbe jutottaknak

Szőcs Mihály Vezető projektfejlesztő. Globális változások az energetikában Villamosenergia termelés Európa és Magyarország

FOLYÉKONY BIOÜZEMANYAGOK

Hulladékból energiát technológiák vizsgálata életciklus-elemzéssel kapcsolt energiatermelés esetén Bodnár István

MAGYAR KAPCSOLT ENERGIA TÁRSASÁG COGEN HUNGARY. A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag

Pirolízis a gyakorlatban

EGS Magyarországon. Kovács Péter Ügyvezető igazgató Budapest, június 16.

LNG felhasználása a közlekedésben április 15. Kirilly Tamás Prímagáz

A palagáz-kitermelés helyzete és szerepe a világ jövőbeni földgázellátásában. Jó szerencsét!

Légszennyezés. Molnár Kata Környezettan BSc

MŰANYAG HULLADÉK HASZNOSÍTÓ BERENDEZÉS

MELLÉKLETEK. a következőhöz: A BIZOTTSÁG (EU).../... FELHATALMAZÁSON ALAPULÓ RENDELETE

A SZENNYVÍZISZAPRA VONATKOZÓ HAZAI SZABÁLYOZÁS TERVEZETT VÁLTOZTATÁSAI. Domahidy László György főosztályvezető-helyettes Budapest, május 30.

Konvencionális és nem-konvencionális szénhidrogén kitermelő eljárások és várható szerepük az energiaellátásban - PÁPAY JÓZSEF -

Gépészmérnök. Budapest

KI TUD TÖBBET A KŐOLAJ-FELDOLGOZÁSRÓL? 2. FORDULÓ TESZT CSAPATNÉV

8. Előadás: Kőolajtermelés, felhasználás fizikája.

Olefingyártás indító lépése

Megújuló energiák szerepe a villamos hálózatok energia összetételének tisztítása érdekében Dr. Tóth László DSc - SZIE professor emeritus

A GAMMA-VALEROLAKTON ELŐÁLLÍTÁSA

- HTTE - Hidrogéntermelı tároló egység (járművek meghajtásához) Szerzı:

1. feladat Összesen: 26 pont. 2. feladat Összesen: 20 pont

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.

Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése. Kódszám: KMOP

WAG Logisztika Kft. által szállítható veszélyes hulladékok EWC listája

BIO-SZIL Természetvédelmi és Környezetgazdálkodási Kht Panyola, Mezővég u. 31.

A megújuló energiahordozók szerepe

T Á J É K O Z T A T Ó

Kémia 10. Az alkánok homológ sora

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

Hulladékok szerepe az energiatermelésben; mintaprojekt kezdeményezése a Kárpát-medencében

Németh Lászlóné miniszter, Nemzeti Fejlesztési Minisztérium Varga Mihály miniszter, Nemzetgazdasági Minisztérium

VILÁG MŰTRÁGYA GYÁRTÁSA ÉS FELHASZNÁLÁSA. SZÉCHENYI ISTVÁN EGYETEM Audi Hungária Járműmérnöki Kar. Huszár Andrea IHYADJ

Klórozott szénhidrogénekkel szennyezett talajok és talajvizek kezelésére alkalmazható módszerek

HU Egyesülve a sokféleségben HU A7-0277/84. Módosítás. Struan Stevenson, Konrad Szymański az ECR képviselıcsoport nevében

Depóniagáz hasznosítás működő telepek Magyarországon Sári Tamás, üzemeltetés vezető ENER-G Natural Power Kft.

Németh Lászlóné miniszter, Nemzeti Fejlesztési Minisztérium Dr. Matolcsy György miniszter Nemzetgazdasági Minisztérium

PiAndTECH FluidKAT katalitikus izzóterek

Regionális nemzeti nemzetközi energiastratégia

Proline Prosonic Flow B 200

Bodnár István PhD hallgató Miskolci Egyetem Sályi István Gépészeti Tudományok Doktori Iskola

A szén alkalmazásának perspektívái és a Calamites Kft. üzleti törekvései

Prof. Dr. Krómer István. Óbudai Egyetem

Készítették: Márton Dávid és Rác Szabó Krisztián

Atomerőmű. Radioaktívhulladék-kezelés

Energia felhasználás hatékonyságának növelése és megújuló energiaforrások használata a BÁCSVÍZ Zrt.-nél

MAGYARORSZÁGI HULLADÉKLERAKÓKBAN KELETKEZŐ DEPÓNIAGÁZOK MENNYISÉGE, ENERGIATARTALMA ÉS A KIBOCSÁTOTT GÁZOK ÜVEGHÁZ HATÁSA

A szén-dioxid megkötése ipari gázokból

Plazma a villám energiájának felhasználása. Bazaltszerü salak - vulkánikus üveg megfelelője.

Hulladékból Energia Helyszín: Csíksomlyó Előadó: Major László Klaszter Elnök

T Á J É K O Z T A T Ó

1. tudáskártya. Mi az energia? Mindenkinek szüksége van energiára! EnergiaOtthon

Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll.

A LÉGKÖR SZERKEZETE ÉS ÖSSZETÉTELE. Környezetmérnök BSc

Maghasadás, láncreakció, magfúzió

Élelmiszerhulladék-csökkentés a Jövő Élelmiszeripari Gyárában Igények és megoldások

A Lengyelországban bányászott lignitek alkalmazása újraégető tüzelőanyagként

Diego di Risio Observatorio Petrolero Sur Május 26., Budapest.

MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFOM

SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAH /2014 nyilvántartási számú (2) akkreditált státuszhoz

Előadó: Varga Péter Varga Péter

EWC kódok Engedély veszélyes hulladék tárolására

Tiszta széntechnológiák

Energiagazdálkodás és környezetvédelem 4. Előadás

TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6

LERAKÁS - Hulladékkezelési technológiák nem hasznosítható maradékanyagainak listája

Az uránérc bányászata

Geotermikus Energiahasznosítás. Készítette: Pajor Zsófia

Szárazjeges tisztítás hatásai hegesztő szerszámokon 2012 GESTAMP 0

Természet és környezetvédelem. Hulladékok környezet gyakorolt hatása, hulladékgazdálkodás, -kezelés Szennyvízkezelés

KF-II-6.8. Mit nevezünk pirolízisnek és milyen éghető gázok keletkeznek?

A költségvetés környezetvédelmi vonatkozásai. Dr. Bathó Ferenc helyettes államtitkár

Éves energetikai szakreferensi jelentés év

4. Felszíni vizek veszélyeztetetts ége

Gyepes Balázs. Thermokémiai elgázosító rendszer

Információtartalom vázlata: Mezőgazdasági hulladékok definíciója. Folyékony, szilárd, iszapszerű mezőgazdasági hulladékok ismertetése

HELYI HŐ, ÉS HŰTÉSI IGÉNY KIELÉGÍTÉSE MEGÚJULÓ ENERGIAFORRÁSOKKAL KEOP B

PUBLIC AZEURÓPAIUNIÓ TANÁCSA. Brüszel,2013.december13. (OR.en) 17849/13 LIMITE STATIS138 ENER586 COMPET927 FEDŐLAP

A szén dioxid leválasztási és tárolás energiapolitikai vonatkozásai

Újrahasznosítási logisztika. 1. Bevezetés az újrahasznosításba

A bányászat szerepe az energetikában és a nemzetgazdaságban

KŐOLAJFELDOLGOZÁSI TECHNOLÓGIÁK

A8-0358/16. A Bizottság által javasolt szöveg. Indokolás

Bagyinszki György, Révay Róbert VTK Innosystem Kft.

Átírás:

3. Energiahordozók nem hagyományos bányászata, előállítása (palaolaj, homokolaj, palagáz) Ezekben az években, amiket most megélünk, nagyon sok szó esik a peak oil -ról, azaz olajhozam-csúcs -ról. Azt azonban egyáltalán nem szokták meghatározni, hogy milyen formációból származó olaj kitermelésének a csúcsa következik be. Az eddigi kőolaj kitermelés döntő mértékben a konvencionális szénhidrogénekre vonatkozik. A nagy olajtársaságok azonban nagy reményeket fűznek a nem konvencionális szénhidrogének kitermelésének széleskörű elterjedéséhez. Ennek a lehetőségeiről és nehézségeiről ad áttekintést ez a fejezeté. A fejezet tartalomjegyzéke 3.1. Olajpala és olajhomok bányászata, palaolaj és homokolaj előállítása 3.2. Palagáz és homokgáz bányászata 3.3. Mesterséges kőolaj előállítás Bevezetőül álljon itt a világ olaj kitermelésével foglalkozó egyik legismertebb csoport ( The Oil Drum http://www.theoildrum.com/ ) 2012. utolsó negyedében megjelent összesítése. Ez 2002 januárjától 2012. szeptemberéig terjedő időszakra vonatkozóan, a világ összes kőolaj kitermelésének, évente háromszor (január, május szeptember) végzett összesítését adja. 1. ábra. World Crude Oil & Lease Condensate Production to 2012 http://www.theoildrum.com/node/3623 A következő ábra azt foglalja össze, hogy az eddigi olcsó kőolaj kitermelés mennyisége, főleg gazdasági okok, és műszaki problémák miatt folyamatosan csökkenni fog (OPEC a nem OPEC államok meglevő konvencionális kitermelése piros, kék). Az OPEC és a nem-opec államok várható új projektjei az előző csökkenést messze nem képesek kompenzálni (narancs, sötét lila). Az OPEC és a nem OPEC államok, már meglevő nem-konvencionális petróleum kitermelése, valamint ezen a téren tervezett projektjei pedig messze nem fognak tudni, minden ígéret ellenére számottevő termelési szintre felfutni, hogy a csökkenést befolyásolni tudnák 1

A vastag kék vonal az EIA (Nemzetközi Energia Ügynökség) AEO 2009-es jelentésében prognosztizált szükséglet szintjét jelzi. 2. ábra. A világ konvencionális és nem konvencionális kőolaj kitermelésének előrejelzése 2012-től 2030-ig. Megjelenés helye és dátuma: http://www.theoildrum.com/ December 19, 2012. Az egyértelműség érdekében először megadjuk a konvencionális és a nem-konvencionális szénhidrogének fogalmát és osztályozásukat magyarul és angolul: Konvencionális szénhidrogéneknek (kőolaj, földgáz) nevezzük azokat a szénhidrogéneket, amelyek gravitációs szegregáció (felhajtóerők) által indukált, geometriailag meghatározható kiterjedésű szerkezeti, vagy tektonikus csapdákban halmozódtak fel. Ezzel szemben minden olyan természetes szénhidrogén előfordulás, amely nem tesz eleget az előbbi feltételeknek, a nem konvencionális szénhidrogének csoportjába sorolandó. Ennek megfelelően 1. Konvencionális szénhidrogének földgáz gázcsapadék (kondenzátum) és kőolaj 2. Nem konvencionális szénhidrogének palaolaj (shale oil) homokolaj (tar sand oil) palagáz (shale gas) homokgáz (tight sand or deep gas) széntelepek metánja (coalbed methane) szénhidrogén hidrátok (hydrates) A Nemzetközi Energia Ügynökség Oil Market Report pedig a nem hagyományos (nem konvencionális) kőolaj eseteket a következő táblázatban foglaltak szerint határozta meg: 2

1. Táblázat. Nemzetközi Energia Ügynökség kategóriái a nem-konvencionális kőolajra Nem hagyományos olajforrások (hu) Nem hagyományos olajforrások (en) 1 Olajpala, terméke a palaolaj Oil shales 2 Olaj homokból kivont kőolaj és Oil sands-based synthetic crudes and származékai derivative products 3 Szén alapú folyékony üzemanyag és Coal-based liquid supplies tüzelőanyag származékok 4 Biomassza alapú folyékony üzemanyagok Biomass-based liquid supplies 5 Földgáz kémiai feldolgozásából származó Liquids arising from chemical processing folyékony energiaforrások of natural gas Ezek közül ebben a fejezetben az első hárommal (1-3) foglalkozunk, amelyek a hagyományos kőolajnak megfelelő termékeket állítják elő. Szó lesz ezen kívül a földgáz nem hagyományos kitermeléséről, a palagáz kitermelésének technológiájáról is. A nem-konvencionális olaj és földgáz kitermelésének egy optimistább forgatókönyvét adja a következő ábra (lila görbe). 3. ábra. A hagyományos és a nem hagyományos ásványolaj kitermelések várható időbeli menete http://www.theoildrum.com/node/3001 3.1. Olajpala és olajhomok bányászata, palaolaj és homokolaj előállítása http://en.wikipedia.org/wiki/non-conventional_oil 3.1.1. Olajpala, olajhomok fogalma, lelőhelyei Olajhomok: olyan nehézolajat tartalmazó kőzet, amely főként lipidekből alakult ki és halmozódott fel. Olajpala: olyan fiatal kerogént tartalmazó kőzet, amelyből melegítéssel (lepárlással) kőolaj és földgáz nyerhető. Az USA-ban és Kanadában az utóbbi húsz évben kialakult az olajpala és olajhomok bányászata. Míg a hagyományos olajkitermelés során, a mélyben keletkezett, és a sok tízmillió éves vándorlása során zárórétegek között megrekedt olajat bányásszák ki, ahol a nyomás hatására könnyedén a 3

felszínre hozható a nyersanyag, addig az olajhomok és az olajpala olyan kőzetréteg, amelyből nem vándorolt el a zárórétegek közti tárolókba az olaj. Így ez esetben magát a teljes kőzetréteget kell kitermelni, mivel nincs lehetőség a mélységi nyomást kihasználva felszínre hozni belőlük a kőolajat. Ezért ez a kitermelési forma eddig a legköltségesebb. Az USA Wyoming, Utah és Colorado államaiban van a világ legnagyobb ismert olajpala-telepe. A becsült olajtartalom mintegy 800 milliárd (!) hordó olajnak felel meg. 4. ábra. Wyoming, Utah, Colorado olajpala-telepei http://commons.wikimedia.org/wiki/file:colorado,_utah_and_wyoming_oil_shale_deposits.jpg Kanadában az olajhomok elsősorban egy mintegy másfél Magyarország nagyságú, tajgaerdővel borított területről nyerhető ki. A munkálatok eredményeképpen jelentős erdőterületeket tettek tönkre a hatalmas járművekhez szükséges utak, a csővezetékek, a külszíni termelést folytató bányák és a szennyező vízzel megtöltött tavak is. http://wwf.hu/archivum/2008ev/5/olajnagyhatalom-lesz-kanada-8211-akar-klimakatasztrofa-aranis 5. ábra. Olajpala 6. ábra olajhomok 4

3.1.2. Palaolaj, homokolaj kinyerése a felszín felett kitermelt olajpala, olajhomok esetében A kitermelt kőzetet (olajpala) aprítani, majd hőkezelni kell ahhoz, hogy kinyerhető legyen belőle a szénhidrogén. Újabban arra vonatkozó kutatások is megjelentek, hogy még a bányászatot megelőzően felmelegítik a kőzetet, a hő hatására mintegy kiolvad a palából az olaj, s így magát az olajat lehetne kinyerni a sok kőzet nélkül. Mindkét eljárás költséges és egyik sem éppen környezetbarát. Coloradoban a Shell és a Chevron már üzemeltet egy közös kísérleti telepet, ahol kis területen a kőzet felszín alatti melegítésével próbálkoznak. Az olajpala, bár sima kőnek látszik, ha meggyújtják, szépen lángol a mikroszkopikus résekben elraktározott olajnak köszönhetően. 7. ábra. Olaj pala kitermelés külszíni fejtéssel http://www.treehugger.com/corporate-responsibility/dept-of-interior-cancels-bush-administrationoil-shale-leasing-plans.html 8. ábra. Olajpala kitermelés Tar-Sands közelében (Kanada) Előtte és utána 5

Az olajhomok esetében hasonló a helyzet, itt is a homok és agyagszemcsék között megrekedt olajat lehet kinyerni, azonban ez az olaj rendkívül besűrűsödött állapotban van. Ahhoz, hogy kinyerjék, a kibányászott olajhomokot is hőkezelni kell, aminek köszönhetően egy hordó olajhomokból kinyert olaj előállítása 80-100 kg üvegházgáz (kén-dioxid, nitrogén oxidok, szén-dioxid) kibocsátásával jár. Az olajhomok kitermelése nagyon vízigényes, átlagosan egy hordó olaj kitermeléséhez 3, míg olajpala esetén 2-5 hordónyi vízre van szükség. Az olajhomok kitermeléshez használt víz elsődleges forrása Kanadában az Athabasca folyó, melynek vízszintje már ma is kritikusan alacsony, miközben jelenleg az olajtermelők évi 2.3 milliárd hordó vizet emelhetnek ki belőle. A felhasznált víznek csak 5-10 %-a kerülhet vissza a folyóba, a többi, toxikus szennyvizet hatalmas, 50 km2 es felületű tavakba töltik. Szennyezetté válik a talaj és a talajvizek is. Az olajhomok kitermelése háromszor, az olajpala kitermelése akár nyolcszor akkora széndioxid kibocsátással jár, mint a konvencionális kitermelés. 9 ábra. Olajhomokos tájkép. Külszíni olajhomok-bánya (tar sands mine) Kanadában 10. ábra. Olajhomok bánya Syncrude Aurora, Boreal Forest north of Fort McMurray Canada http://www.greenpeace.org/canada/en/campaigns/energy/tarsands/ 6

3.1.3. Kőolaj kinyerése a felszín alatt található olajpala, olajhomok esetében A felszín alatti kinyerés esetén nagynyomású gőzt vezetnek a talajszint alá, évek alatt a gőz lassan kioldja az olajat, amely gravitációs hatásra összegyűlne, aztán már normális úton ki lehetne aknázni. Ez utóbbi eljárás talán csak a természetkárosítást csökkentené. Kanadában az Athabasca folyó körzetében felfedezett olajhomokból kinyerhető olaj mennyiségét 300 milliárd hordónyira becsülik, hatlmas az ehhez társítható üvegházgáz kibocsátás. Cyclic Steam Stimulation (CSS) Cold Lake Plant, Albert Suncor (Kanada). Bitumen kitermelés CSS technológiával. Első lépésben vízgőzt nyomnak a rétegbe. Második lépés, amikor ez a bitumennel hosszú időn keresztül oldódik (soak). Harmadik lépésként az így keletkezett szuszpenziót (Melted Bitumen Production) kiszivattyúzzák. 11. ábra. Olajpala, olajhomok felmelegítése vízszintes csövekkel a kitermelő kút környezetében. 12. ábra. Bitumen ciklikus gőz stimulációja. (Cyclic Steam Stimulation - CSS) http://www.ags.gov.ab.ca/energy/oilsands/alberta_oil_sands3.html 7

13. ábra. Olajpala felmelegítése függőleges csövekkel a kitermelő kút környezetében Az olajpalákat olajtartalmuk alapján három kategóriába sorolják. A gyenge minőségű olajpala tömegének 0,1-10 százaléka nyerhető ki kőolajként, a közepes minőségűből 10-20, míg a magas minőséget a 20-34 százalék jelenti. Ám a palában található anyag még korántsem kőolaj, hanem az úgynevezett kerogén. Ez egy szerves anyagban dús folyadék, amely a szénhidrogénné alakulás egyik fázisában van, a kitermelése után tehát még különböző kémiai eljárások szükségesek, hogy a kerogénból kőolaj legyen. Mindezek miatt az olajpala bányászata és feldolgozása jóval bonyolultabb és költségesebb eljárás, mint a hagyományos, azaz konvencionális olajtermelés. A kanadai olajhomok környezeti hatásai: - Külszíni fejtésnél ki kell irtani az erdőket, le kell csapolni a mocsaras területet, le kell hordani a fedő talajréteget, és ki kell ásni az olajos homokot. Ezután (földgázzal fűtött) melegvízzel keverik a homokot, hogy kioldják az olajat, majd a víz-olaj zagyot szét kell választani (ez ülepítéssel megoldható). - A kitermelés módszerei jóval energiaigényesebbek, mint a hagyományos olajtermelés: az olajhomok kitermelése háromszor (az olajpaláé akár nyolcszor) akkora szénkibocsátással jár. - Óriási erdőirtások: Kanada területén található a Föld boreális (északi) erdeinek a fele. Az olajhomok elsősorban egy csaknem másfél Magyarországnyi, tajgaerdővel borított területről nyerhető ki. - Nagy kiterjedésű élőhelyeket veszélyeztet. - Nagymértékben veszélyezteti a környék tőzeglápjait és vizes élőhelyeit (pl. a vándormadarak számára kulcsfontosságú McMelland-láp). - Veszélyezteti a környék vízrendszereit (egy hordó olaj kitermeléséhez 3 (olajpala esetén 2 5) hordónyi víz kell. - Szennyezetté válik a talaj és a talajvizek is. - Kanada üvegházgáz kibocsátása 26 %-kal nőtt 1990 óta (Kioto: 6 %-os csökkentést vállaltak). 8

14. ábra. Olajpala lelőhelyek Magyarországon http://fn.hir24.hu/csucsfogyaszto/2008/10/28/nem_lehetunk_olajnagyhatalom 3.2. Palagáz és homokgáz bányászata http://www.palagaz.eu/ 3.2.1. palagáz előfordulás a Földön, USA-ban, Európában. A palagáz egy a természetben nagy mennyiségben előforduló, természetes gáz, amely kinyerésére a pala képződményekből ma már létezik hatékony technológia. A pala aprószemcsés, üledékes kőzet, ami petróleumban és természetes gázokban gazdag. Az utóbbi évtizedben a bányászati technikák fejlődése, a vízszintes fúrások és a hidraulikus töréstechnika elterjedése lehetővé tette, hogy nagy mennyiségű palagázhoz férhessenek hozzá, amit a korábbi módszerekkel nem volt gazdaságos kitermelni. 15. ábra. Palagáz lelőhelyek a Földön http://www.palagaz.eu/ 9

16. ábra. Palagáz bázisok az Egyesült Államok kontinentális részén http://daryanenergyblog.wordpress.com/peak-oil-primer/part-2-solutions/ 17. ábra Gáz pala lelőhelyek Európában http://econews.com.au/news-to-sustain-our-world/eu-says-shale-gas-needs-regulation-not-ban/ 3.2.2. Palagáz és homokgáz bányászatával kapcsolatos kérdések A nem konvencionális földgáz eddigi kitermelése és annak jövője a következő évtizedekben jelentősen megváltoztathatja az energetikában eddig kialakult egyensúlyt, ahogy azt az Egyesült Államokban már meg is tette. A kitermelések mellett és ellene szóló érvek a következők: 10

- A shale-lelőhelyek még feltérképezetlenek, míg a hagyományos földgázmezők már elég jól ismertek, mivel utóbbiakból már alig-alig fedeznek fel újakat. - Míg a hagyományos lelőhelyek esetében kevés fúrt kútból is ki lehet termelni a földgázt, addig a shale esetében kulcsfontosságú a rendkívül magas kútszám (például az USA-ban több mint tízezer). - Ameddig a shale-lelőhelyek decentralizáltak és könnyedén rákapcsolható a belőlük folyó termelés a helyi gázhálózatokra, addig a hagyományos gázmezők általában messze fekszenek a felvevőpiacoktól, ezt többek közt sok ezer kilométernyi csővezetékkel hidalják át. - A két gáztípus azonban alig különbözik összetételében, azaz a shale gas nagyjából ugyanazokkal a tulajdonságokkal rendelkezik, mint hagyományos társa. - Jelenleg, a már ismert shale-forrásokból kinyerhető földgáz mennyisége majdnem akkora, mint amennyit eddig összesen kitermelt és elégetett az emberiség hagyományos gázból. A nem konvencionális gázkészletek globális jelentősége A nem konvencionális földgázt tároló geológiai formációk kőzettani szempontból, a mélység, nyomás és hőmérséklet alapján igen különbözőek lehetnek, közös vonásuk, hogy a tároló kőzet áteresztőképessége rendkívül kicsi. A tárolók rendkívül kis áteresztőképességének következménye a szokványos földgáztárolók művelési jellemzőitől való eltérés, amelynek legfontosabb jellemzői a következők: - a kutak produktivitása kicsi, általában 600 15 10 6 m 3 /nap; - a megnyitást követően a kút hozama rohamosan lecsökken, egy alacsony termelési volumenen stabilizálódik, de ezen az értéken évtizedekig állandó marad; - a termelőkutak évi hozamcsökkenése általában 5 % alatti; - a tárolóréteg meglepően nagy, vastagsága az esetek többségében több száz méter; - a tároló porozitása meghatározó módon repedéseknek köszönhető. Új forszírozott módszerek a mélyben levő, kis áteresztő képességű szerkezetek fellazítását, áttörését célozza: a rétegek hidraulikus repesztése, a szerkezet fellazítása kémia robbantással 3.2.3. A palagáz kinyerésének módszere, technológiája 18. ábra. Konvencionális földgáz és palagáz lelő helyek sémája http://geology.com/energy/shale-gas/ 11

19. ábra. A palagáz kitermelés 4 lépése: 1. Függőleges fúrás a palarétegig 2. A réteget elérve a fúró vízszintesen halad tovább a palarétegben 3. A fúrás során keletkező víz (91 %), homok (9,5 %) és egyéb vegyi anyagok (savak, kloridok, sók 0,5 %) egyvelegének nagy nyomáson történő befecskendezésével tartják nyitva, így biztosítva a gáz áramlását. 4. A gáz kinyerését követően csökkentik a nyomást, a víz pedig visszajut a felszínre. 20. ábra. A gázban gazdag palarétegből történő kitermelés sémája http://claudearpi.blogspot.hu/2011/04/while-debate-is-raging-in-europe-and.html 12

21. ábra. A palából történő kitermelés csövek kiépítésével http://daryanenergyblog.files.wordpress.com/2012/07/beeb_shale_extraction_dig.gif 3.3. Mesterséges kőolaj előállítás 3.3.1 A Fischer Tropsch-eljárás A kőszenekből katalitikus hidrogénezéssel vagy Fischer Tropsch - szintézissel cseppfolyós szénhidrogén is előállítható. Ez az úgynevezett műbenzin meglehetősen drága a közönséges kőolajból lepárolthoz képest, ezért csak benzinhiányos helyzetekben vált jelentőssé (mint például Németországban a 2. világháborúban). De ha nincs más, akkor nincs választás. Ezek az eljárások viszont nem bonyolultak, mindössze néhány alapanyag kell hozzá. 22. ábra. A Fischer-Tropsch reakció sémája http://blog.cafefoundation.org/?attachment_id=2576 13

A Fischer Tropsch-eljárás egy katalizált kémiai reakció. Ebben a szintézisgázt, más néven a városi gázt, a szén-monoxid és hidrogén elegyét alakítják át különböző folyékony szénhidrogénekké. A leggyakoribb katalizátor a vas és kobalt, de a nikkel és ruténium szintén használatos. Az eljárás elsődleges célja, hogy szintetikus kőolajszármazékokat állítsanak elő jellemzően szénből, biogázból és biomasszából, hogy aztán azokat szintetikus kenőanyagként vagy hajtóanyagként használják. Ez a szintetikus benzin, és/vagy dízelolaj teherautókat, autókat és néhány fajta repülőgépet is hajthat. A biomassza-gázosítás és a Fischer Tropsch-szintézis együtt egy lehetséges út a üzemanyagok felé. 3.3.2 A katalitikus krakkolás (bontás, hidrogénezés) Ez az eljárás nemesfém katalizátort igényel, ezért drágább, mint az előző. Előnye viszont, hogy az egyébként környezetet szennyező, akár a halogénekkel felépített műanyagot is hasznosítani tudja. Így a veszélyes hulladékot is hasznos vegyületekre bonthatjuk vele. Az eljárással a nehézolajból is lehet előállítani könnyebb összetevőket, pl. benzint, vagy kőolajat. http://www.vilaglex.hu/lexikon/html/krakkol.htm A T-Technology egy olyan technológiai rendszer, amely műanyag hulladékokat dolgoz fel és alakít át folyékony energiahordozóvá. 23. ábra A T-Technology katalitikus depolimerizálós reaktorba és annak működése http://www.pinterworks.hu/admin/kepek/file/pcphu.pdf A berendezésbe a műanyag hulladékot a zsilipen keresztül lehet beadagolni a katalitikus depolimerizálós reaktorba. A reaktorban katalitikus depolimerizációval alakul át a műanyag polimerizátum rövidebb szénláncú műanyag gőzökké. Innen a tisztítórendszer átmeneti tárolójába 14

gyűlik össze a szilárd frakció, amely csapdában a szilárdmaradékba keülnek a káros összetevők. (Ebből a bitumenszerű anyagból jó minőségű kopásálló és fagyálló út készíthető, a magas adaléktartalomnak köszönhetően.) A műanyag gőzöket és a szintézis gázt a lepárlóegységben lehet leválasztani az igények szerinti frakciókra. A keletkezett szintézisgázt fűtőrendszer égőfejébe vezetve a rendszer fűtésére lehet használni. A rendszerindításhoz a felfűtéshez fölgázt, vagy könnyű fűtőolajat alkalmaznak. A szintézisgáz a legtisztább frakció a hőenergia termelésére. Az ábrán is jól látható, hogy a két folyamat anyagárama hermetikusan el van zárva egymástól, a fűtésből csak a hő adódik át a katalitikus depolimerizáció felé. A keletkezett füstgázok megfelelnek a legszigorúbb Európai és nemzetközi előírásoknak. A lepárló és tüzelőrendszer hőcserélőjében utóhasznosítják a maradék hőt. Az elkészült olajat lehet értékesíteni vagy energiatermelésre felhasználni. Energiaforrások költségeinek összehasonlítása (2011) 24. ábra. Energiaforrások, energiahordozók előállítási költségeinek összehasonlítása (2011) 15

Kérdések: 3.1. Hogyan alakul a világ éves kőolaj termelése 2008-tól 2012-ig a The Oil Drum kutatásai szerint? 3.2. Hogyan alakul a világ éves konvencionális és nem konvencionális kitermelése 2030-ig a The Oil Drum kutatásai szerint? 3.3. Mit ért konvencionális szénhidrogének fogalom alatt? (Nemzetközi Energia Ügynökség) 3.4. Mit ért nem konvencionális szénhidrogének fogalom alatt? (Nemzetközi Energia Ügynökség) 3.5. Ismertesse, mit ért az olajhomok fogalom alatt! 3.6. Ismertesse, mit ért az olajpala fogalom alatt! 3.7. Ismertesse, hogyan történik a felszínen levő olajhomok kitermelése, feldolgozása, az olaj kinyerése? Milyen környezeti hatásokkal jár ez? 3.8. Ismertesse, hogyan történik a felszínen levő olajpala kitermelése, feldolgozása, az olaj kinyerése? Milyen környezeti hatásokkal jár ez? 3.9. Ismertesse, hogyan történik a kőolaj kinyerése a felszín alatt található olajpala, olajhomok esetében? 3.10. Mit jelent a ciklikus gőz stimulációs (Cyclic Steam Stimulation - CSS) technológia? 3.11. Ismertesse a kanadai olajhomok kitermelés környezeti hatásait! 3.12. Honnan származik a palagáz? 3.13. Mely országokban vannak gáz pala lelőhelyek Európában? 3.14. Milyen technológiával oldják meg a mélyben levő, kis áteresztő képességű szerkezetek fellazítását, áttörését? Milyen környezeti hatásokkal jár ez? 3.15. Sorolja fel, milyen súlyos környezetterhelő módszereket alkalmaznak a kőolajpalából, olajhomok feldolgozása során! 3.16. Milyen alapanyagból mit állítanak elő a Fischer Tropsch szintézissel? 3.17. Mit nevezünk városi gáznak (szintézisgáznak)? 3.18. Milyen katalizátorokat alkalmaznak a Fischer Tropsch-eljárás során? 3.19. Milyen alapanyagokból lehet előállítani szintetikus kőolajszármazékokat (szintetikus benzin, szintetikus dízelolaj)? 3.20. Milyen alapanyagok felhasználására alkalmas a katalitikus krakkolás? 16