Az uránérc bányászata
|
|
- Emília Borbély
- 9 évvel ezelőtt
- Látták:
Átírás
1 Az uránérc bányászata Az urán különböző koncentrációban ugyan, de a világ minden pontján megtalálható. A talajban az átlagos koncentráció 3-5 gramm/tonna, és a tengerek és óceánok vizének minden köbméterében is található kb. 5 mg urán. A Földön vannak olyan helyek, ahol a koncentráció ennél az átlagos értéknél sokkal magasabb. Az uránérc kitermelése a földkéregből általában akkor kifizetődő, ha az uránkoncentráció a 0,5-5 g/kg értéket eléri. Az uránércet kétféleképpen is lehet bányászni: mélyműveléssel (leásnak a földbe és kiépítenek egy 'barlangrendszert'), vagy ha az uránban gazdag kőzet közel van a felszínhez, külszíni fejtéssel (ilyenkor az érctelephez úgy jutnak el, hogy egyszerűen 'elhordják' a talajt az érctelep fölül). Mélyművelésű és külszíni bánya A kibányászott urántartalmú kőzetet speciális 'malmokban' porrá őrlik, majd kénsavban feloldják, hogy kinyerhessék belőle az uránt. Először leszűrik a kőzet anyagát, majd az oldatból urán-oxid (U3O8) formájában csapatják ki az uránt. Ez az U3O8 sárgás színű por, amit pogácsákká sajtolnak (ezt hívják a szakzsargonban sárga pornak vagy sárga pogácsának (yellow cake)). A sárga por készítése
2 Az uránbányászat nem ér véget az érctelepek kimerülésével. A környezetet vissza kell állítani a bányászat előtti viszonyoknak megfelelően: ezt hívják rekultivációnak. A felső képen egy működő felszíni bánya látható, az alsón ugyanaz a terület, a bánya végleges bezárása után. Bányászat és rekultiváció Magyarországon a Mecsekben, Kővágószőlősön bányásztak uránércet, amelyből helyben el is készítették a 'sárga pogácsát'. Ezt szállították ki az akkori Szovjetunióba, ahol a további lépések lezajlottak, egészen a fűtőelem legyártásáig. Ezt a bányát 1997-ben bezárták: a bányászat nagyon nehéz földtani körülmények mellett, nagy mélységben és magas hőmérsékleten folyt, ráadásul több pénzbe került, mintha egy másik országtól vettünk volna uránércet. Kővágószőlős, 1100 m-el a felszín alatt (forrás: Kisvasutak Baráti Köre)
3 Konverzió A dúsításhoz az uránt gáz halmazállapotú vegyületté kell alakítani: ez az uránium-hexafluorid (UF6). "Beceneve" hex, ami németül boszorkányt jelent. Technológiai szempontból nehezen kezelhető anyag, mégis célszerű ezt használni: a ma alkalmazott dúsítási eljárások során olyan gázra van szükség, amelynek molekulatömege csak a molekulában lévő uránatom tömegétől függ. Ezért esett a választás a fluorra: annak csak egyféle izotópja létezik a természetben, így a hex csupán kétféle molekula keveréke: az egyik moláris tömege 349 g/mol (235U+6*19F, tömege:235+6*19=349), míg a másiké 352 g/mol, 238U+6*19F, tömege:238+6*19=352). Izotópdúsítás UF6 tartály egy dúsítóműben A természetes urán túlnyomórészt 238U-ból áll, és csak 0,72%-a a termikus neutronokkal "hasítható" 235U. Ezzel az izotópösszetétellel csak nehézvíz- vagy grafitmoderátor alkalmazásával valósítható meg az önfenntartó láncreakció: a könnyűvízben lévő hidrogén túl sok neutront nyel el. A megoldás az izotópdúsítás: meg kell növelni a 235-ös uránatomok részarányát a 238-as "rovására". A legelterjedtebb, könnyűvíz moderátoros atomerőművek üzemanyaga enyhén dúsított (2-4 % 235U) uránt tartalmaz. Az izotópdúsításra több módszert is kifejlesztettek, a két legelterjedtebb a gázdiffúziós és a gázcentrifugás eljárás. Közös jellemzőjük, hogy uránium-hexafluoridot használnak fel, és az uránizotópok közötti tömegkülönbséget használják ki. Mivel ezekkel a módszerekkel kis hatékonysággal válaszhatóak szét az izotópok (a relatíve kicsi, 0,86%-os tömegkülönbség miatt), ezért kaszkád rendszerben több egységet kapcsolnak egymás után.
4 Dúsítómű madártávlatból Fűtőelemgyártás A szükséges mértékben feldúsított uránt tartalmazó urán-hexafluoridot sorozatos lépések útján urán-dioxiddá alakítják, amit egy szinterezésnek hívott porkohászati eljárással pasztillákká préselnek. Ezeket a pasztillákat üzemanyagpálcákba töltik, a pálcákat pedig kazettákba szerelik.
5 Hatszögletű paksi kötegek fejrésze
6 Atomerőművi felhasználás A fűtőelem-kötegekből épül fel a reaktor aktív zónája, az a néhány köbméternyi térrész, ahol a láncreakció zajlik. A maghasadáskor felszabaduló energia nagyrészt hővé alakul. Ennek a hőnek egy részét alakítja át az atomerőmű villamos energiává. A Diablo Canyon atomerőmü a Csendes-óceán partján (Kalifornia, Egyesült Államok) A fűtőelem néhány (3-4) év alatt "kiég": hasadóanyag-tartalma lecsökken, és felszaporodnak benne a különböző magreakciók során keletkező hasadási termékek és transzurán magok. Ezért meghatározott időnként "át kell rakni" a zónát: ilyenkor veszik ki a kiégett, és teszik be a friss üzemanyagot. Zónaátrakás
Nukleáris üzemanyagciklus: az urán útja a bányától a reprocesszálásig
Nukleáris üzemanyagciklus: az urán útja a bányától a reprocesszálásig 2013. november 28-án került sor az Energetikai Szakkollégium Jendrassik György emlékfélévének nyolcadik előadására, melynek témája
Az urán életútja a föld mélyétől az aktív zónáig
Az urán életútja a föld mélyétől az aktív zónáig (Energetika 2.-házi dolgozat) Készítette: Adamecz Ágnes Beadás dátuma: 2012 05.02. 1 Tartalomjegyzék Bevezetés Uránkészleteink a Földön Urán kitermelés
Az uránpiac helyzete és kilátásai
Az uránpiac helyzete és kilátásai Dr. Pázmándi Tamás, Bodor Károly Magyar Tudományos Akadémia KFKI Atomenergia Kutatóintézet 1121, Budapest, Konkoly Thege Miklós út 29-33. A XXI. század első felében a
3. Előadás 2014. Molnár Zsuzsa Radanal
3. Előadás 2014 Molnár Zsuzsa Radanal Az atommagban rejlő energia alkalmazása MAGHASADÁS/FISSZIÓ hasadóanyag: 235 U, 239 Pu, 233 U 235 U + n term 137 Te + 97 Zr + 2n gyors + 200 MeV, 4 sec 137 I, 25 sec
Atomerőmű. Radioaktívhulladék-kezelés
Atomerőmű. Radioaktívhulladék-kezelés Lajos Máté lajos.mate@osski.hu OSSKI Bővített fokozatú sugárvédelmi tanfolyam 2016. október 13. Országos Közegészségügyi Központ (OKK) Országos Sugárbiológiai és Sugáregészségügyi
A szabályozott láncreakció PETRÓ MÁTÉ 12.C
A szabályozott láncreakció PETRÓ MÁTÉ 12.C Rövid vázlat: Történelmi áttekintés Az atomreaktor felépítése és működése Reaktortípusok Érdekességek: biztonság a világ atomenergia termelése Csernobil Kezdetek
A környezetgazdálkodás alapjai. III. évf. Földrajz BSC. Ballabás Gábor
A környezetgazdálkodás alapjai III. évf. Földrajz BSC. 3. óra Energiagazdálkodás a nukleáris és a fosszilis energiahordozók környezeti hatásai Ballabás Gábor Társadalom- és Gazdaságföldrajzi Tanszék bagi@ludens.elte.hu
Paks déli részén a 6-os számú főút és a Duna között. Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek.
www.atomeromu.hu Paks déli részén a 6-os számú főút és a Duna között Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek. Az urán 235-ös izotópját lassú neutronok
Első magreakciók. Targetmag
Magreakciók 7 N 14 17 8 7 N(, p) 14 O 17 8 O Első magreakciók p Targetmag 30 Al n P 27 13, 15. Megmaradási elvek: 1. a nukleonszám 2. a töltés megmaradását. 3. a spin, 4. a paritás, 5. az impulzus, 6.
Nukleáris üzemanyagciklus. Az urán útja a bányától a reprocesszálásig
Nukleáris üzemanyagciklus. Az urán útja a bányától a reprocesszálásig Osváth Szabolcs OSSKI előadás az Energetikai Szakkollégiumon 2013. XI. 28. (Cs); BME Q BF 12 1 Olvasnivalók, irodalomjegyzék Manson
A RADIOAKTÍV HULLADÉKKEZELÉS PROGRAMJA MAGYARORSZÁGON. Dr. Kereki Ferenc ügyvezető igazgató RHK Kft. 2015. 06. 02.
A RADIOAKTÍV HULLADÉKKEZELÉS PROGRAMJA MAGYARORSZÁGON Dr. Kereki Ferenc ügyvezető igazgató RHK Kft. 2015. 06. 02. Programjaink RHFT Püspökszilágy Paks KKÁT NRHT MKKB Kutatási helyszín Boda Kővágószőlős
Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba
Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba Felfedezése 1934 Fermi: transzurán izotóp előállítása neutron belövellésével 1938 Fermi: fizikai Nobel-díj 1938 Hahn:
Atomenergetikai alapismeretek
Atomenergetikai alapismeretek 5/2. előadás: Atomreaktorok Prof. Dr. Aszódi Attila Egyetemi tanár, BME Nukleáris Technikai Intézet Budapest, 2019. március 5. Hasadás, láncreakció U-235: termikus neutronok
Készítette: Magyar Norbert Környezettudomány Msc I. évfolyam
Készítette: Magyar Norbert Környezettudomány Msc I. évfolyam Vázlat Radioaktív hulladék fogalmának, csoportosítási lehetőségeinek, keletkezésének rövid áttekintése Nagy aktivitású radioaktív hulladék kezelése
Nukleáris energetika. Kérdések 2015 tavaszi félév
Nukleáris energetika. Kérdések 2015 tavaszi félév 1. Előadás: Alapismeretek energetikából, nukleáris fizikából NE-1.1. Soroljon fel energia mennyiségeket tartalmazó összefüggéseket a mechanikából, a hőtanból,
PTE Fizikai Intézet; Környezetfizika I. 10. Urántermelés, felhasználás fizikája; ; NB
10. Előadás: Urántermelés, felhasználás fizikája. 1. Uránérc bányászat 2. Uránérc fizikai kémiai feldolgozása, izotóp dúsítás, fűtőelem legyártása. 3. Uránbánya rekultiváció 4. Elektromos energiatermelés
ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont
ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont Az atomenergia-termelés jelenleg két fontos kérdést vet fel, amelyekre pozitív választ kell találni: az egyik a
A hazai uránium. Hamvas István. műszaki vezérigazgató-helyettes. Emlékülés Dr. Szalay Sándor tiszteletére Debrecen, 2009. szeptember 24.
1 Hamvas I.: Az atomenergia szerepe a jövő energiaellátásban 2009.02.03. A hazai uránium Hamvas István műszaki vezérigazgató-helyettes Emlékülés Dr. Szalay Sándor tiszteletére Debrecen, 2009. szeptember
Atomenergetika Erőművek felépítése
Atomenergetika Erőművek felépítése Atomenergetika Az Európai Uniós atomerőművek jellemzése az összes villamosenergia 35%-át adják ám 2015 és 2030 között elérik a tervezett élettartamuk végét Franciaország
MAGFIZIKA. Egy elem jellemzője, kémiai tulajdonságainak meghatározója a protonok száma, azaz a rendszám.
MAGFIZIKA Az atom áll: Z számú elektronból Z számú protonból A-Z számú neutronból A proton és a neutron közös neve nukleon. A - az atom tömegszáma. Z az atom rendszáma Az atomok atommagból és az azt körülvevő
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés).
Atomenergia Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés). Kutatók: vizsgálták az atomenergia felszabadításának
FIZIKA. Atommag fizika
Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2
Maghasadás, atomreaktorok
Maghasadás, atomreaktorok Magfizika Az urán életútja A Nap "második generációs" csillag, anyagának (és a bolygók, köztük a Föld anyagának) egy része egy másik csillagból származik. E csillag életének utolsó
A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!
1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket
Nagy aktivitású kutatás
B AF Nagy aktivitású kutatás Milyen hulladék elhelyezését kell megoldani? Az atomenergia alkalmazásának legismertebb és legjelentősebb területe a villamosenergia-termelés. A négy, egyenként 500 MW névleges
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
A Képes Géza Általános Iskola 7. és 8. osztályos tanulói rendhagyó fizika órán meglátogatták a Paksi Atomerőmű interaktív kamionját
A Képes Géza Általános Iskola 7. és 8. osztályos tanulói rendhagyó fizika órán meglátogatták a Paksi Atomerőmű interaktív kamionját Dr. Kemenes László az atomerőmű szakemberének tájékoztatója alapján választ
Maghasadás, láncreakció, magfúzió
Maghasadás, láncreakció, magfúzió Maghasadás 1938-ban hoztak létre először maghasadást úgy, hogy urán atommagokat bombáztak neutronokkal. Ekkor az urán két közepes méretű atommagra bomlott el, és újabb
Új típusú fűtőelemek bevezetésének megalapozását szolgáló kísérletek, 2015 & 2016
Új típusú fűtőelemek bevezetésének megalapozását szolgáló kísérletek, 2015 & 2016 Slonszki Emese, Nagy Attila TSO Szeminárium, OAH, 2016. június 7. A projekt célja Vízhűtésű termikus reaktorokhoz használható
2013. év szakmai útjai.
2013. év szakmai útjai. 2013-ban több szakmai utat szerveztünk. Kíváncsiak voltunk, hogy kis hazánkban hogyan termelnek áramot, ezért megnéztünk három teljesen más típusú erőművet. Az első a Mátrai hőerőmű,
KÉMIA FELVÉTELI DOLGOZAT
KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74
Maghasadás (fisszió)
http://www.etsy.com Maghasadás (fisszió) 1939. Hahn, Strassmann, Meitner neutronbesugárzásos kísérletei U magon új reakciótípus (maghasadás) Azóta U, Th, Pu (7 izotópja) hasadási sajátságait vizsgálták
Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam
Hevesy György Országos Kémiaverseny Kerületi forduló 2013. február 20. 8. évfolyam A feladatlap megoldásához kizárólag periódusos rendszert és elektronikus adatok tárolására nem alkalmas zsebszámológép
7. Hány órán keresztül világít egy hagyományos, 60 wattos villanykörte? a 450 óra b 600 óra c 1000 óra
Feladatsor a Föld napjára oszt:.. 1. Mi a villamos energia mértékegysége(lakossági szinten)? a MJ (MegaJoule) b kwh (kilówattóra) c kw (kilówatt) 2. Napelem mit állít elő közvetlenül? a Villamos energiát
A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0
A paksi atomerőmű Készítette: Szanyi Zoltán RJQ7J0 Történelmi áttekintés 1896 Rádióaktivitás felfedezése 1932 Neutron felfedezése magátalakulás vizsgálata 1934 Fermi mesterséges transzurán izotópot hozott
A NUKLEÁRIS ÜZEMANYAGCIKLUS LEZÁRÁSÁNAK LEHETŐSÉGEI
A NUKLEÁRIS ÜZEMANYAGCIKLUS LEZÁRÁSÁNAK LEHETŐSÉGEI Dr. Csom Gyula professor emeritus csom@reak.bme.hu Dr. Csom Gyula, BME NTI 35/ 1 Tartalom 1. A nukleáris üzemanyagciklusról 2. Termikus reaktoros atomerőműveket
Dél-dunántúli Környezetvédelmi és Természetvédelmi Felügyelőség
Dél-dunántúli Környezetvédelmi és Természetvédelmi Felügyelőség mint I. fokú hatóság KÖZLEMÉNY környezetvédelmi hatósági eljárás megindulásáról Az ügy tárgya: A MVM Paks II. Atomerőmű Fejlesztő Zrt. által
Az atommagtól a konnektorig
Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.
ÜZEMLÁTOGATÁS AZ MTA CSILLEBÉRCI TELEPHELYÉN
ÜZEMLÁTOGATÁS AZ MTA CSILLEBÉRCI TELEPHELYÉN 2016.09.27. 2016. szeptember 27-én délután az Energetikai Szakkollégium szervezésében a Magyar Tudományos Akadémia csillebérci telephelyére látogattunk el.
K-I-4.1. Mi a szerepe a kazánnak?
Környezeti fizika; Kérdések a 2013. október 24. írásbeli dolgozathoz K-I-1.1. Miért energetikai szemléletben tárgyalja a környezetfizika a környezetvédelem, környezetterhelés, környezetgazdálkodás, hulladékgazdálkodás
Atomenergia. Láncreakció, atomreaktorok, atombomba és ezek rövid története
Atomenergia Láncreakció, atomreaktorok, atombomba és ezek rövid története Előzmények Az energia - amiből korábban sosem volt elég - bőségesen itt van körülöttünk, csak meg kell találnunk hozzá a kulcsot.
Kémia azatomerőművekben. és azuránbányákban, és a hulladéktemetőkben, és...
Kémia azatomerőművekben és azuránbányákban, és a hulladéktemetőkben, és... Fűtőanyagciklus a hulladék sugároz amit lehet újra fel kell használni ami hasznos, ki kell nyerni bánya 235+238 U 300t 239+241
Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék
Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék Egy fizikai rendszer energiája alatt értjük azt a képességet, hogy ez a rendszer munkát képes végezni egy másik fizikai
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Vaskor Dóra Környezettan alapszakos hallgató. Témavezető: Kiss Ádám egyetemi tanár
Vaskor Dóra Környezettan alapszakos hallgató Témavezető: Kiss Ádám egyetemi tanár Háttérsugárzás Természet része Nagyrészt természetes eredetű (radon, kozmikus, Föld, táplálék) Mesterséges (leginkább orvosi
A leggyakrabban használt nukleáris és technológiai fogalmak. Kisokos
A leggyakrabban használt nukleáris és technológiai fogalmak Kisokos Aktív zóna: A reaktornak az a térfogata, melyben a láncreakció végbemegy. Alaperőmű: Folyamatosan, nagy kihasználtsággal üzemelő erőmű,
A Bodai Agyagkő Formáció telephelykutatási keretprogramjának engedélykérelme
Radioaktív Hulladékokat Kezelő Kft. A Bodai Agyagkő Formáció telephelykutatási keretprogramjának engedélykérelme Közérthető összefoglaló Készítette: RHK Kft. 2019 1. Bevezetés 1.1. A Radioaktív Hulladékokat
KÖZSÉGI VERSENY KÉMIÁBÓL március 3.
OKTATÁSI, TUDOMÁNYOS ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM SZERB KÉMIKUSOK EGYESÜLETE KÖZSÉGI VERSENY KÉMIÁBÓL 2018. március 3. TUDÁSFELMÉRŐ FELADATLAP A VII. OSZTÁLY SZÁMÁRA A tanuló jeligéje (három
Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll.
Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll. Bomláskor lágy - sugárzással stabil héliummá alakul át: 3 1 H 3 He 2 A trícium koncentrációját
a NAT /2013 nyilvántartási számú akkreditált státuszhoz
Nemzeti Akkreditáló Testület RÉSZLETEZÕ OKIRAT a NAT-1-1099/2013 nyilvántartási számú akkreditált státuszhoz A VOLUMIX Ipari, Kereskedelmi és Szolgáltató Kft. Mintavételi és emissziómérési csoport (7200
FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA
FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA 4. elıadás AZ ATOMREAKTOROK FIZIKAI ÉS TECHNIKAI ALAPJAI, ATOMERİMŐVEK 2009/2010. tanév ıszi féléve Dr. Csom Gyula professor emeritus TARTALOM 1. Magfizikai alapok
Nukleáris hulladékkezelés. környezetvédelem
Nukleáris hulladékkezelés http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern/nukleáris környezetvédelem A felhasználási terület meghatározza - a radioaktív izotópok fajtáját, - mennyiségét és -
A nukleáris energiatermelés helyzete és szerepe a jelenkori társadalomban
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR A nukleáris energiatermelés helyzete és szerepe a jelenkori társadalomban SZAKDOLGOZAT TÉMAVEZETŐ Dr. Homonnay Zoltán egyetemi tanár ELTE TTK Kémia
1. feladat Maximális pontszám: 5. 2. feladat Maximális pontszám: 8. 3. feladat Maximális pontszám: 7. 4. feladat Maximális pontszám: 9
1. feladat Maximális pontszám: 5 Mennyi az egyes komponensek parciális nyomása a földből feltörő 202 000 Pa össznyomású földgázban, ha annak térfogatszázalékos összetétele a következő: φ(ch 4 ) = 94,7;
Ipari technológiák, című tananyag
Ipari technológiák, című tananyag Interdiszciplináris és komplex megközelítésű digitális tananyag a természettudományi képzési terület mesterszakjaihoz Javasolt szak neve: Környezettudományi MSc; Javasolt
Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO)
Sugárvédelem nukleáris létesítményekben Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Tartalom Ki mit nevez nukleárisnak? Hasadóanyagok Neutronos láncreakció, neutronsugárzás Felaktiválódás,
A radioaktív hulladékok kezelésének kérdései
A radioaktív hulladékok kezelésének kérdései Az RHK Kft. programjai DR. KEREKI FERENC ÜGYVEZETŐ IGAZGATÓ RADIOAKTÍV HULLADÉKOKAT KEZELŐ KFT. Feladat Az Atomenergiáról szóló 1996. évi CXVI. Tv. határozza
ENERGIATERMELÉS 8. NUKLEÁRIS ENERGIATERMELÉS
ENERGIATERMELÉS 8. NUKLEÁRIS ENERGIATERMELÉS VILÁGUNK ATOMOS FELÉPÍTÉSŰ! ATOM NUKLEONOK pozitív atommag, r~10-15 m, protonok és neutronok, negatív elektronfelhő atomsugár~10-10 m, a tömeg az atom kiterjedésének
Az atomerőművek technikai fejlődése, és generációik
Az atomerőművek technikai fejlődése, és generációik Ó BUDAI EGYETEM ALBA REG I A M ŰSZAKI KAR G ARAI G ÉZA SZABADEGYETEM M ÁSO DI K ÉVFOLYAM 2015. O KTÓBER 7. DR. HABI L. T ÓT H M I HÁLY P ROF. E M E RI
Zárt üzemanyagciklus. Nukleáris üzemanyagciklus: létesítmények, technológiák, biztonság. Urántartalékok. Zárt üzemanyagciklus
Nukleáris üzemanyagciklus: létesítmények, technológiák, biztonság Korszerű nukleáris energiatermelés Dr. Yamaji Bogdán Budapesti Műszaki és Gazdaságtudományi Egyetem Nukleáris Technikai Intézet tisztított
Nukleáris energia. Készletek, kutatás, kitermelés. Bárdossy György
1 Nukleáris energia Készletek, kutatás, kitermelés Bárdossy György A ma működő atomerőművek energia forrásául az uránérc szolgál. A tórium is alkalmas atomenergia előállítására, de gazdasági okokból ma
Magyarországi nukleáris reaktorok
Tematika 1. Az atommagfizika elemei 2. Magsugárzások detektálása és detektorai 3. A nukleáris fizika története, a nukleáris energetika születése 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
Innovációs leírás. Hulladék-átalakító energiatermelő reaktor
Innovációs leírás Hulladék-átalakító energiatermelő reaktor 0 Hulladék-átalakító energiatermelő reaktor Innováció kategóriája Az innováció rövid leírása Elérhető megtakarítás %-ban Technológia költsége
I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK
I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I.2. Konverziók Geokémiai vizsgálatok során gyakran kényszerülünk arra, hogy különböző kémiai koncentrációegységben megadott adatokat hasonlítsunk össze vagy alakítsuk
ö ö ű ö ö ű ű ö ö ű ű ű ö ö ö ö ö ű ű ű ö ö ű ű ű ö ű ö ö ö ű ű Ú ö ö ö ö ö ö ö ö Ú ö ö ű Ú ö ö Ú Ú Ú Ú ö Ú Ú ö ö Ú Ú ö ö Ú ö Ó ö ö ö ű ö ö Ú Ú Ú ű ö ö ö ö ö ö ö Ó ö ű ö ű Ü ö ű ö Ú ű ö Ú ű ö ö ö Ú Ú ű
ö ü ó Ö ü ó ü Ü ó ó ó ó ö ö ö ü ó ü ű ü ó Ö ü ó ü ó ó ó ö ó ó ó ó ó ó ö ó ó ó ü ó ó ó ö ü ó ü ó ó ó Á ü ű ó ó ü Ü ö ö ü ó ó Ó ü ó ü ö ü ó ó ö ó ó ö ó ó ó ó ü ó ö ö ó ó Ó ü ó ü ó ó ó ó ó ó ö ö ó ó ó ó ö
Í Á Ó ö ő Ü Ö ö ü ő ö ö ó ő ő ő ő Á ó ü ö ö ö ő ő ú ő ő ü ü ó ó ö ü ő ő ö ő ő ö ü ó ö ö ö ú ö ö ő ő ö ő ő ö ő ő ó ő ő ő ő ü ö ű ó ő ő ó ő ü ő ő ő ö ő ő ö ő ű ő ő ö ő ő ő ö ő ő ó ö ő ő ő ő ő ő ő ő ő ő ő
Á Ú Ö É É É É Í Ü Ü Ó É ü ó ű ó ú Ü Ő Á Ü ü ö ú í ó í ó ó ó í ó í ó ö ü ó ű ö ű ó ü ü ű í ü ó ö í ö ó ó ó ö ó ö Ü ü ö ö ó í ű ü í ü í í ö ü í ö í ű ú ö í í ű í ó ö ó ó ö ű ö í í ű ó ö í í ü ö ű ö ö ö í
ö Ö ő ü ú ő ü ő ő ő Í ü ő í ő í ő ő Á ő ő ő ú ü ö ö ő Í í ú ő ő ó ő ö í ő ő ő ü ő ő ő ő ö ő ö ú ű ö Ö ő ü Ö ű ö ó í ú í í ö í ü ő ő ő í ő ü ö ő ö ő ű ő ő ő í ó ö ü ő ő ó í ű ö ú ő ú ő ü ö ö ö ó ü ö ő ó
Á ű Ö ő ü ő ú Ú ő ó ó ó Ő ő ő ü ő ő ó ő ő ő ű ő ó ó ó ü ü ü Ó ó ő ó ő ó ó ó ó ó ő ó ő ó ó ó ü Ö ó ú ó ó ó ő ü ü ó ő ó ü ó ő ó ó ő ó ó ü ü ű ó ó ü ő ó ó ó ó Ö ü ó ű ű ő ú Ö ő ő ü ő ü ó ü ó ü ü ó ó ü ü ü
Ó É É ő ő ő ő ő ő ő ő ő ő É É ő É Ü É É Ö É ű ő ő Ú Ú Ú É ő ő ő ő Ú Ú Ú ő ő ű ű ő É ű ő É Ó Ú É Ú É É ő ő É ő Ü ő ő ő ő ő ő ű ű ő ű Ü ű Ü ő ű ő ő ő Ó É ű ű ő ő É Ü É É ő ű ű É ű Ú É Ú É É ő ő ő ő Ö É Ú
Á Ő É ö í ó ö ö í í í ö ö ü ú ü í ö í í í ö É í í í Í í Í í í ö ü Í ö ü ü í í ú ö ö ü ö ö í í ó ó Á ó ü í í ú ö ö ü ö ö í ó Í í ö ó í í í í ú ö ű í í ö í ó í ó ó ó ö ö ö ű ö í í ö í Á í ö í í Á ó í ú í
Á É Ű ő É ő ő ő ő ő ü ő ő ő ő ű Í ő ö ő ő ű ú ő ü ú ö Ü ú ő ö ú Ó ő ö ő É ö ő ű ű ő ú ő ő ő ő ő ü ő ő ü Á Í ő ő ú ü ü ö ö ő ú ő ü ő ő ü ü ő ő ö ö ő ő ő ü ú ő ő ü ű ö ő ö ő ü ő ü ö ö ö ő ü ú ő ű ü ő ö ö
Á Á Ő ö ö Ö ö ö ó ó ö ö Á ö í ö ű ű í ű ú ű Ő Ű í ö ó í ű ö í ö ö ű ó í ü ó ű í ü í ó ó ö ű í ű ö ó ö ü ö ű í ű ö ó ö ó ö É ó ö í ö ü ö ü ó ű í ö í ó ó ö ö ü ó ü í ö ü ö í ö ü ö í ű í í ö ü ű ó í ü ű ö
Í Á ó É ó É Á Ü É Á Á Ő É É Ü É Á É É Á ö É É Ő Í Ó Ó Á Ú Á Á Á ö ö ó ó ö ó Ó Ó Ú Ó ó Ö ö Ö ő Á ő ű Ü ü ő ó Ü Ö ö Ő É É Ó ö ó Ö Ü ó ő ö ő Ó ű Ü Ó Ú ó ó ő Ó Ó ö Ő Ó Ó ö ő ó ő ó ö Ö Ö ő ó Ö ű Ü Ó Ö Ú Í ő
Á Á Ó É ö ö Ö ö ő ú ő ő ő ő É ő ö úő ő ü ő ö ö ő ö ő ő ő ő ő ö ú ú ő ő ú ő ú ő ő ő ő ö ú Ó É Ű Á ö ű ő ö ő ő ú ő ö ö ö ú ü ő ü ö ú ő ú ö ő ö ő ő ő ü ö ő ű ú ő ő ő ö ő ö ő ö ő ö ü ö Á ü ú ő ö ő ö ö ü ü
ő ö ó ő ő ő ü ó ü ő Ü ó ő ő ó ó ő ő ő ö ő ő ó ó ő ő ö ö ü ó ő ü ü ó ő ő Ó ő ü ó ó ö ö ö ő ő ó ő ő Ó ö ó ó ő ő Ó ó ő ő Ó ö ó ó ő ő ű ő ő Ó ó ő ő ü ő ő ó ő ő Ó ö ó ó ő ó ó ó ö ó ó ő Á Á ó ü ö ö ö ő ő ő ő
Ő Ú Ú Á Á Ő Ő ú ú ú ű ú Á Á Á ú ú Á Ö ű Ú Ú ú Ú ű ú ú ú ú ú Ö ú ú ú ú ú Á ú Ú ú Á Ú Ö Ú Á ú Ú ű ö Ő Ú Ű ü Ü ű Ö Á ú Ő Ú ú ö Á Ú ú Ú ú ú ú ú Á Ü Á ú ÜÖ Ü ú Ő Á ú Ű Ú Á Á Ú Ú Á Á Ú ú ö Ú ú Ú Á ű Ü ú ú Ú
ö Ő Ö ö Ö Á ö ö ö ö Ö ö Ó ű Á Ö ö Á Á ö Ó ű Í ö ö Á ö ö ö ö Ö ú ö Ó ű ö Ö ú ö ú ű ú ö Ó ű ö ö ö ö űö ö ö Ö ö ú ö ö ö ö Í ö Ő ö ö ű ű ö ö ö ö Ő ö Ö ú ú ö ö Ö Í ö ö ö Ö ö ű ö ű ö ö ö ű ö ö ö ö ö ö ö ö Ö
í ó Í ó Í Á í ó ú í ó ü ő ú ő ó ü ó í ü ő ő Ú í ó í í ó ő ű í ú ő í í ó ő í ó í ó ű ő í ő ő ő í ü í ó í ü ó í ó É ő ó Í ő í ő ő í Á í ő ú ő ó ó ő ő ő í ő í ú í ó ó í ő í ó ó í í ő ú ő Á ó ő ú í Á í ő ú
ú ű ú ü ü ü ü ü ü ű ü ű ü ü ű ú ü ü Í ü ű ü Ó ű ű ű Í ü ű ü ü ü ű É Í Ö Í É Í Í Í ű ű ű ú ü Ö ú ű ü ű ű ű ű É ú ű ü ü ü Á Ő ú ú Á ú ű É Í Ő Á Á É Ő Í É Í Ú É É Í Í Ö É Ú É ü ű ú ú ü ú ü ü Í ú Ú ú ü ü ú
Ő Ö ü ü ü ó Á ó ó ó Ü í í ó Ö í ü ó í í ü ü ü ü í ó ü ü ó ó ú ü ú ü í ó ú ü ü í ü ú ó í ó í ó Ö í ó í ó í í ó í ó ü ú ó ü ü ú ú ó ü ó í ó ü ó í í ó í ó ó ü ü ü ó í Ú ó í Ú ű Á í ü ó í í ü ó ó Á ü ó í ü
Á É Ö Á É Ü É í ü ü ö ü í í í ö ö í ö í ü ü ű ö ö í í ü Ö Á Á í ö ö í ű ö í ö í ü í Üö ö í í í É í í ü ö É Ü ö í É ü ö í í í ö ö í ö ö ö ö í ü ö í ö ö ö ü í ö í ü ö ü ö í í ö ö ö í ö ö ö Ö ü í ö ö í ü
Ó Ö ö Ö ó ó ö Ö ó ó ó ó ó ö ö ö ö ó ö ö ö ö ó ú ö ö ö ó ú ö ö ú ú ö ö ó ö ó ö ú ö ö ö ö ó ú ö ö ö ó ú ó ö ö ú ú ö ö ó ö ö ö ó ú ö ö ö ó ú ö ö ö ó ú ó ó ó ú ö ó ö ö ó ö ö ö ó ú ó ó ó Í ó ó Á ó ö ó ö ó ú
Ú ő Ü ő ő ű ő ő ő Ú ő ű Ú Ü ű ű ő ő ő ő ő ő ő ő ő ő ű ű ő Ú Ú Ú Ú Ó Ó ő ő Ó Ó Ü Ú Ú Ú Ú ű Ü Ö Ú Ú Ü Ó Ú Ü Ő Ú Ú ő Ú Ü Ö Ú ő ő Ö ő ő ű Ü ő ő ő Ö ő ő ő ű ő ő Ö ő ő ő ő Ó ő ő ő Ü ő ő Ö ő Ú Ó ő ő ő Ü ő Ó ő
Á Á É ü ü Í ö ú ú ö ö ö ö ű Í ö ü ö ö ö ú ö ú ö ü ö É ö ü ű ö ű ü ö ű ö ö ű ö ö ü ö ö ű ö ö ö ö ú ö ö ü ü ö ö Í Í ö ü ö ö ö ö ö ö ű ö ű ö ö ö ü ű ö ö ö ö úö ö ö Í ö ö Í ü ö ö ú ö Í ú ú ü ú ö ü ü ü ü ö
Ü ú ű ű ö í ö ú ű Í í í ű ö Á ú ű Í ö í í í ö ú úö ú ű ű ű ö ö í ö í ű ö ö ü ú ü ö ü ö ú ü ö ü ú ű ö ű ö ö ü ú ü ö ü ö ú ü ö ü ú ű Á í íí í Í íí ú ú Í Í í íí í ú ű Í Í í Á í í íí í Íí í í íí í í í ö ű
Á Ö É Ö Á Ü ö ü ö Ö ü ü ó ó ó ö Á ó ö ö ö Ö ü ü í ö ü ü ü ü ö í ó ü ó Í ö ü ö ó ü í í ú ó ó ó ó ö ó í ó ó ó ö Á ó ö í ó ö ó ö ó ö ö Ö ó Á ü í ó ű Ó ü ó ó ó ó ó ó ó ó ó í ó ó í í ó Á í í ó Ü ö í Ü Ü ó ó
ő ő ö ő ö ő Ö ö ő ő ő ő ő ö ő ő ó ó ó ó ö ö Ő ő ó ö ő ű ő ü ú ő ő ő ó ő ö ű ű ő ó ő ű ő ő ő ő ő ö ű Ó Ú ű ő ü ú ő ő ö ő ó ő ű ő ö ó ö ö ő ű ű ő ó ő ü ó ó ü ó ó ö ű ő ű ö ó ő ö ü ö ő ő ű ű ő ő ő ö ó ó ő
É É Á ő ó Á ó ö ó ú ó ü ö ö ö ö ó ü ö ö ó ö ö ó ű ö ó ó ü ó ú ó ö ú ö ó ö ó ö ö ó ó ó ő ö ú ü ü ü ö ö ü ó ö ü ö ö ö ö ö ó ü ó ö ö ö ó ő ó ű ő Ö ó ü Í ú ó ó ó ó ú ö ó ö ó ö ö Ó ú Ü ó ö ó ú ö Ú ó Ó Á ó É
A transzmutáció témaköréhez kapcsolódó fontosabb fogalmak és szakkifejezések magyarázata
A transzmutáció témaköréhez kapcsolódó fontosabb fogalmak és szakkifejezések magyarázata Aktinidák Dedikált transzmutációs berendezés A 89-es rendszámú aktínium és az annál nagyobb rendszámú elemek. Legismertebb
Ipar, közlekedés környezetgazdálkodása/2 BÁNYÁSZAT. Feltárás Kitermelés Előkészítés Környezeti hatás, rekultiváció 8:06
Ipar, közlekedés környezetgazdálkodása/2 BÁNYÁSZAT Feltárás Kitermelés Előkészítés Környezeti hatás, rekultiváció Elemek előfordulása a földkéregben O: 50% Si: 26% Al: 8% H: 1% C: 0,1% Cl: 0,1% Toxikus
Lakossági Nukleáris Enciklopédia
Lakossági Nukleáris Enciklopédia verzió: 3.0 2018.01.04. OAH lakossági nukleáris enciklopédia A kifejezések és magyarázatuk feltüntetése az alábbi szerkezetet követi: magyar kifejezés, magyar rövidítés
Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás
Atomreaktorok üzemtana Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorban és környezetében keletkező sugárzástípusok és azok forrásai Milyen típusú sugárzások keletkeznek? Melyik ellen milyen
7. osztály Hevesy verseny, megyei forduló, 2003.
Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető legyen! A feladatok megoldásához használhatod a periódusos
Környezetbarát elektromos energia az atomerőműből. Pécsi Zsolt Paks, november 24.
Környezetbarát elektromos energia az atomerőműből Pécsi Zsolt Paks, 2011. november 24. Jövőképünk, környezetpolitikánk A Paksi Atomerőmű az elkövetkezendő évekre célul tűzte ki, hogy az erőműben a nukleáris
Aktív zóna: A reaktornak az a térfogata, melyben a láncreakció végbemegy.
Nukleáris fogalomtár A leggyakrabban használt nukleáris fogalmak Az alábbi összeállítás az atomenergetikában, illetve a róla szóló hírekben leggyakrabban szereplő szakkifejezéseket kívánja meghatározni.
1. Nyersanyagok bányászata, környezeti hatásaik.
1. Nyersanyagok bányászata, környezeti hatásaik. Az ásványi nyersanyagok bányászata a Föld kérgéből a hasznosítható ásványi anyagok kutatásával, feltárásával, kitermelésével, minőségjavításával (előkészítésével,