Nukleáris üzemanyagciklus: az urán útja a bányától a reprocesszálásig
|
|
- Jázmin Vargané
- 6 évvel ezelőtt
- Látták:
Átírás
1 Nukleáris üzemanyagciklus: az urán útja a bányától a reprocesszálásig november 28-án került sor az Energetikai Szakkollégium Jendrassik György emlékfélévének nyolcadik előadására, melynek témája a nukleáris üzemanyagciklus volt. Az előadást Osváth Szabolcs, az Országos Sugáregészségügyi és Sugárbiológiai Kutatóintézet radiokémikusa, korábban a BME NTI dozimetrikusa tartotta. Az üzemanyagciklus rövid bemutatása A nukleáris üzemanyagciklus az uránérc bányászatával indul. A kitermelt ércet ezt követően fel kell dolgozni, hogy kinyerhessük belőle az uránt. Az uránt kémiai szempontból átalakítják (konverzió), ezt a dúsítás művelete követi. Ekkor már csak a fűtőelemek elkészítése van hátra, és az anyag készen áll az energetikai felhasználásra. A reaktorból kikerülve a kiégett fűtőelemeket pihentetik és azután reprocesszálhatók, de ma még túlnyomó részben tárolóba kerülnek. Az előadó megemlítette, hogy mivel az urán nagy felezési idővel ugyan, de bomlik, 1. ábra A nukleáris üzemanyagciklus 1
2 ezért a Föld keletkezése óta a mennyisége folyamatosan csökken. Az általunk felhasználható 235-ös tömegszámú urán gyorsabban bomlik, mint a 238-as tömegszámú izotóp, tehát szerencsénk van, hogy a civilizációnk most használja fel ezt az energiát. Ha csak milliárd évekkel később fedeztük volna fel a maghasadást, lehet, hogy meg sem érte volna a dúsítás és a huszadik század történelme másképp alakult volna. Az uránércek és bányászatuk Az uránnak több mint 400 féle ércét tartják számon, ezek közül azonban a legdúsabbak urántartalma sem haladja meg a 3-4%-ot. Jellemzően azonban 1% urántartalom felett éri meg kitermelni ezeket, a nukleáris üzemanyag nagy energiasűrűsége miatt. Az uránkészletek eloszlása a Földön igen egyenlőtlen, a jelenleg gazdaságosan kitermelhető készletek több mint kétharmad részét három ország, Ausztrália, Kanada és Kazahsztán birtokolja. Ennek megfelelően a bányászat is igen egyenlőtlen, az előbb 2. ábra A világ jelenleg ismert uránkészleteinek eloszlása említett három ország felelős az kitermelés 60 százalékáért. A készletek csoportosítására mindenhol saját értékelő rendszert vezettek be a helyi vállalatok és hivatalok, ezért ezek nehezen összehasonlíthatók. Általánosságban elmondható, hogy a készleteket főként két szempont szerint értékelik. Az egyik a kitermelés költsége, a másik pedig a lelőhely felkutatottsága, azaz hogy már teljesen feltárt-e, jelzett, esetleg csak feltételezett-e. Alapvetően három módszer használatos az uránércek bányászatára. A kitermelés lehetséges külszíni fejtéssel, mélyművelésű bányával, esetleg az ún. in situ leaching (helyben kioldás) technológiával. A külszíni fejtéssel a felszínközeli készletek termelhetők ki gazdaságosan, ezek azonban mostanra kezdenek kimerülni, így ez a technológia kezd háttérbe szorulni. A mélyebben fekvő ércek bányászatához használatos a mélyművelés, melynek során egy függőleges aknából indítunk vízszintes tárnákat, ezekben folyik a bányászat. A kioldásos (in situ leaching) technológia alkalmazásának feltétele, hogy az urántartalmú kőzet erősen porózus legyen, alatta és fölötte pedig vízzáró réteg helyezkedjen el. Az eljárás lényege, hogy a porózus rétegbe kénsavat vagy nátriumkarbonát oldatot sajtolnak. Ezek anionjai figyelemreméltóan stabil komplexeket képeznek az oxidált uránnal, amely így vízoldhatóvá válik, és a rétegből való szivattyúzással kinyerhető. Az eljárást a 3. ábra szemlélteti. 2
3 3. ábra Az "in situ leaching" technológia Az eljárás azonban környezeti aggályokat vet fel, hiszen tömény vegyszereket juttatunk a talajba, amelyek hatása egyértelműen káros. A technológia ennek ellenére terjedőben van, mert rendkívül kényelmes és egyszerű, a kitermelésben való részesedése a külszíni fejtés csökkenésével párhuzamosan nő. Az uránérc feldolgozása Az érc kitermelését követően ki kell nyernünk belőle az urántartalmát. Hogy a kezelést megkönnyítsük, az érc először aprításra, őrlésre kerül, majd pörkölik. Belőle a már ismert kénsav (H2SO4)-oldattal, vagy nátrium-karbonát (Na2CO3)-oldattal nyerhető ki az urán, mert az uranil-ion a karbonát-ionnal, illetve a szulfátionnal vízoldható komplexet képez. A karbonátos technológiával jobb hatásfokot érhetünk el, de lassabb a reakció, a szulfátos eljárás gyorsabb, de rosszabb a hatékonysága. Ezt követően anioncserélőket alkalmazunk, hogy megtisztítsuk az urántartalmú oldatot, majd lúgosítással az uránt kicsaphatjuk az oldatból. A keletkező csapadék jellegzetes sárga színű, innen kapta a sárga pogácsa elnevezést. A sárga csapadékot ezután víztelenítjük, ekkor az anyag urántartalma már megközelítőleg ábra A "sárga pogácsa"
4 90%, így a hasznos anyag tartalma elég nagy ahhoz, hogy megérje elszállítani. Az érc feldolgozása során nagy mennyiségű melléktermék, meddő keletkezik. Ebben rendkívül sokféle elem megtalálható, köztük az urán bomlási sorában megtalálható, szintén sugárzó izotópok. A kibányászott aktivitás 5/7-ed része a meddőhányóra kerül. Ez eddig a föld alatt volt, nem okozott problémát, de most kijuttattuk a felszínre, ráadásul bizonyos elemeit vízoldhatóvá tettük. Ennek megfelelően kezelése igen nagy körültekintést igényel, tehát fontos a felhagyott bányák meddőjének remediációja, rekultivációja. Erre jó példa a mecseki uránbányászat megszűntével az ottani rekultiváció, mely az eddigi legnagyobb környezetvédelmi beruházása hazánknak. Konverzió A sárga pogácsa anyaga jellemzően nátrium-diuranát Na2U2O7, vagy ammónium diuranát ((NH4)2U2O7). Ebből kell a dúsításhoz szükséges UF6-gázt előállítanunk. Az első lépés a salétromsavas oldás és az oldat tisztítása. Újbóli kicsapást követően hevítéssel urán-trioxidot nyerhetünk, ebből pedig redukcióval urán-dioxidot. Az urán-dioxid már hidrogén-fluoriddal is fluorozható, így urán-tetrafluoridot kapunk. Erre a vegyületre jellemző, hogy nem illékony, mint a hexaoxid, melyet további fluorozással, elemi fluor segítségével kapunk. A fluor igen agresszív, erősen oxidáló anyag, hiszen az elektronegativitása a legnagyobb az összes elem közül. Tárolása éppen ezért problémás, a helyszínen, elektrolízissel állítják elő. Azért vagyunk kénytelenek mégis alkalmazni, mert a dúsításhoz gáznemű vegyületre van szükség, melyben a másik (nem U) elemnek csak egy izotópja fordul elő (több jelentősen rontaná az elválasztás hatásfokát, mely már így is igen 5. ábra Az urán-tetrafluorid só alakjában szerény). Ezeknek a paramétereknek a fluor felel meg. Dúsítás A dúsítás lényege, hogy az urán két jelenlévő izotópjának egymáshoz viszonyított arányát megváltoztassuk, és a 235-ös tömegszámúét megnöveljük. Mivel a két uránizotópkémiai viselkedése teljesen egyezik, ezért az elválasztás csakis fizikai úton lehetséges. A tömegkülönbség nagyon csekély az atomk tömegéhez mérve, így az elválasztás hatékonysága is. Több lépést alkalmazva azonban a 235 U atom aránya mértani sor szerint növekszik. 4
5 Manapság jellemzően két eljárás használatos az izotópdúsításhoz. Az első a gázdiffúziós, mely azon alapszik, hogy egy vékony membránon a kisebb tömegű, 235-ös izotópot tartalmazó UF6- molekula gyorsabban diffundál át, így a túloldalon a gázelegyünk dúsabb lesz. Jelenleg a technológia leáldozóban van, egyre kevésbé alkalmazzák, mert a másik technológiával gyorsabb, olcsóbb és nagyobb léptékű szeparáció érhető el. 6. ábra A gázdiffúziós eljárás Ez az eljárás a gázcentrifugás elválasztás, melynek lényege, hogy a nagyobb tömegű, 238-as tömegszámú uránatomot tartalmazó UF6-molekula tehetetlensége is nagyobb, így a gázt igen gyorsan pörgetve a centrifuga peremén a 238-as izotóp dúsul fel, míg középről kivezetve a gázt egy 235-ös izotópban dúsabb elegyet kapunk. A dúsítási eljárás rendkívül energiaigényes, sorozatos hűtést és melegítést igényel, illetve a centrifugákat is meg kell hajtanunk. A centrifugák nagyon érzékenyek a rezgésekre, a magas fordulatszám miatt kis kilengés hatására is széteshetnek. A jövő mégis ezé a technológiáé, ma már csak ilyen telepek építése folyik. 7. ábra A gázcentrifugás eljárás Fűtőelemgyártás A reaktorba számtalan szerkezeti anyag szükséges, a legfontosabb azonban maga az üzemanyag pasztilla, mely egyben az első mérnöki gátat is alkotja. A pasztilla anyagának rendkívüli termikus és sugárterhelést kell elviselnie, hiszen az üzemanyag hőmérséklete akár az 1500 C-ot is meghaladhatja, és egy pasztilla éveket tölt a reaktorban. A kiégés még a kivételkor sem teljes, a pálcák cseréje azért szükséges, mert a hasadás során gáznemű hasadási termékek is keletkeznek, melyek szétfeszítik az üzemanyagmátrixot, és repedéseket hoznak létre az anyagban. Emiatt a pasztillák megdagadhatnak üzem közben, ez pedig pálcalyukadást 8. ábra A szilárd üzemanyagban megjelenő repedések 5
6 okozhat, vagy a pálcaburkolat túl magas hőmérséklete esetén elindulhat a Zr és víz közötti reakció, amely hidrogént termel, és robbanáshoz vezethet. Emiatt jelenleg is kutatások folynak más üzemanyagokkal, urán-karbid, fém urán és folyékony sóolvadék üzemanyag használata is felmerült. Az üzemanyagok elsöprő része azonban ma még UO2-bázisú. Ennek gyártási folyamata során az urán-oxidot porkohászati eljárással pasztillákká alakítják, majd ezeket szinterezik. A kész pasztillákat ezt követően pálcákba teszik, majd a pálcákat összerendezve kapjuk a kész üzemanyagkazettát, amely lehet burkolattal ellátott, vagy burkolat nélküli. A kiégett fűtőelemek kezelése A reaktorból kivett kazettákat kiégett üzemanyagnak tekintjük, holott a 235 U tartalmuk még mindig meghaladja a 0,7%-nyi természetest (min 1% körüli, de lehet magasabb is). A pálcák a kivételt követően még mindig termelnek hőt, illetve erősen gamma-sugárzók. Emiatt kell víz alatt hűteni őket. A transzurán elemeknek (és a hasadási termékeknek) a tömege azonban kicsiny, így eltávolításukkal elérhető lenne, hogy újrahasznosítsuk a használható anyagokat (U-235, U-238, keletkezett Pu-239). Emiatt vetődött fel a reprocesszálás ötlete, melynek során elválaszthatjuk a sugárzó anyagokat az urántól és a plutóniumtól. A proliferációs problémák 9. ábra A kiégett kazetták pihentetése miatt az USA elvetette az eljárás alkalmazását, veszélyesnek ítélték, hogy a folyamat részeként tiszta Pu is keletkezik, mely rossz kezekbe jutva nukleáris fegyverként alkalmazható. Emiatt úgy döntöttek, hogy biztonságosabb a hulladékokat lerakni, így az nem használható fel fegyverként. Franciaország azonban úgy döntött, hogy alkalmazza a technológiát, ma is működik az országban reprocesszáló mű. Reprocesszálás A jelenleg alkalmazott eljárás neve PUREX. Az eljárás kémiai reakciókon és extrakción alapul. Az üzemanyagot salétromsavban feloldják, ezzel az urán és a plutónium is a vizes fázisba kerül. Ezt a vizes fázist érintkezésbe hozzák olyan szerves oldószerrel, amely tributil-foszfátot (TBP) tartalmaz. Ez az anyag a Pu és az U kationjaival komplexet képez, és amfipatikus tulajdonsága folytán azokat apoláris oldószerben oldódóvá teszi (a víz poláris), így extrakcióval ezek a komplexek átvihetők a vízzel nem elegyedő szerves oldószerbe, a többi anyag pedig a vizes fázisban marad. 6
7 10. ábra A PUREX eljárás sematikus rajza Az előadó megjegyezte, hogy a két elemen kívül kis mértékben a Np is átjut a szerves fázisba, amely viszont reaktorméreg, így ugyanazon üzemanyag többszöri reprocesszálása sajnos nem célszerű. A szerves oldószert ezután egy tiszta vizes fázissal hozzák érintkezésbe, és a vizes fázisba az egyensúlyi reakció révén átkerülő Pu-atomokat szelektíven, vas(ii)-ionok segítségével redukáljuk, ezzel folyamatosan elvonva a reakció termékét. Ez eltolja az egyensúlyt a Pu további vizes oldódása felé, elegendő idő elteltével az összes Pu a vizes fázisba kerül. Egy következő lépéssel pedig az U-tartalmat nyerhetjük ki hasonló technikával. A hasadási termékeket a vizes oldatból sóként kicsaphatjuk, és üvegbe foglalva lényegében ártalmatlaníthatjuk őket, alkalmasak a lerakásra. A PUREX eljárás során az üzemanyagból az U és a Pu 99,9%-át visszanyerhetjük, de rengeteg folyékony és gáznemű radioaktív hulladék keletkezik, illetve további kezelést igényelnek az üvegbe foglalt hasadási termékek. A nukleáris ipar jövőbeni tervei között szerepel a mostani nyílttal szemben a zárt üzemanyagciklus megvalósítása. Ehhez új reaktortípusok kifejlesztése is szükséges, ezek a projektek jelenleg is zajlanak, széles nemzetközi összefogással. Várhatóan a század közepére elindulhatnak ezek a negyedik generációs energiatermelő erőművek. A zárt üzemanyagciklussal elérhető lenne, hogy az egyes anyagok sokkal nagyobb mértékben hasznosításra kerüljenek, még a 238 U is. Ezáltal lényegesen kevesebb hulladék keletkezne, hiszen a szennyezőket jóval koncentráltabb formában nyernénk ki, így a technológia fenntarthatóságával kapcsolatos aggodalmakat el lehetne oszlatni. Kovács István Soma az Energetikai Szakkollégium tagja 7
Az uránérc bányászata
Az uránérc bányászata Az urán különböző koncentrációban ugyan, de a világ minden pontján megtalálható. A talajban az átlagos koncentráció 3-5 gramm/tonna, és a tengerek és óceánok vizének minden köbméterében
Nukleáris üzemanyagciklus. Az urán útja a bányától a reprocesszálásig
Nukleáris üzemanyagciklus. Az urán útja a bányától a reprocesszálásig Osváth Szabolcs OSSKI előadás az Energetikai Szakkollégiumon 2013. XI. 28. (Cs); BME Q BF 12 1 Olvasnivalók, irodalomjegyzék Manson
Atomerőmű. Radioaktívhulladék-kezelés
Atomerőmű. Radioaktívhulladék-kezelés Lajos Máté lajos.mate@osski.hu OSSKI Bővített fokozatú sugárvédelmi tanfolyam 2016. október 13. Országos Közegészségügyi Központ (OKK) Országos Sugárbiológiai és Sugáregészségügyi
Radioaktívhulladék-kezelés és újrafelhasználás: Francia lehetőségek, tapasztalatok, jövőbeni tervek
Radioaktívhulladék-kezelés és újrafelhasználás: Francia lehetőségek, tapasztalatok, jövőbeni tervek Az Energetikai Szakkollégium Bánki Donát emlékfélévének első előadására 2014. szeptember 18-án került
Látogatás egy reprocesszáló üzemben. Nagy Péter. Hajdúszoboszló, ELFT Sugárvédelmi Továbbképző Tanfolyam,
Látogatás egy reprocesszáló üzemben Nagy Péter Hajdúszoboszló, ELFT Sugárvédelmi Továbbképző Tanfolyam, 2018.04.17-19. Előzmények European Nuclear Young Generation Forum (ENYGF), Paris, 2015.június 22-24.
Az uránpiac helyzete és kilátásai
Az uránpiac helyzete és kilátásai Dr. Pázmándi Tamás, Bodor Károly Magyar Tudományos Akadémia KFKI Atomenergia Kutatóintézet 1121, Budapest, Konkoly Thege Miklós út 29-33. A XXI. század első felében a
A környezetgazdálkodás alapjai. III. évf. Földrajz BSC. Ballabás Gábor
A környezetgazdálkodás alapjai III. évf. Földrajz BSC. 3. óra Energiagazdálkodás a nukleáris és a fosszilis energiahordozók környezeti hatásai Ballabás Gábor Társadalom- és Gazdaságföldrajzi Tanszék bagi@ludens.elte.hu
Nukleáris hulladékkezelés. környezetvédelem
Nukleáris hulladékkezelés http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern/nukleáris környezetvédelem A felhasználási terület meghatározza - a radioaktív izotópok fajtáját, - mennyiségét és -
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
Név: Dátum: Oktató: 1.)
1.) Jelölje meg az egyetlen helyes választ (minden helyes válasz 1 pontot ér)! i). Redős szűrőpapírt akkor célszerű használni, ha a). növelni akarjuk a szűrés hatékonyságát; b). a csapadékra van szükségünk;
Kémia azatomerőművekben. és azuránbányákban, és a hulladéktemetőkben, és...
Kémia azatomerőművekben és azuránbányákban, és a hulladéktemetőkben, és... Fűtőanyagciklus a hulladék sugároz amit lehet újra fel kell használni ami hasznos, ki kell nyerni bánya 235+238 U 300t 239+241
Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO)
Sugárvédelem nukleáris létesítményekben Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Tartalom Ki mit nevez nukleárisnak? Hasadóanyagok Neutronos láncreakció, neutronsugárzás Felaktiválódás,
Radioaktív izotópok előállítása. Általános módszerek
Radioaktív izotópok előállítása Általános módszerek Természetes radioaktív izotópok kinyerése U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 4,5e9 év 24,1 nap 1,2 min 2,5e5 év 8e4 év 1620 év 3,825 nap
Készítette: Magyar Norbert Környezettudomány Msc I. évfolyam
Készítette: Magyar Norbert Környezettudomány Msc I. évfolyam Vázlat Radioaktív hulladék fogalmának, csoportosítási lehetőségeinek, keletkezésének rövid áttekintése Nagy aktivitású radioaktív hulladék kezelése
3. Előadás 2014. Molnár Zsuzsa Radanal
3. Előadás 2014 Molnár Zsuzsa Radanal Az atommagban rejlő energia alkalmazása MAGHASADÁS/FISSZIÓ hasadóanyag: 235 U, 239 Pu, 233 U 235 U + n term 137 Te + 97 Zr + 2n gyors + 200 MeV, 4 sec 137 I, 25 sec
Újrahasznosítási logisztika. 1. Bevezetés az újrahasznosításba
Újrahasznosítási logisztika 1. Bevezetés az újrahasznosításba Nyílt láncú gazdaság Termelési szektor Természeti erőforrások Fogyasztók Zárt láncú gazdaság Termelési szektor Természeti erőforrások Fogyasztók
Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás
Atomreaktorok üzemtana Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorban és környezetében keletkező sugárzástípusok és azok forrásai Milyen típusú sugárzások keletkeznek? Melyik ellen milyen
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
Erre a célra vas(iii)-kloridot és a vas(iii)-szulfátot használnak a leggyakrabban
A vasgálic 1 egy felhasználása Az Európai Unióhoz csatlakozva a korábbinál jóval szigorúbb előírásokat léptettek életbe a szennyvíztisztító telepek működését illetően. Az új szabályozás már jóval kevesebb
NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL
NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14 C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL Bihari Árpád Molnár Mihály Janovics Róbert Mogyorósi Magdolna 14 C képződése és jelentősége Neutron indukált magreakció
Ásványi nyersanyagok, 3. év Gyakorlat I. 2012. március 1.
Ásványi nyersanyagok, 3. év Gyakorlat I. 2012. március 1. 1. Gazdaság-földtani alapfogalmak: Klark érték (Average abundance of the elements) Az adott elem átlagos földkéregbeli gyakorisága. A gyakoribb
A szabályozott láncreakció PETRÓ MÁTÉ 12.C
A szabályozott láncreakció PETRÓ MÁTÉ 12.C Rövid vázlat: Történelmi áttekintés Az atomreaktor felépítése és működése Reaktortípusok Érdekességek: biztonság a világ atomenergia termelése Csernobil Kezdetek
54 850 01 0010 54 04 Környezetvédelmi
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
A NUKLEÁRIS ÜZEMANYAGCIKLUS LEZÁRÁSÁNAK LEHETŐSÉGEI
A NUKLEÁRIS ÜZEMANYAGCIKLUS LEZÁRÁSÁNAK LEHETŐSÉGEI Dr. Csom Gyula professor emeritus csom@reak.bme.hu Dr. Csom Gyula, BME NTI 35/ 1 Tartalom 1. A nukleáris üzemanyagciklusról 2. Termikus reaktoros atomerőműveket
Hagyományos és modern energiaforrások
Hagyományos és modern energiaforrások Életünket rendkívül kényelmessé teszi, hogy a környezetünkben kiépített, elektromos vezetékekből álló hálózatok segítségével nagyon könnyen és szinte mindenhol hozzáférhetünk
7. osztály 2 Hevesy verseny, országos döntő, 2004.
7. osztály 2 Hevesy verseny, országos döntő, 2004. Kedves Versenyző! Köszöntünk a Hevesy György kémiaverseny országos döntőjének írásbeli fordulóján. A következő tíz feladat megoldására 90 perc áll rendelkezésedre.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont
ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont Az atomenergia-termelés jelenleg két fontos kérdést vet fel, amelyekre pozitív választ kell találni: az egyik a
T I T - M T T. Hevesy György Kémiaverseny. országos dönt. Az írásbeli forduló feladatlapja. 8. osztály. 2. feladat:... pont. 3. feladat:...
T I T - M T T Hevesy György Kémiaverseny országos dönt Az írásbeli forduló feladatlapja 8. osztály A versenyz azonosítási száma:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:...
1. előadás Alap kérdések: Polimer összefoglaló kérdések
1. előadás Alap kérdések: Polimer összefoglaló kérdések Ha ügyes vagy, a választ az előző kérdésnél megleled! hőre lágyuló: hevítéskor ömledék állapotba hozható hőre nem lágyuló: nem hozható ömledék állapotba,
A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!
1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket
Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam
A feladatokat írta: Kódszám: Harkai Jánosné, Szeged... Lektorálta: Kovács Lászlóné, Szolnok 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam A feladatok megoldásához csak
Vaskor Dóra Környezettan alapszakos hallgató. Témavezető: Kiss Ádám egyetemi tanár
Vaskor Dóra Környezettan alapszakos hallgató Témavezető: Kiss Ádám egyetemi tanár Háttérsugárzás Természet része Nagyrészt természetes eredetű (radon, kozmikus, Föld, táplálék) Mesterséges (leginkább orvosi
Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!
Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold
Indikátorok. brómtimolkék
Indikátorok brómtimolkék A vöröskáposzta kivonat, mint indikátor Antociánok 12 40 mg/100 g ph Bodzában, ribizliben is! A szupersavak Szupersav: a kénsavnál erősebb sav Hammett savassági függvény: a savak
Természet és környezetvédelem. Hulladékok környezet gyakorolt hatása, hulladékgazdálkodás, -kezelés Szennyvízkezelés
Természet és környezetvédelem Hulladékok környezet gyakorolt hatása, hulladékgazdálkodás, -kezelés Szennyvízkezelés Hulladék-kérdés Globális, regionális, lokális probléma A probléma árnyalása Mennyisége
Az anyagi rendszer fogalma, csoportosítása
Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
Radioaktív nyomjelzés
Radioaktív nyomjelzés A radioaktív nyomjelzés alapelve Kémiai indikátorok: ugyanazoknak a követelményeknek kell eleget tenniük, mint az indikátoroknak általában: jelezniük kell valamely elemnek ill. vegyületnek
RADIOAKTÍV HULLADÉK; OSZTÁLYOZÁS, KEZELÉS ÉS ELHELYEZÉS. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)
SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 RADIOAKTÍV HULLADÉK; OSZTÁLYOZÁS, KEZELÉS ÉS ELHELYEZÉS (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) Radioaktív hulladéknak tekinthető az a
6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.
6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen
Kémiai alapismeretek 14. hét
Kémiai alapismeretek 14. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2011. december 6. 1/9 2010/2011 I. félév, Horváth Attila c 1785 Cavendish:
Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion
Energiapolitika hazánkban - megújulók és atomenergia
Energiapolitika hazánkban - megújulók és atomenergia Mi a jövő? Atom vagy zöld? Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet Energetikai Szakkollégium, 2004. november 11.
Nukleáris energetika. Kérdések 2015 tavaszi félév
Nukleáris energetika. Kérdések 2015 tavaszi félév 1. Előadás: Alapismeretek energetikából, nukleáris fizikából NE-1.1. Soroljon fel energia mennyiségeket tartalmazó összefüggéseket a mechanikából, a hőtanból,
Első magreakciók. Targetmag
Magreakciók 7 N 14 17 8 7 N(, p) 14 O 17 8 O Első magreakciók p Targetmag 30 Al n P 27 13, 15. Megmaradási elvek: 1. a nukleonszám 2. a töltés megmaradását. 3. a spin, 4. a paritás, 5. az impulzus, 6.
Dr. Pintér Tamás osztályvezető
Mit kezdjünk az atomreaktorok melléktermékeivel? Folyékony radioaktív hulladékok Dr. Pintér Tamás osztályvezető 2014. október 2. MINT MINDEN TECHNOLÓGIÁNAK, AZ ENERGIA- TERMELÉSNEK IS VAN MELLÉKTERMÉKE
a. 35-ös tömegszámú izotópjában 18 neutron található. b. A 3. elektronhéján két vegyértékelektront tartalmaz. c. 2 mól atomjának tömege 32 g.
MAGYAR TANNYELVŰ KÖZÉPISKOLÁK IX. ORSZÁGOS VETÉLKEDŐJE AL IX.-LEA CONCURS PE ŢARĂ AL LICEELOR CU LIMBĂ DE PREDARE MAGHIARĂ FABINYI RUDOLF KÉMIA VERSENY - SZERVETLEN KÉMIA Marosvásárhely, Bolyai Farkas
Ipar, közlekedés környezetgazdálkodása/2 BÁNYÁSZAT. Feltárás Kitermelés Előkészítés Környezeti hatás, rekultiváció 8:06
Ipar, közlekedés környezetgazdálkodása/2 BÁNYÁSZAT Feltárás Kitermelés Előkészítés Környezeti hatás, rekultiváció Elemek előfordulása a földkéregben O: 50% Si: 26% Al: 8% H: 1% C: 0,1% Cl: 0,1% Toxikus
Szent-Györgyi Albert kémiavetélkedő
9. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon
7. évfolyam kémia osztályozó- és pótvizsga követelményei Témakörök: 1. Anyagok tulajdonságai és változásai (fizikai és kémiai változás) 2.
7. évfolyam kémia osztályozó- és pótvizsga követelményei 1. Anyagok tulajdonságai és változásai (fizikai és kémiai változás) 2. Hőtermelő és hőelnyelő folyamatok, halmazállapot-változások 3. A levegő,
Energiagazdálkodás és környezetvédelem 4. Előadás
Energiagazdálkodás és környezetvédelem 4. Előadás Termikus hulladékkezelési eljárások Kapcsolódó államvizsga tételek: 15. Települési hulladéklerakók Hulladéklerakó helyek fajtái kialakítási lehetőségei,
Klórozott szénhidrogénekkel szennyezett talajok és talajvizek kezelésére alkalmazható módszerek
Klórozott szénhidrogénekkel szennyezett talajok és talajvizek kezelésére alkalmazható módszerek Készítette: Durucskó Boglárka Témavezető: Jurecska Laura 2015 Téma fontossága Napjainkban a talaj és a talajvíz
A 2007/2008. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója
Oktatási Hivatal A 2007/2008. tanévi Országos Középiskolai Tanulmányi Verseny első (iskolai) fordulójának javítási-értékelési útmutatója KÉMIÁBÓL I-II. kategóriában Az 2007/2008. tanévi ORSZÁGOS KÖZÉPISKOLAI
Kémia OKTV I. kategória II. forduló A feladatok megoldása
ktatási ivatal Kémia KTV I. kategória 2008-2009. II. forduló A feladatok megoldása I. FELADATSR 1. A 6. E 11. A 16. C 2. A 7. C 12. D 17. B 3. E 8. D 13. A 18. C 4. D 9. C 14. B 19. C 5. B 10. E 15. E
A RADIOAKTÍV HULLADÉKKEZELÉS PROGRAMJA MAGYARORSZÁGON. Dr. Kereki Ferenc ügyvezető igazgató RHK Kft. 2015. 06. 02.
A RADIOAKTÍV HULLADÉKKEZELÉS PROGRAMJA MAGYARORSZÁGON Dr. Kereki Ferenc ügyvezető igazgató RHK Kft. 2015. 06. 02. Programjaink RHFT Püspökszilágy Paks KKÁT NRHT MKKB Kutatási helyszín Boda Kővágószőlős
Az atommagtól a konnektorig
Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.
Nemzeti Nukleáris Kutatási Program
Magyar Tudományos Akadémia Energiatudományi Kutatóközpont Nemzeti Nukleáris Kutatási Program 2014-2018 Horváth Ákos Főigazgató, MTA EK foigazgato@energia.mta.hu Előzmények 2010. Elkészül a hazai nukleáris
8. osztály 2 Hevesy verseny, megyei forduló, 2008.
8. osztály 2 Hevesy verseny, megyei forduló, 2008. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető
Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS
Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N
Óravázlat- kémia: 4. fejezet 1. óra
Óravázlat- kémia: 4. fejezet 1. óra Műveltségi terület: Tantárgy: Iskolatípus: Évfolyam: Téma, témakör: Készítette: Az óra témája: Az óra cél- és feladatrendszere: A tanóra témájának kulcsfogalmai: Az
KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2000
Megoldás 000. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 000 JAVÍTÁSI ÚTMUTATÓ I. A NITROGÉN ÉS SZERVES VEGYÜLETEI s s p 3 molekulák között gyenge kölcsönhatás van, ezért alacsony olvadás- és
B TÉTEL A cukor, ammónium-klorid, nátrium-karbonát kémhatásának vizsgálata A túró nitrogéntartalmának kimutatása A hamisított tejföl kimutatása
2014/2015. B TÉTEL A cukor, ammónium-klorid, nátrium-karbonát kémhatásának vizsgálata A kísérleti tálcán lévő sorszámozott eken három fehér port talál. Ezek: cukor, ammónium-klorid, ill. nátrium-karbonát
Paks déli részén a 6-os számú főút és a Duna között. Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek.
www.atomeromu.hu Paks déli részén a 6-os számú főút és a Duna között Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek. Az urán 235-ös izotópját lassú neutronok
Kémiai tantárgy középszintű érettségi témakörei
Kémiai tantárgy középszintű érettségi témakörei Csongrádi Batsányi János Gimnázium, Szakgimnázium és Kollégium Összeállította: Baricsné Kapus Éva, Tábori Levente 1) témakör Mendgyelejev féle periódusos
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
Curie Kémia Emlékverseny 9. évfolyam III. forduló 2018/2019.
A feladatokat írta: Név: Pócsiné Erdei Irén, Debrecen... Lektorálta: Iskola: Kálnay Istvánné, Nyíregyháza... Beküldési határidő: 2019. január 07. Curie Kémia Emlékverseny 9. évfolyam III. forduló 2018/2019.
A GEOTERMIKUS ENERGIA
A GEOTERMIKUS ENERGIA Mi is a geotermikus energia? A Föld keletkezése óta létezik Forrása a Föld belsejében keletkező hő Nem szennyezi a környezetet A kéreg 10 km vastag rétegében 6 10 26 Joule mennyiségű
MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ KINYERÉSÉRE
MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ MASZESZ Ipari Szennyvíztisztítás Szakmai Nap 2017. November 30 Lakner Gábor Okleveles Környezetmérnök Témavezető: Bélafiné Dr. Bakó Katalin
Curie Kémia Emlékverseny 2016/2017. Országos Döntő 9. évfolyam
A feladatokat írta: Baglyas Márton, Dunaföldvár Lektorálta: Dr. Várallyainé Balázs Judit, Debrecen Kódszám:... Curie Kémia Emlékverseny 2016/2017. Országos Döntő 9. évfolyam A feladatok megoldásához periódusos
LERAKÁS - Hulladékkezelési technológiák nem hasznosítható maradékanyagainak listája
LERAKÁS - Hulladékkezelési technológiák nem hasznosítható maradékanyagainak listája 1 ÁSVÁNYOK KUTATÁSÁBÓL, BÁNYÁSZATÁBÓL, KŐFEJTÉSBŐL, FIZIKAI ÉS KÉMIAI 01 04 08 kő törmelék és hulladék kavics, amely
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Új típusú fűtőelemek bevezetésének megalapozását szolgáló kísérletek, 2015 & 2016
Új típusú fűtőelemek bevezetésének megalapozását szolgáló kísérletek, 2015 & 2016 Slonszki Emese, Nagy Attila TSO Szeminárium, OAH, 2016. június 7. A projekt célja Vízhűtésű termikus reaktorokhoz használható
T I T - M T T. Hevesy György Kémiaverseny
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
Szent-Györgyi Albert kémiavetélkedő Kód
9. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon
ÉRCEK ércnek ércásványok
ÉRCEK Minden olyan kőzetet ércnek nevezünk, melyből azadottkor technológiai szintjén gazdaságosan fémet nyerhetünk ki. Az érc azon komponensei, melyek az adott fémet (fémeket) tartalmazzák az ércásványok.
ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA
Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Írta: PÁTZAY GYÖRGY Lektorálta: ELTER ENIKŐ ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA
CONCURSUL DE CHIMIE PENTRU CLASA a VII-a RALUCA RIPAN etapa judeţeană 5 mai 2018 Ediţia a XIV-a. I Tétel pont
CONCURSUL DE CHIMIE PENTRU CLASA a VII-a RALUCA RIPAN etapa judeţeană 5 mai 2018 Ediţia a XIV-a Munkaidő: 3 óra. A feladatok megoldásához használjátok az atomtömegek kerekített értékét a csatolmányban
Zárt üzemanyagciklus. Nukleáris üzemanyagciklus: létesítmények, technológiák, biztonság. Urántartalékok. Zárt üzemanyagciklus
Nukleáris üzemanyagciklus: létesítmények, technológiák, biztonság Korszerű nukleáris energiatermelés Dr. Yamaji Bogdán Budapesti Műszaki és Gazdaságtudományi Egyetem Nukleáris Technikai Intézet tisztított
feladatmegoldásai K É M I Á B Ó L
A 2006/2007. tanévi ORSZÁGOS KÖZÉPISKOLAI TANULMÁNYI VERSENY első (iskolai) fordulójának Az értékelés szempontjai feladatmegoldásai K É M I Á B Ó L Egy-egy feladat összes pontszáma a részpontokból tevődik
Számítások ph-val kombinálva
Bemelegítő, gondolkodtató kérdések Igaz-e? Indoklással válaszolj! A A semleges oldat ph-ja mindig éppen 7. B A tömény kénsav ph-ja 0 vagy annál is kisebb. C A 0,1 mol/dm 3 koncentrációjú sósav ph-ja azonos
Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam
Hevesy György Országos Kémiaverseny Kerületi forduló 2013. február 20. 8. évfolyam A feladatlap megoldásához kizárólag periódusos rendszert és elektronikus adatok tárolására nem alkalmas zsebszámológép
Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma
Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai
A GAMMA-VALEROLAKTON ELŐÁLLÍTÁSA
A GAMMA-VALEROLAKTON ELŐÁLLÍTÁSA A LEVULINSAV KATALITIKUS HIDROGÉNEZÉSÉVEL Strádi Andrea ELTE TTK Környezettudomány MSc II. Témavezető: Mika László Tamás ELTE TTK Kémiai Intézet ELTE TTK, Környezettudományi
Szervetlen kémia I. kollokvium, (DEMO) , , K/2. Írják fel a nevüket, a Neptun kódjukat és a dátumot minden lapra!
Szervetlen kémia I. kollokvium, (DEMO) 16. 05. 17., 00-12 00, K/2 Írják fel a nevüket, a Neptun kódjukat és a dátumot minden lapra! TESZT KÉRDÉSEK Kérdésenként 60 s áll rendelkezésre a válaszadásra. Csak
KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997
1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 JAVÍTÁSI ÚTMUTATÓ I. A HIDROGÉN, A HIDRIDEK 1s 1, EN=2,1; izotópok:,, deutérium,, trícium. Kétatomos molekula, H 2, apoláris. Szobahőmérsékleten
Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6.
Radioaktív lakótársunk, a radon Horváth Ákos ELTE Atomfizikai Tanszék 2012. december 6. Radioaktív lakótársunk, a radon 2 A radon fontossága Természetes és mesterséges ionizáló sugárzások éves dózisa átlagosan
Ipari vizek tisztítási lehetőségei rövid összefoglalás. Székely Edit BME Kémiai és Környezeti Folyamatmérnöki Tanszék
Ipari vizek tisztítási lehetőségei rövid összefoglalás Székely Edit BME Kémiai és Környezeti Folyamatmérnöki Tanszék Kezelés Fizikai, fizikai-kémiai Biológiai Kémiai Szennyezők típusai Módszerek Előnyök
Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik
Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer
Atomenergetikai alapismeretek
Atomenergetikai alapismeretek 5/2. előadás: Atomreaktorok Prof. Dr. Aszódi Attila Egyetemi tanár, BME Nukleáris Technikai Intézet Budapest, 2019. március 5. Hasadás, láncreakció U-235: termikus neutronok
8. Osztály. Kód. Szent-Györgyi Albert kémiavetélkedő
8. Osztály Kedves Versenyző! A jobb felső sarokban található mezőbe írd fel a verseny lebonyolításáért felelős személytől kapott kódot a feladatlap minden oldalára. A feladatokat lehetőleg a feladatlapon
Pirolízis a gyakorlatban
Pirolízis szakmai konferencia Pirolízis a gyakorlatban Bezzeg Zsolt Klaszter a Környezettudatos Fejlődésért Environ-Energie Kft. 2013. szeptember 26. 01. Előzmények Napjainkban világszerte és itthon is
1. feladat Összesen 15 pont. 2. feladat Összesen 6 pont. 3. feladat Összesen 6 pont. 4. feladat Összesen 7 pont
1. feladat Összesen 15 pont Egy lombikba 60 g jégecetet és 46 g abszolút etanolt öntöttünk. A) Számítsa ki a kiindulási anyagmennyiségeket! B) Határozza meg az egyensúlyi elegy összetételét móltörtben
1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk?
Számítások ph-val kombinálva 1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk? Mekkora az eredeti oldatok anyagmennyiség-koncentrációja?
Nukleáris üzemanyagciklus
Nukleáris üzemanyagciklus Yamaji Bogdán előadása alapján Boros Ildikó, BME NTI BME NTI 1 Természetes urán Konverzió, dúsítás, üa-gyártás Front-end szakasz PWR nyílt üzemanyag ciklus Nyomottvizes reaktor
Molekulák alakja és polaritása, a molekulák között működő legerősebb kölcsönhatás
Molekulák alakja és polaritása, a molekulák között működő legerősebb kölcsönhatás I. Egyatomos molekulák He, Ne, Ar, Kr, Xe, Rn - a molekula alakja: pontszerű - a kovalens kötés polaritása: NINCS kötés
Az urán életútja a föld mélyétől az aktív zónáig
Az urán életútja a föld mélyétől az aktív zónáig (Energetika 2.-házi dolgozat) Készítette: Adamecz Ágnes Beadás dátuma: 2012 05.02. 1 Tartalomjegyzék Bevezetés Uránkészleteink a Földön Urán kitermelés
1./ Jellemezd az anyagokat! Írd az A oszlop kipontozott helyére a B oszlopból arra az anyagra jellemző tulajdonságok számát! /10
Név:.. Osztály.. 1./ Jellemezd az anyagokat! Írd az A oszlop kipontozott helyére a B oszlopból arra az anyagra jellemző tulajdonságok számát! /10 A B a) hidrogén... 1. sárga, szilárd anyag b) oxigén...