FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA"

Átírás

1 FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA 4. elıadás AZ ATOMREAKTOROK FIZIKAI ÉS TECHNIKAI ALAPJAI, ATOMERİMŐVEK 2009/2010. tanév ıszi féléve Dr. Csom Gyula professor emeritus TARTALOM 1. Magfizikai alapok 2. Reaktortechnikai alapok, reaktortípusok 3. Atomerımővek elvi felépítése 4. Energetikai atomreaktorok 5. Atomerımővek 6. A VVER-440-es atomerımő (paksi atomerımő) 7. Egzotikus reaktorok Fıbb ellenırzı kérdések Dr. Csom Gyula, BME NTI 4 / 1 Dr. Csom Gyula, BME NTI 4/ 2 1. MAGFIZIKAI ALAPOK 1. MAGFIZIKAI ALAPOK - 2 Az energia és a tömeg ekvivalenciája (Einstein, 1905) 2 E 2 E = mc = c m m: tömeg, E: energia, c: vákuumbeli fénysebesség Bohr-féle atommodell (1913) Az atommag felépítése, nukleonok (proton, neutron): Z+N = A, Tömegdeffektus az atommagban: M = [ Zmp + Nmn ] M > 0 Kötési energia az elektronhéjban és az atommagban Fajlagos kötési energia az atommagban e = k E k A MeV nukleon >> e k,elektronhéj 1. ábra. A fajlagos kötési energia tömegszám(a) függvényében A ZX MAGENERGIA-HASZNOSÍTÁS ELVI LEHETİSÉGEI Magfúzió D+D = 4 He reakciónál: E f 24 MeV/fúzió Maghasadás MeV E k 236 0,9 200MeV / hasadás nukleon Ezek: energetikai lehetıségek Feltételek: a reakciók valóban le is játszódjanak Magfúziónál: igen magas hımérséklet Maghasadásnál: Gerjesztés: neutronnal Spontán (nagy A-nál) Kémiai reakció (pl. C+O 2 = CO 2 ) E k ev/reakció Dr. Csom Gyula, BME NTI 4/ 3 Dr. Csom Gyula, BME NTI 4/ 4

2 Stabil izotópok atommagjainak összetétele: - N-Z görbe - Neutrontöbblet - Neutronfelesleg - Neutronhiány - Radioaktivitás 1. MAGFIZIKAI ALAPOK - 3 Oka: az izotóp nincs a stabil izotópok tartományában (instabil) 2. ábra. A neutron- és a protonszám összefüggése a stabil izotópok magjában (N-Z-görbe) Az önfenntartó láncreakció feltétele: a fenti görbe alakja miatt a maghasadásnál szabad neutronok keletkeznek. 1. MAGFIZIKAI ALAPOK - 4 MAGHASADÁS (O. Hahn és F.Strassmann, dec.) Prompt neutronok (energia szerinti eloszlás) Késı neutronok (energia szerinti eloszlás) Hasadási termékek (hasadványok) Dr. Csom Gyula, BME NTI 4/ 5 Dr. Csom Gyula, BME NTI 4/ 6 1. MAGFIZIKAI ALAPOK MAGFIZIKAI ALAPOK - 6 Egyik lehetıség: A NUKLEÁRIS LÁNCREAKCIÓ (Szilárd Leó szabadalmi bejelentése, 1935.) Keletkezési gyakoriság: y i Neutronciklus Ciklusidı Sokszorozási tényezı: Reaktivitás: A HASADÁSI TERMÉKEK RADIOAKTÍVAK (neutronhiányosak)! Kritikusság: k = 1, ρ = 0 Szuperkritikusság: k >1, ρ > 0 Szubkritikusság: k < 1, ρ < 0 Dr. Csom Gyula, BME NTI 4/ 7 Dr. Csom Gyula, BME NTI 4/ 8

3 1. MAGFIZIKAI ALAPOK - 7 MAGÁTALAKÍTÁS Izotóptermelés Új hasadóképes izotópok elıállítása Hosszú élető radioizotópok átalakítása (transzmutáció) Hasadási termékek: pl. 99 Tc(2, év), 129 I(1, év) Aktinidák: Domináns aktinidák (Pu-izotópok) Másodlagos aktinidák: pl. 237 Np(2, év), 241 Am(433 év), 245 Cm(9300 év) Következmény: növeli a hasznosítási hatásfokot radioaktív izotópokat (transzuránokat) termel 2. REAKTORTECHNIKAI ALAPOK, REAKTORTÍPUSOK Atomreaktor definíciója: Az a mőszaki létesítmény, amely biztosítja a maghasadáson alapuló önfenntartó láncreakció hosszantartó szabályozható megvalósulását. Atomreaktorok felépítése: Termikus reaktorok (haszn. hatásfok kb. 0,5-0,6%) Gyorsreaktorok (haszn. hatásfok kb %) Intermedier reaktorok Sokszorozási tényezı Üzemanyag, főtıelem (U, UO 2, MOX, UC) Moderátor (H 2 O, D 2 O, grafit) Hőtıközeg (H 2 O, D 2 O, CO 2, He, folyékony fém) Aktív zóna Kritikus tömeg Kritikus térfogat Dr. Csom Gyula, BME NTI 4/ 9 Dr. Csom Gyula, BME NTI 4/ REAKTORTECHNIKAI ALAPOK, REAKTORTÍPUSOK - 2 CSOPORTOSÍTÁS A RENDELTETÉS ALAPJÁN Szubkritikus rendszerek Kritikus rendszerek ( Zéró reaktorok ) Kutatóreaktorok (pl. KFKI AEKI atomreaktora, 1959-) Forrásreaktorok Anyagvizsgáló reaktorok Oktatóreaktorok (pl. BME atomreaktora, 1971-) Energetikai reaktorok (pl. paksi atomerımő reaktorai, 1982-) 2. REAKTORTECHNIKAI ALAPOK, REAKTORTÍPUSOK - 3 ENERGETIKAI REAKTOROK TÍPUSAI GGR (incl. Magnox reaktorok) AGR HTGR THTR LWR: PWR (pl. paksi atomerımő VVER reaktorai) BWR HWR: (incl. CANDU) RBMK (pl. csernobili atomerımő reaktorai) FBR: LMFBR tenyész-, ill. szaporító GCFR reaktorok Sóolvadékos reaktorok (homogén) Gyorsítóval hajtott szubkritikus rendszerek Dr. Csom Gyula, BME NTI 4/ 11 Dr. Csom Gyula, BME NTI 4/ 12

4 3. ATOMERİMŐVEK ELVI FELÉPÍTÉSE AZ ATOMERİMŐVEK ÉS A KONVENCIONÁLIS ERİMŐVEK FELÉPÍTÉSÉNEK ÖSSZEHASONLÍTÁSA (elvi felépítések) 4. ENERGETIKAI ATOMREAKTOROK PWR - nyomottvizes reaktorok Primer köri jellemzık (p, T) Szekunder köri jellemzık (p, telített gız) Üzemanyag dúsítása Erımő hatásfoka ( 32 34%) Biztonsága Gazdaságossága A konkrét felépítés alapvetıen az atomreaktor típusától függ Dr. Csom Gyula, BME NTI 4/ 13 Dr. Csom Gyula, BME NTI 4/ ENERGETIKAI ATOMREAKTOROK - 2 BWR elgızölögtetı reaktorok Főtıelemkötegek 4. ENERGETIKAI ATOMREAKTOROK - 3 HWR nehézvizes reaktorok Főtıelemkötegek Dr. Csom Gyula, BME NTI 4/ 15 Dr. Csom Gyula, BME NTI 4/ 16

5 5. ATOMERİMŐVEK PWR-rel szerelt atomerımő (kétkörös) 5. ATOMERİMŐVEK - 2 BWR-rel szerelt atomerımő (egykörös) Dr. Csom Gyula, BME NTI 4/ 17 Dr. Csom Gyula, BME NTI 4/ ATOMERİMŐVEK ATOMERİMŐVEK - 4 HWR-rel szerelt atomerımő (kétkörös) Gyorsreaktorral szerelt atomerımő (háromkörös!) Dr. Csom Gyula, BME NTI 4/ 19 Dr. Csom Gyula, BME NTI 4/ 20

6 5. ATOMERİMŐVEK A VVER-440-ES ATOMERİMŐ (PAKSI ATOMERİMŐ) A VILÁG ATOMERİMŐVEINEK TÍPUSONKÉNTI MEGOSZLÁSA Dr. Csom Gyula, BME NTI 4/ 21 Dr. Csom Gyula, BME NTI 4/ A VVER-440-ES ATOMERİMŐ (PAKSI ATOMERİMŐ) A VVER-440-ES ATOMERİMŐ (PAKSI ATOMERİMŐ) - 3 Fı jellemzıi: Háromszög rács Hatszöglető főtıelemköteg 349 főtıelemköteg Aktív zóna: H=250 cm, D=286 cm Üzemanyag: kis dúsítású UO 2 (3,6-3,9%) Szabályozó kazetták Dr. Csom Gyula, BME NTI 4/ 23 Dr. Csom Gyula, BME NTI 4/ 24

7 Jégtörı hajók: Az elsı atomjégtörı a szovjet Lenin ( ). Három, egyenként 90 MW termikus teljesítményő PWR hajtotta, 5% dúsítású urán-oxid üzemanyaggal. 7. EGZOTIKUS REAKTOROK 7. EGZOTIKUS REAKTOROK - 2 Tengeralattjárók: Az elsı atom-tengeralattjáró a Nautilus ( , PWR). PWR és LMBR (!) reaktorokkal készülnek Lenin (SZU) ( ) Arktika (SZU) (1975- ) Nautilus SSN-571, az elsı atom-tengeralattjáró Dr. Csom Gyula, BME NTI 4/ 25 Dr. Csom Gyula, BME NTI 4/ 26 Fıbb ellenırzı kérdések 1. Írja fel a tömeg és az energia ekvivalenciáját kifejezı összefüggést! 2. Mekkora az atommag és az atom átmérıjének nagyságrendje? 3. Mekkora az atommag és az atom térfogatarányának nagyságrendje? 4. Mekkora az atommag és az elektronhéj tömegarányának nagyságrendje? 5. Mik az izotópok? 6. Milyen nukleonokból épül fel az atommag? 7. Mi a tömegszám? 8. Mi a tömegdefektus? Írja fel a meghatározását megadó összefüggést! 9. Mi a kötési energia? Írja fel kapcsolatát a tömegdefektussal! 10.Mi a fajlagos kötési energia? Írja fel meghatározó összefüggését! 11.Mekkora az atommagra vonatkozó fajlagos kötési energia nagyságrendje? 12.Mekkora az elektronhéjba kötött elektron fajlagos kötési energiájának nagyságrendje? 13.Rajzolja fel a fajlagos kötési energia tömegszám-függését? 14.A magenergia-hasznosítás elvi lehetıségei az e k = f(a) diagram alapján. 15.Magfúziónként felszabaduló energia. 16.Maghasadásonként felszabaduló energia. 17.A magfúzió megvalósulásának feltétele! 18. Rajzolja fel a stabil izotópok N-Z görbéjét! 19. Mi a neutrontöbblet? 20. Mi a neutronfelesleg? 21. Mi a neutronhiány? 22. Mik a prompt neutronok? 23. Mik a késı neutronok? 24. Mik a hasadási termékek (hasadványok)? 25. Mik a primer és a szekunder hasadványok? 26. Rajzolja fel a hasadványok keletkezési gyakoriságát tömegszámuk függvényében! 27. Rajzolja fel a nukleáris láncreakció sémáját! 28. Mi a neutronciklus és a ciklusidı? 29. Mi a sokszorozási tényezı és a reaktivitás? 30. Mi a kritikusság, szuperkritikusság, szubkritikusság feltétele? 31. Írja fel az új hasadóképes izotópok elıállítási sémáját! 32. Mi a transzmutáció? 33. Az atomreaktor definíciója. 34. A reaktorok fajtái a hasadást kiváltó neutronok energiája alapján. 35. Mi az aktív zóna? 36. Mi a kritikus tömeg és a kritikus térfogat? 37. Milyen üzemanyagfajtákat ismer? 38. Milyen moderátor anyagokat ismer? 39. Ismertesse az atomreaktorokat rendeltetésük szerint. 40. Melyek a legfontosabb energetikai atomreaktor-típusok? 41. Milyen anyaghatásfok érhetı el termikus reaktorokban? 42. Rajzolja fel a hıerımő elvi felépítését. 43. Rajzolja fel az atomerımő elvi felépítését. 44. Mi a főtıelem és a főtıelemköteg? Dr. Csom Gyula, BME NTI 4/ 27 Dr. Csom Gyula, BME NTI 4/ 28

8 45. Hozzávetılegesen milyen részarányt képviselnek a PWR-es, a BWR-es és a gyorsreaktoros atomerımővek a világ atomerımő-kapacitásában? 46. Milyen reaktortípussal épült a paksi atomerımő? 47. Milyen egzotikus atomreaktorokat ismer? Dr. Csom Gyula, BME NTI 4/ 29

FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA

FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA Dr. Csom Gyula, BME NTI 2 / 1 FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA 2. elıadás AZ ATOMREAKTOROK FIZIKAI ÉS TECHNIKAI ALAPJAI ATOMERİMŐVEK 2007/2008. tanév ıszi féléve Dr. Csom Gyula professor emeritus Tartalom

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 5/2. előadás: Atomreaktorok Prof. Dr. Aszódi Attila Egyetemi tanár, BME Nukleáris Technikai Intézet Budapest, 2019. március 5. Hasadás, láncreakció U-235: termikus neutronok

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 7. előadás: Atomreaktorok, atomerőművek Prof. Dr. Aszódi Attila Egyetemi tanár, BME Nukleáris Technikai Intézet Budapest, 2019. március 26. https://kahoot.it/ az előző órai

Részletesebben

Energetikai mérnökasszisztens Mérnökasszisztens

Energetikai mérnökasszisztens Mérnökasszisztens A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Maghasadás (fisszió)

Maghasadás (fisszió) http://www.etsy.com Maghasadás (fisszió) 1939. Hahn, Strassmann, Meitner neutronbesugárzásos kísérletei U magon új reakciótípus (maghasadás) Azóta U, Th, Pu (7 izotópja) hasadási sajátságait vizsgálták

Részletesebben

Maghasadás, atomreaktorok

Maghasadás, atomreaktorok Maghasadás, atomreaktorok Magfizika Az urán életútja A Nap "második generációs" csillag, anyagának (és a bolygók, köztük a Föld anyagának) egy része egy másik csillagból származik. E csillag életének utolsó

Részletesebben

Első magreakciók. Targetmag

Első magreakciók. Targetmag Magreakciók 7 N 14 17 8 7 N(, p) 14 O 17 8 O Első magreakciók p Targetmag 30 Al n P 27 13, 15. Megmaradási elvek: 1. a nukleonszám 2. a töltés megmaradását. 3. a spin, 4. a paritás, 5. az impulzus, 6.

Részletesebben

Atomenergia. Láncreakció, atomreaktorok, atombomba és ezek rövid története

Atomenergia. Láncreakció, atomreaktorok, atombomba és ezek rövid története Atomenergia Láncreakció, atomreaktorok, atombomba és ezek rövid története Előzmények Az energia - amiből korábban sosem volt elég - bőségesen itt van körülöttünk, csak meg kell találnunk hozzá a kulcsot.

Részletesebben

Mag- és neutronfizika 9. elıadás

Mag- és neutronfizika 9. elıadás Mag- és neutronfizika 9. elıadás 9. elıadás mlékeztetı: Atommagok kötési energiája (Weizs( Weizsäcker) Z ( Z ) B bv A bf A bc b + b A A P δ A A B ε (egy nukleon átlagos energiája) A A (energia kötési energia)

Részletesebben

235 U atommag hasadása

235 U atommag hasadása BME Oktatóreaktor 235 U atommag hasadása szabályozott láncreakció hasadási termékek: pl. I, Cs, Ba, Ce, Sr, La, Ru, Zr, Mo, stb. izotópok több mint 270 hasadási termék, A=72 és A=161 között keletkezik

Részletesebben

Atomerőmű. Radioaktívhulladék-kezelés

Atomerőmű. Radioaktívhulladék-kezelés Atomerőmű. Radioaktívhulladék-kezelés Lajos Máté lajos.mate@osski.hu OSSKI Bővített fokozatú sugárvédelmi tanfolyam 2016. október 13. Országos Közegészségügyi Központ (OKK) Országos Sugárbiológiai és Sugáregészségügyi

Részletesebben

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorok üzemtana Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorban és környezetében keletkező sugárzástípusok és azok forrásai Milyen típusú sugárzások keletkeznek? Melyik ellen milyen

Részletesebben

Félnünk kell-e a nukleáris energiától?

Félnünk kell-e a nukleáris energiától? BENCZE GYULA Félnünk kell-e a nukleáris energiától? Bencze Gyula fizikus egyetemi tanár Bevezetés az energia Mi az energia? A hétköznapi beszéd fordulataiban gyakran szerepel az energia szó valamilyen

Részletesebben

Maghasadás, láncreakció, magfúzió

Maghasadás, láncreakció, magfúzió Maghasadás, láncreakció, magfúzió Maghasadás 1938-ban hoztak létre először maghasadást úgy, hogy urán atommagokat bombáztak neutronokkal. Ekkor az urán két közepes méretű atommagra bomlott el, és újabb

Részletesebben

Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba

Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba Felfedezése 1934 Fermi: transzurán izotóp előállítása neutron belövellésével 1938 Fermi: fizikai Nobel-díj 1938 Hahn:

Részletesebben

A sugárzások és az anyag fizikai kölcsönhatásai

A sugárzások és az anyag fizikai kölcsönhatásai A sugárzások és az anyag fizikai kölcsönhatásai A kölcsönhatásban résztvevő partner 1. Atommag 2. Az atommag erőtere 3. Elektron (szabad, kötött) 4. Elektromos erőtér 5. Molekulák 6. Makroszkopikus rendszerek

Részletesebben

A természetes uránnak csak 0.71%-a 235-ös izotóp, a többi 238-as, amely termikus neutronokkal nem hasítható

A természetes uránnak csak 0.71%-a 235-ös izotóp, a többi 238-as, amely termikus neutronokkal nem hasítható Atomerőművek (n,f) reakciók, maghasadás (Otto Hahn): 235 U + n [ ] 236 U 3n+ 90 Kr+ 143 Ba A természetes uránnak csak 0.71%-a 235-ös izotóp, a többi 238-as, amely termikus neutronokkal nem hasítható 235-U

Részletesebben

INES - nemzetközi eseményskála. Fenntartható fejlıdés és atomenergia. INES - nemzetközi eseményskála. INES - nemzetközi eseményskála. 14.

INES - nemzetközi eseményskála. Fenntartható fejlıdés és atomenergia. INES - nemzetközi eseményskála. INES - nemzetközi eseményskála. 14. INES - nemzetközi eseményskála 14. elıadás Atomerımővek biztonsága A csernobili baleset Dr. Aszódi Attila egyetemi docens Dr. Aszódi Attila, BME NTI #14 / 1 Dr. Aszódi Attila, BME NTI #14 / 2 INES - nemzetközi

Részletesebben

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

A NUKLEÁRIS ÜZEMANYAGCIKLUS LEZÁRÁSÁNAK LEHETŐSÉGEI

A NUKLEÁRIS ÜZEMANYAGCIKLUS LEZÁRÁSÁNAK LEHETŐSÉGEI A NUKLEÁRIS ÜZEMANYAGCIKLUS LEZÁRÁSÁNAK LEHETŐSÉGEI Dr. Csom Gyula professor emeritus csom@reak.bme.hu Dr. Csom Gyula, BME NTI 35/ 1 Tartalom 1. A nukleáris üzemanyagciklusról 2. Termikus reaktoros atomerőműveket

Részletesebben

Az atomerımővi kiégett üzemanyag hosszú felezési idejő komponenseinek transzmutációja

Az atomerımővi kiégett üzemanyag hosszú felezési idejő komponenseinek transzmutációja Az atomerımővi kiégett üzemanyag hosszú felezési idejő komponenseinek transzmutációja Fehér Sándor Budapesti Mőszaki és Gazdaságtudományi Egyetem Nukleáris Technikai Intézet fehers@reak.bme.hu 1. Bevezetés

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO)

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Sugárvédelem nukleáris létesítményekben Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Tartalom Ki mit nevez nukleárisnak? Hasadóanyagok Neutronos láncreakció, neutronsugárzás Felaktiválódás,

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

A hazai nukleáris kapacitás hosszú távú biztosítása

A hazai nukleáris kapacitás hosszú távú biztosítása A hazai nukleáris kapacitás hosszú távú biztosítása Dr. Trampus Péter trampusp@trampus.axelero.net Linde Hegesztési Szimpózium Budapest, 2014. október 15. Tartalom Bevezetés Bővítés igény gazdaságosság

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Magyarországi nukleáris reaktorok

Magyarországi nukleáris reaktorok Tematika 1. Az atommagfizika elemei 2. Magsugárzások detektálása és detektorai 3. A nukleáris fizika története, a nukleáris energetika születése 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja

Részletesebben

A nukleáris fizika története, a nukleáris energetika születése

A nukleáris fizika története, a nukleáris energetika születése Tematika 1. Az atommagfizika elemei 2. A nukleáris fizika története, a nukleáris energetika születése 3. Magsugárzások detektálása és detektorai 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja

Részletesebben

( t) Mag- és neutronfizika 10. elıadás Emlékeztetı: Láncreakció neutronokkal - - k 1

( t) Mag- és neutronfizika 10. elıadás Emlékeztetı: Láncreakció neutronokkal - - k 1 Mag- és neutronfzka 10. elıadás Emlékeztetı: Láncreakcó neutronokkal Láncreakcó dıbel változása: Késı neutronok, és szerepük! Késı neutron hányad: β Reaktvtás: k 1 ( t) Effektív n-sokszorozásn tényezı:

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Az atomoktól a csillagokig: Az energiaellátás és az atomenergia. Kiss Ádám február 26.

Az atomoktól a csillagokig: Az energiaellátás és az atomenergia. Kiss Ádám február 26. Az atomoktól a csillagokig: Az energiaellátás és az atomenergia Kiss Ádám 2009. február 26. Miért van szükség az energiára? Energia nélkül a társadalmak nem működnek: a bonyolult kapcsolatrendszer fenntartásához

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

A transzmutáció témaköréhez kapcsolódó fontosabb fogalmak és szakkifejezések magyarázata

A transzmutáció témaköréhez kapcsolódó fontosabb fogalmak és szakkifejezések magyarázata A transzmutáció témaköréhez kapcsolódó fontosabb fogalmak és szakkifejezések magyarázata Aktinidák Dedikált transzmutációs berendezés A 89-es rendszámú aktínium és az annál nagyobb rendszámú elemek. Legismertebb

Részletesebben

Nukleáris energetika. Kérdések 2015 tavaszi félév

Nukleáris energetika. Kérdések 2015 tavaszi félév Nukleáris energetika. Kérdések 2015 tavaszi félév 1. Előadás: Alapismeretek energetikából, nukleáris fizikából NE-1.1. Soroljon fel energia mennyiségeket tartalmazó összefüggéseket a mechanikából, a hőtanból,

Részletesebben

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Készítette: Sánta Kata Budapest, május 1.

Készítette: Sánta Kata Budapest, május 1. A KIÉGETT FŰTŐELEMEK TRANSZMUTÁCIÓJA, SZUBKRITIKUS RENDSZEREK Készítette: Sánta Kata Budapest, 2012. május 1. Bevezetés Köztudott, hogy a világ energiaigénye a gazdasági fejlődés velejárójaként - évről

Részletesebben

A szabályozott láncreakció PETRÓ MÁTÉ 12.C

A szabályozott láncreakció PETRÓ MÁTÉ 12.C A szabályozott láncreakció PETRÓ MÁTÉ 12.C Rövid vázlat: Történelmi áttekintés Az atomreaktor felépítése és működése Reaktortípusok Érdekességek: biztonság a világ atomenergia termelése Csernobil Kezdetek

Részletesebben

Gyorsreaktorok szerepe az atomenergetika fenntarthatóságában

Gyorsreaktorok szerepe az atomenergetika fenntarthatóságában Gyorsreaktorok szerepe az atomenergetika fenntarthatóságában Szieberth Máté Budapesti Műszaki és Gazdaságtudományi Egyetem () Nukleáris Technikai Intézet () MTA Sugár- és Környezetfizikai Albizottság tudományos

Részletesebben

Atomreaktorok. Készítette: Hanusovszky Lívia

Atomreaktorok. Készítette: Hanusovszky Lívia Atomreaktorok Készítette: Hanusovszky Lívia Tartalom Történeti áttekintés - reaktor generációk Az atomenergia jelenlegi szerepe Reaktor típusok Egzotikus reaktorok 1. Első generációs reaktorok Az 1970-es

Részletesebben

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete Magfizika (Vázlat) 1. Az atommaggal kapcsolatos ismeretek kialakulásának történeti áttekintése a) A természetes radioaktivitás felfedezése b) Mesterséges atommag-átalakítás Proton felfedezése Neutron felfedezése

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Az atomerőművek technikai fejlődése, és generációik

Az atomerőművek technikai fejlődése, és generációik Az atomerőművek technikai fejlődése, és generációik Ó BUDAI EGYETEM ALBA REG I A M ŰSZAKI KAR G ARAI G ÉZA SZABADEGYETEM M ÁSO DI K ÉVFOLYAM 2015. O KTÓBER 7. DR. HABI L. T ÓT H M I HÁLY P ROF. E M E RI

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

A MAGTÁBLÁZATOK. A rendszám (Z) a neutronszám (N) függvényében A stabil magok Z=20-ig a os egyenes mentén, utána az alatt helyezkednek el.

A MAGTÁBLÁZATOK. A rendszám (Z) a neutronszám (N) függvényében A stabil magok Z=20-ig a os egyenes mentén, utána az alatt helyezkednek el. A MAGTÁBLÁZATOK A radiokémikusok magtáblázata tartalmazza az összes ismert radioaktív izotópot is. Több mint 2300 ismert nuklid és több mint 400 izomer ismert. Csak 287 izotóp stabil vagy természetben

Részletesebben

A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0

A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0 A paksi atomerőmű Készítette: Szanyi Zoltán RJQ7J0 Történelmi áttekintés 1896 Rádióaktivitás felfedezése 1932 Neutron felfedezése magátalakulás vizsgálata 1934 Fermi mesterséges transzurán izotópot hozott

Részletesebben

Magfizikai alapismeretek

Magfizikai alapismeretek Magfizikai alapismeretek 1 Az atommag alkotórészei, szerkezete, mérete Proton Neutron Tömeg 1,6736 10-24 g 1,6747 10-24 g Töltés +1,6 10-19 C 0 Stabilitás igen nem n p+e - +ν a Az atommag mérete:10-15

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

A tudomány az atomenergiában, az atomenergia Magyarországon

A tudomány az atomenergiában, az atomenergia Magyarországon A tudomány az atomenergiában, az atomenergia Magyarországon Dr. Aszódi Attila igazgató, BME Nukleáris Technikai Intézet elnök, MTA Energetikai Bizottság Atomenergiáról mindenkinek Magyar Tudományos Akadémia

Részletesebben

Iráni nukleáris létesítmények

Iráni nukleáris létesítmények Iráni nukleáris létesítmények A Közel-Kelet államainak nukleáris ambícióit régóta figyelemmel kíséri a világ. 2002 augusztusában az Iráni Nemzeti Ellenállás Tanácsa nevő szervezet washingtoni sajtótájékoztatóján

Részletesebben

Xe- és Sm-mérgezettség üzemviteli vonatkozásai

Xe- és Sm-mérgezettség üzemviteli vonatkozásai Xe- és Sm-mérgezettség üzemviteli vonatkozásai 9.1. ábra. A 135Xe abszorpciós hatáskeresztmetszetének energiafüggése 9.1. táblázat. A 135I és a 135Xe hasadásonkénti keletkezési gyakorisága különbözı hasadó

Részletesebben

Az atom felépítése Alapfogalmak

Az atom felépítése Alapfogalmak Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet

Részletesebben

MAGFIZIKA. Egy elem jellemzője, kémiai tulajdonságainak meghatározója a protonok száma, azaz a rendszám.

MAGFIZIKA. Egy elem jellemzője, kémiai tulajdonságainak meghatározója a protonok száma, azaz a rendszám. MAGFIZIKA Az atom áll: Z számú elektronból Z számú protonból A-Z számú neutronból A proton és a neutron közös neve nukleon. A - az atom tömegszáma. Z az atom rendszáma Az atomok atommagból és az azt körülvevő

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

MAGFIZIKA. a 11.B-nek

MAGFIZIKA. a 11.B-nek MAGFIZIKA a 11.B-nek ATOMMAG Pozitív töltésű, rendkívül kicsi ATOMMAG Töltése Z e, ahol Z a rendszám 10 átmérő Tömege az atom 99,9%-a Sűrűsége: 10 rendkívül nagy! PROTON Jelentése: első (ld. prototípus,

Részletesebben

IV. generációs reaktorok kutatása. Czifrus Szabolcs BME NTI

IV. generációs reaktorok kutatása. Czifrus Szabolcs BME NTI IV. generációs reaktorok kutatása Czifrus Szabolcs BME NTI Az atomenergia jelenlegi helyzete a világon 435 atomerőmű működik (2015. február) 31 ország, összesen 375 000 MWe kapacitás 70 reaktort építenek

Részletesebben

Látogatás egy reprocesszáló üzemben. Nagy Péter. Hajdúszoboszló, ELFT Sugárvédelmi Továbbképző Tanfolyam,

Látogatás egy reprocesszáló üzemben. Nagy Péter. Hajdúszoboszló, ELFT Sugárvédelmi Továbbképző Tanfolyam, Látogatás egy reprocesszáló üzemben Nagy Péter Hajdúszoboszló, ELFT Sugárvédelmi Továbbképző Tanfolyam, 2018.04.17-19. Előzmények European Nuclear Young Generation Forum (ENYGF), Paris, 2015.június 22-24.

Részletesebben

FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA

FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA 3. elıadás AZ ENERGETIKA ÁLTALÁNOS KÉRDÉSEI 2009/2010. tanév ıszi félév 1. Néhány alapfogalom TARTALOM 2. Az energiahordozók készletei és azok felhasználásának alakulása

Részletesebben

Energiagazdálkodás c. tantárgy 2010/1011. tanév, 1. félév

Energiagazdálkodás c. tantárgy 2010/1011. tanév, 1. félév Energiagazdálkodás c. tantárgy 2010/1011. tanév, 1. félév 1. TÉMAKÖR Energetikai alapfogalmak 1.1. Az energiahordozó fogalma, a primer és szekunder energiahordozók definíciója. A megújuló és kimerülı primer

Részletesebben

ALLEGRO Reaktorral Kapcsolatos Reaktorfizikai Kihívások XV. MNT Szimpózium

ALLEGRO Reaktorral Kapcsolatos Reaktorfizikai Kihívások XV. MNT Szimpózium ALLEGRO Reaktorral Kapcsolatos Reaktorfizikai Kihívások XV. MNT Szimpózium 2016.12.08-09. Pónya Petra BME NTI Czifrus Szabolcs BME NTI ALLEGRO Hélium hűtésű gyorsreaktor IV. Generációs prototípus reaktor

Részletesebben

Bevezetés a magfizikába

Bevezetés a magfizikába a magfizikába Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Bevezetés Kötési energia Magmodellek Magpotenciál Bevezetés 2 / 35 Bevezetés Bevezetés Kötési energia Magmodellek Magpotenciál Rutherford

Részletesebben

Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés).

Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés). Atomenergia Rádioaktív anyagok vizsgálata: sugárzás közben sokkal nagyobb energia szabadul fel, mint a hagyományos kémiai folyamatokban (pl. égés). Kutatók: vizsgálták az atomenergia felszabadításának

Részletesebben

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont

ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont Az atomenergia-termelés jelenleg két fontos kérdést vet fel, amelyekre pozitív választ kell találni: az egyik a

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomeergetikai alapismeretek 6. előadás: Atomreaktorok, atomerőművek Prof. Dr. Aszódi Attila Egyetemi taár, BME Nukleáris Techikai Itézet Budapest, 2019. március 12. https://kahoot.it/ az előző órai ayagból

Részletesebben

Magfizika az iskolában

Magfizika az iskolában Magfizika az iskolában Sükösd Csaba BME Nukleáris Technikai Intézet ELTE PhD Iskola Tartalom Nukleáris ismeretek a kerettantervekben Válogatott fejezetek a magfizikából Rutherford kísérlet Láncreakció

Részletesebben

A nuklidok csoportosítása

A nuklidok csoportosítása A nuklidok csoportosítása NUKLIDOK STABIL NUKLIDOK számuk: 264 db (pl: 12 C, 14 N, 16 O) RADIOAKTÍV NUKLIDOK Elsődleges természetes radioaktív nuklidok Másodlagos természetes radioaktív nuklidok Indukált

Részletesebben

Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.

Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. MGFIZIK z atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. Z TOMMG SZERKEZETE, RDIOKTIVITÁS PTE ÁOK Biofizikai Intézet Futó Kinga magfizika azonban még nem lezárt tudomány,

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

Lakossági Nukleáris Enciklopédia

Lakossági Nukleáris Enciklopédia Lakossági Nukleáris Enciklopédia verzió: 3.0 2018.01.04. OAH lakossági nukleáris enciklopédia A kifejezések és magyarázatuk feltüntetése az alábbi szerkezetet követi: magyar kifejezés, magyar rövidítés

Részletesebben

Csernobili látogatás 2017

Csernobili látogatás 2017 Csernobili látogatás 2017 A nukleáris technika múltja, jelene, jövője? Radnóti Katalin rad8012@helka.iif.hu http://members.iif.hu/rad8012/ Érintendő témakörök Főbb reaktortípusok A csernobili baleset lefolyása

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Csernobili látogatás 2017

Csernobili látogatás 2017 Csernobili látogatás 2017 A nukleáris technika múltja, jelene, jövője? Radnóti Katalin rad8012@helka.iif.hu http://members.iif.hu/rad8012/ Érintendő témakörök Főbb reaktortípusok A csernobili baleset lefolyása

Részletesebben

Mit értünk a termikus neutronok fogalma alatt? Becsüljük meg a sebességüket 27 o C hőmérsékleten!

Mit értünk a termikus neutronok fogalma alatt? Becsüljük meg a sebességüket 27 o C hőmérsékleten! Országos Szilárd Leó fizikaverseny Elődöntő 04. Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrenen lehet megoldani. A megoldáshoz bármilyen segédeszköz használható. Rendelkezésre

Részletesebben

3. Előadás 2014. Molnár Zsuzsa Radanal

3. Előadás 2014. Molnár Zsuzsa Radanal 3. Előadás 2014 Molnár Zsuzsa Radanal Az atommagban rejlő energia alkalmazása MAGHASADÁS/FISSZIÓ hasadóanyag: 235 U, 239 Pu, 233 U 235 U + n term 137 Te + 97 Zr + 2n gyors + 200 MeV, 4 sec 137 I, 25 sec

Részletesebben

Nemzeti Nukleáris Kutatási Program

Nemzeti Nukleáris Kutatási Program Magyar Tudományos Akadémia Energiatudományi Kutatóközpont Nemzeti Nukleáris Kutatási Program 2014-2018 Horváth Ákos Főigazgató, MTA EK foigazgato@energia.mta.hu Előzmények 2010. Elkészül a hazai nukleáris

Részletesebben

A SÓOLVADÉKOS REAKTOROKBAN REJLŐ LEHETŐSÉGEK

A SÓOLVADÉKOS REAKTOROKBAN REJLŐ LEHETŐSÉGEK A SÓOLVADÉKOS REAKTOROKBAN REJLŐ LEHETŐSÉGEK Király Márton kiraly.marton@energia.mta.hu MTA Energiatudományi Kutatóközpont Fűtőelem és Reaktoranyagok Laboratórium 2013. december 5. XII. MNT Nukleáris Technikai

Részletesebben

Nemlineáris szállítószalag fúziós plazmákban

Nemlineáris szállítószalag fúziós plazmákban Nemlineáris szállítószalag fúziós plazmákban Pokol Gergő BME NTI BME TTK Kari Nyílt Nap 2018. november 16. Hogyan termeljünk villamos energiát? Bőséges üzemanyag: Amennyit csak akarunk, egyenletesen elosztva!

Részletesebben

A nuklidok csoportosítása

A nuklidok csoportosítása A nuklidok csoportosítása NUKLIDOK STABIL NUKLIDOK számuk: 264 db (pl: 12 C, 14 N, 16 O) RADIOAKTÍV NUKLIDOK Elsődleges természetes radioaktív nuklidok Másodlagos természetes radioaktív nuklidok Indukált

Részletesebben

4. Atomfizika, magfizika, nukleáris kölcsönhatás

4. Atomfizika, magfizika, nukleáris kölcsönhatás Az optikai kép fogalma (valódi, látszólagos) Síktükör Lapos gömbtükrök (homorú, domború) Vékony lencsék (gyűjtő, szóró) Fókusztávolság, dioptria Leképezési törvény Nagyítás Egyszerű nagyító Fényképezőgép,

Részletesebben

NEGYEDIK GENERÁCIÓS REAKTOROK Keresztúri András, Pataki István, Tóta Ádám MTA Energiatudományi Kutatóközpont, Reaktoranalízis Laboratórium

NEGYEDIK GENERÁCIÓS REAKTOROK Keresztúri András, Pataki István, Tóta Ádám MTA Energiatudományi Kutatóközpont, Reaktoranalízis Laboratórium felfedezés idõpontja 3. ábra. Az üstökös abszolút fényességének változása 2011. szeptember 30-a és 2013. november 10-e között. A hullámzó fényesedés a kisméretû, az Oort-felhôbôl elôször érkezô üstökösök

Részletesebben

Az atommagot felépítő részecskék

Az atommagot felépítő részecskék MAGFIZIKA Az atommagot felépítő részecskék Proton: A hidrogénatom magja. töltése: Q p = e = 1,6 10 19 C, tömege: m p = 1,672 10-27 kg. Neutron: a protonnal közel megegyező tömegű semleges részecske. tömege:

Részletesebben

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135 RADIOKÉMIA László Krisztina, F ép. I. lh., I. emelet, 135 klaszlo@mail.bme.hu Nagy Lajos György és LK: Radiokémia és izotóptechnika Műegyetemi Kiadó 1997 Antoine Henri Becquerel (1852-1908) Maria Skłodowska-Curie

Részletesebben

ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA

ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Írta: PÁTZAY GYÖRGY Lektorálta: ELTER ENIKŐ ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA

Részletesebben

Új típusú fűtőelemek bevezetésének megalapozását szolgáló kísérletek, 2015 & 2016

Új típusú fűtőelemek bevezetésének megalapozását szolgáló kísérletek, 2015 & 2016 Új típusú fűtőelemek bevezetésének megalapozását szolgáló kísérletek, 2015 & 2016 Slonszki Emese, Nagy Attila TSO Szeminárium, OAH, 2016. június 7. A projekt célja Vízhűtésű termikus reaktorokhoz használható

Részletesebben

Az atommag szerkezete

Az atommag szerkezete Az atommag szerkezete Biofizika előadások 2013 november Orbán József PTE ÁOK Biofzikai Intézet Filozófusok / tudósok Történelem Aristoteles Dalton J.J.Thomson Bohr Schrödinger Pauli Curie házaspár Teller

Részletesebben

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, 2002 március 13 9-12 óra 11 osztály 1 Egyatomos ideális gáz az ábrán látható folyamatot végzi A folyamat elsõ szakasza izobár folyamat, a második szakasz

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

ALLEGRO gázhűtésű gyorsreaktor CATHARE termohidraulikai rendszerkódú számításai

ALLEGRO gázhűtésű gyorsreaktor CATHARE termohidraulikai rendszerkódú számításai ALLEGRO gázhűtésű gyorsreaktor CATHARE termohidraulikai rendszerkódú számításai Takács Antal MTA EK Siklósi András Gábor OAH XII. Nukleáris technikai Szimpózium 2013 Gázhűtésű reaktorok és PWR-ek összehasonlítása

Részletesebben

(2) A tényezők jelentése a következő:

(2) A tényezők jelentése a következő: REAKTOR ÜZEMELTETÉSI GYAKORLAT 1. Bevezetés Az üzemeltetési gyakorlat célja az atomreaktorban lejátszódó fizikai folyamatoknak, a reaktor felépítésének, nukleáris és technológiai berendezéseinek, valamint

Részletesebben

A Nukleáris Technikai Intézet és az atomenergetikai képzések

A Nukleáris Technikai Intézet és az atomenergetikai képzések A Nukleáris Technikai Intézet és az atomenergetikai képzések Prof. Dr. Aszódi Attila egyetemi tanár, BME Nukleáris Technikai Intézet A Atomtörvény adta országos oktatási feladatok Az intézet két tanszékből

Részletesebben

Detektorfejlesztés a késő neutron kibocsájtás jelenségének szisztematikus vizsgálatához. Kiss Gábor MTA Atomki és RIKEN Nishina Center

Detektorfejlesztés a késő neutron kibocsájtás jelenségének szisztematikus vizsgálatához. Kiss Gábor MTA Atomki és RIKEN Nishina Center Detektorfejlesztés a késő neutron kibocsájtás jelenségének szisztematikus vizsgálatához Kiss Gábor MTA Atomki és RIKEN Nishina Center A késő neutron kibocsájtás felfedezése R. B. Roberts, R. C. Meyer és

Részletesebben

Aktív zóna: A reaktornak az a térfogata, melyben a láncreakció végbemegy.

Aktív zóna: A reaktornak az a térfogata, melyben a láncreakció végbemegy. Nukleáris fogalomtár A leggyakrabban használt nukleáris fogalmak Az alábbi összeállítás az atomenergetikában, illetve a róla szóló hírekben leggyakrabban szereplő szakkifejezéseket kívánja meghatározni.

Részletesebben

Tartalom FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA. 1. elıadás. Fenntartható fejlıdés és atomenergia. általános kérdései. Dr. Csom Gyula professor emeritus

Tartalom FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA. 1. elıadás. Fenntartható fejlıdés és atomenergia. általános kérdései. Dr. Csom Gyula professor emeritus FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA 1. elıadás A fenntartható fejlıdés és az energetika általános kérdései 2007/2008. tanév ıszi félév Dr. Csom Gyula professor emeritus Tartalom 1. A fenntartható fejlıdés

Részletesebben