A természetes uránnak csak 0.71%-a 235-ös izotóp, a többi 238-as, amely termikus neutronokkal nem hasítható

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A természetes uránnak csak 0.71%-a 235-ös izotóp, a többi 238-as, amely termikus neutronokkal nem hasítható"

Átírás

1 Atomerőművek

2 (n,f) reakciók, maghasadás (Otto Hahn): 235 U + n [ ] 236 U 3n+ 90 Kr+ 143 Ba A természetes uránnak csak 0.71%-a 235-ös izotóp, a többi 238-as, amely termikus neutronokkal nem hasítható

3 235-U hasadvány-termékei eloszlása Hozam Tömegszám

4 A promt emittált energia: 176,5 MeV ebből a hasadási termékek energiája: 164,6 MeV neutron kinetikus energiája: gamma sugárzás energiája: 4,9 MeV 7,0 MeV Késleltetve emittált energia: ebből a béta-részecskék energiája: neutrínók energiája: gamma sugárzás energiája: 23,5 MeV 6,5 MeV 10,5 MeV 6,5 MeV Összesen: 200 MeV

5 (n,f) reakcióra képes magok Izotóp Kiindulási anyag Hatásos neutron 235-U Természetes urán termikus 233-U Természetes tórium, termikus neutron besugárzás 239-Pu 238-U neutron termikus besugárzás 241-Pu 238-U neutron termikus besugárzás 238-U Természetes urán gyors 232-Th Természetes tórium gyors

6 Láncreakció k - sokszorozási tényező: k szekunder neutronok száma primer neutronok száma

7 A rendszer lehet: szuperkritikus - atombomba szubkritikus kritikus - atomreaktor

8 Véges méretű rendszer esetén un. effektív sokszorosítási tényezőről beszélünk: k ahol k P - az adott méretektől függő paraméter a méret növelésével P közelít az egyhez. Kritikus térfogat (tömeg) esetén : k eff eff k P - végtelen kiterjedésű rendszer sokszorosítási = a rendszer kritikussá válik. tényezője U kg U kg Pu-239 (alpha phase) 10 kg

9 Természetes előfordulása Primer: Szekunder: uránszurokérc U 3 O 8 pl: karnotit K 2 O 2UO 3 V 2 O 5 8H 2 O utinit P 2 O 5 UO 2 CaO 12H 2 O Autonit P 2 O 5 UO 3 CaO 12H 2 O Torberit CuO 2UO 3 P 2 O 5 12H 2 O Uranocircit P 2 O 5 2UO 3 BaO 8H 2 O Beatfit (U, Ca)(Nb, Ta, Ti) 3 4H 2 O Uranotil CaO 2UO 3 2SiO 2 6H 2 O Skladowskit MgO 2UO 3 2SiO 2 6H 2 O Karnotit K 2 O 2UO 3 V 2 O 5 8H 2 O

10 A világ uránkészlete 1000 t-ban Ausztrália 492 Kanada 527 Franciaország 156 Niger 274 Namibia 125 USA 1300 Algéria 34 Közép-Afrikai Közt. 18 Gabon 47 Brazilia 160 Dél-Afrikai Közt. 296 Urántermelés t/év

11 Uránérc bányászat Fizikai dúsítás Őrlés, elválasztás a sűrűségkülönbség alapján, flotáció, elektrosztatikus, mágneses szeparálás. Kémiai feltárás Savas feltárás UO 2 SO 4 Lúgos feltárás Na 4 UO 2 (CO 3 ) 3 Elválasztás, dúsítás Kicsapás NH 3, NaOH Ioncsere Extrakció Technikai U-koncentrátum utótisztítása Reaktor tisztaságú urán feldolgozása

12 U 3 O 8

13 U használat: dúsítás fizikai módszerekkel. K-25 Diffúziós Dúsítómű, Oak Ridge, TN Dúsítási fok: 1.004=>Nagy üzem, (4000 egység)

14 Modern módszer: Gás centrifuga URENCO GAS CENTRIFUGA

15 Pu előállítás Szaporító reaktorban Pu, U és hasadványtermékek elválasztása kémiai módszerrel (PUREX) (reprocesszálás) X-10 grafit reaktor at Oak Ridge

16 Üzemanyag nyomottvizes reaktorhoz

17 FRONT END Fűtőelem előállítás, tokozás Nukleáris fűtőanyag ciklus Reaktor BACK END Átmeneti tárolás Izotópos dúsítás 235 U, 238 U 239 Pu, 233 U Kémiai átalakítás Reprocesszálás Feltárás Bányászat NUKLEÁRIS FŰ TŐ ANYAG CIKLUS Végső geológiai elhelyezés

18 BACK END Kiégett ÜA. Átm eneti Tároló Atomerő m ű LEBONTÁSI ÉS NEM AE EREDETŰ NAGY AKTIVITÁSÚ HULLADÉKOK nyílt ciklus konvencionális zárt ciklus Reprocesszáló Üzem Üvegezett hull. Üvegezett hulladék továbbfejlesztett zárt ciklus kierjesztett idejű átmeneti tároló éves tároló Transzm utáló Üzem késleltetett döntés Mélygeológiai tároló

19 ATOMREAKTOR MŰKÖDÉSE

20 A fosszilis erőmű és az atomerőmű elvi felépítése

21 Az atomreaktorok osztályozása Cél szerint kísérleti reaktorok (izotóp előállítás, magfizikai kutatás, oktatás) erőművi reaktorok (energiatermelés) tenyészreaktorok (új hasadóanyag előáll.) impulzusreaktorok (különleges magfizikai vizsgálatok) anyagvizsgáló reaktorok (szerkezeti anyagok vizsgálata)

22 Fűtőanyag elrendezése szerint - homogén reaktorok - heterogén reaktorok Hasadóanyag szerint U U Pu - Keverék (MOX), különböző dúsítás

23 Moderátor szerint -H 2 O -D 2 O -C -Be - szerves anyag Hűtőközeg szerint -H 2 O -D 2 O - folyékony fém -gáz - szerves anyag

24 Az atomerőmű-építés fejlődése a) Első generációs atomerőművek Az as években fejlesztették ki - Egyesült Államokban (Shippingport, Dresden, Fermi), - Szovjetunióban (Obnyinszk, Novovoronyezs-1 stb.), - Angliában (Magnox reaktorok) és Franciaországban. b) Második generációs atomerőművek

25 A jelenleg üzemelő első és második generációs reaktortípusok (elvi technológiai) jellegű csoportosítás Kereskedelmi úton beszerezhető reaktorok Vízhűtésű reaktorok (WR) Gázhűtésű reaktorok (GCR) Szaporító reaktorok (BR) Nehézvizes reaktorok (HWR) Könnyűvizes reaktorok (LWR) Magnoxreaktor Magas hőmérsékletű gázhűtésű reaktor (HTGR) Sóolvadékos szaporító reaktor (MSBR) Nyomott nehézvizes reaktor (PHWR) CANDU reaktor Nehézvizes vízforralásos reaktor (SGHWR) Nyomottvizes reaktor (PWR) Vízhűtésű, grafitmoderátoros forralóvizes reaktor (RBMK) Forralóvizes reaktor (BWR) Folyékony fém hűtésű (gyors) szaporító reaktor (LMFBR) Gázhűtésű gyors szaporító reaktor (GFBR)

26 c) Harmadik generációs atomerőművek A harmadik generációs reaktorok legfontosabb sajátosságai: szabványosított terv valamennyi típusra, amely gyors engedélyezési eljárást, alacsony fajlagos beruházási költséget (konkrét feltételektől függően általában USD/kWe) és rövid (4 év) építési időt eredményez; egyszerűbb és robusztusabb kialakítás; belső (inherens) biztonság és a passzív védelmi tulajdonságok minél teljesebbé tétele; magasabb rendelkezésre állás és hosszabb tipikusan 60 év üzemi élettartam; a zónaolvadásos balesetek kisebb (~ 10-6 reaktorévenként) valószínűsége; minimális környezeti hatás; magasabb kiégetési szint, ami hatékonyabb üzemanyag-felhasználást eredményez és kevesebb kiégett üzemanyag keletkezésére vezet;

27 Harmadik generációs rektorortípusok ABWR (Advanced Boiling Water Reactor), AP1000 (Advanced Pressurized Water Reactor 1000), ESBWR (European Simplified Boiling Water Reactor), GT-MHR (Gas Turbine-Modular High Temperature Reactor), PBMR (Pebble Bed Modular Reactor), SWR-1000 (Siedewasser Reactor 1000).

28 Fontosabb erőműtípusok

29 Nyomottvizes reaktor (Pressured Water Reactor, vagy VVER) Idegen nyelvű rövidítés értelmezése: Pressurized Water Reaktor = PWR, illetve Vodo-Vodjannij Energeticseszkij Reaktor = VVER Az ábrán lévő számok magyarázata: 1: Fűtőelemek, 2: Szabályozó rudak, 3: Víz, 4: Reaktortartály, 5: Gőzfejlesztő berendezés, 6: A turbina gőzvezetéke, 7: Sugárvédelem

30 VVER-440/213 TÍPUSÚ ATOMREAKTOR (PAKS) (Heterogén reaktor, termikus, nyomott vizes típus, moderátora a hőhordozó víz) Fűtőanyag: 235 U-ban dúsított UO 2 (d=7,65 mm, m=30 mm, középen 1,2 mm furat) Dúsítás: 1,6-2,4-3,6% Fémuránban a súly: 42t (312 db üzemi kazetta (126 fűtőelem), max. T= C) Fűtőanyag burkolat: 1% Nb-t tartalmazó Zr Hűtővíz (moderátor): Könnyű víz Belépő hűtővíz: C Kilépő hűtővíz: C (Tervezési T:325 0 C, p:13,3mpa) Cirkuláltatott víz mennyisége: t/óra Bórsavtartalom: 0-8,0 g/dm 3 üzemzavari tartalék: 40 g/dm 3

31 Neutronfluens teljesítmény a reaktortartályban: n/cm 2 s Reflektor: hűtővíz és acélfal Szabályozó anyag: Bóracél (2% B) Felmelegítés sebessége: 20 0 C/óra Hűtés: 30 0 C/óra A PRIMER KÖR NAGYOBB EGYSÉGEI Atomreaktor Fővízkör Térfogatkiegyenlítő rendszer A primerkör részáramú tisztítórendszere Pótvíz és bórsavas szabályozás rendszere Szervezett szivárgások rendszere Aktív zóna üzemzavari hűtőrendszerei Üzemzavar lokalizációs rendszerek Pihentető medence hűtőrendszere Hidrogénégető rendszer Radioaktív gáz tisztító rendszere Primerköri víztisztító rendszer Folyékony hulladék tárolók Közbenső hűtőkörök

32 1 Reaktortartály 2 Gőzfejlesztő 3 Átrakógép 4 Pihentető medence 5 Biológiai védelem 6 Kiegészítő tápvízrendszer 7 Reaktor 8 Lokalizációs torony 9 Buborékoltató tálcák 10 Légcsapda 11 Szellőző 12 Turbina 13 Kondenzátor 14 Turbinaház 15 Gáztalanítós tápvíztartály 16 Előmelegítő 17 Turbinacsarnok daruja 18 Szabályzó és műszer helyiségek

33

34

35

36

37 Elgőzölögtető, illetve forraló vizes reaktor (Boiling Water Reactor = BWR) 1: Fűtőelemek, 2: Szabályozó rudak, 3: Víz, 4: Reaktortartály, 5: Gőz, 6: Turbinához, 7: Szabályozó rudak meghajtása, 8: Tápvíz, 9: Sugárvédelem.

38 Nehézvizes reaktor (Heavy Water Reactor = HWR)

39

40

41 Gázhűtésű reaktor (Gas Cooled Reactor = GCR)

42 A gázhűtésű atomerőmű elvi kapcsolási rajza

43 Folyékony fémhűtésű gyors tenyészreaktor (Liquid Metal Fast Breeder Reactor = LMFBR)

44

45 Gyors tenyészreaktorok

46 RBMK (Pressure-Tube Graphite Reactors)

47 A Csernobil-1 egyik eleme és a reaktorépület

48 Golyóhalom reaktor (Thorium High Temperature Reactor )

Paks déli részén a 6-os számú főút és a Duna között. Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek.

Paks déli részén a 6-os számú főút és a Duna között. Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek. www.atomeromu.hu Paks déli részén a 6-os számú főút és a Duna között Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek. Az urán 235-ös izotópját lassú neutronok

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 7. előadás: Atomreaktorok, atomerőművek Prof. Dr. Aszódi Attila Egyetemi tanár, BME Nukleáris Technikai Intézet Budapest, 2019. március 26. https://kahoot.it/ az előző órai

Részletesebben

A hazai nukleáris kapacitás hosszú távú biztosítása

A hazai nukleáris kapacitás hosszú távú biztosítása A hazai nukleáris kapacitás hosszú távú biztosítása Dr. Trampus Péter trampusp@trampus.axelero.net Linde Hegesztési Szimpózium Budapest, 2014. október 15. Tartalom Bevezetés Bővítés igény gazdaságosság

Részletesebben

Maghasadás, atomreaktorok

Maghasadás, atomreaktorok Maghasadás, atomreaktorok Magfizika Az urán életútja A Nap "második generációs" csillag, anyagának (és a bolygók, köztük a Föld anyagának) egy része egy másik csillagból származik. E csillag életének utolsó

Részletesebben

Atomerőmű. Radioaktívhulladék-kezelés

Atomerőmű. Radioaktívhulladék-kezelés Atomerőmű. Radioaktívhulladék-kezelés Lajos Máté lajos.mate@osski.hu OSSKI Bővített fokozatú sugárvédelmi tanfolyam 2016. október 13. Országos Közegészségügyi Központ (OKK) Országos Sugárbiológiai és Sugáregészségügyi

Részletesebben

A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0

A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0 A paksi atomerőmű Készítette: Szanyi Zoltán RJQ7J0 Történelmi áttekintés 1896 Rádióaktivitás felfedezése 1932 Neutron felfedezése magátalakulás vizsgálata 1934 Fermi mesterséges transzurán izotópot hozott

Részletesebben

Első magreakciók. Targetmag

Első magreakciók. Targetmag Magreakciók 7 N 14 17 8 7 N(, p) 14 O 17 8 O Első magreakciók p Targetmag 30 Al n P 27 13, 15. Megmaradási elvek: 1. a nukleonszám 2. a töltés megmaradását. 3. a spin, 4. a paritás, 5. az impulzus, 6.

Részletesebben

A szabályozott láncreakció PETRÓ MÁTÉ 12.C

A szabályozott láncreakció PETRÓ MÁTÉ 12.C A szabályozott láncreakció PETRÓ MÁTÉ 12.C Rövid vázlat: Történelmi áttekintés Az atomreaktor felépítése és működése Reaktortípusok Érdekességek: biztonság a világ atomenergia termelése Csernobil Kezdetek

Részletesebben

FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA

FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA 4. elıadás AZ ATOMREAKTOROK FIZIKAI ÉS TECHNIKAI ALAPJAI, ATOMERİMŐVEK 2009/2010. tanév ıszi féléve Dr. Csom Gyula professor emeritus TARTALOM 1. Magfizikai alapok

Részletesebben

Atomreaktorok. Készítette: Hanusovszky Lívia

Atomreaktorok. Készítette: Hanusovszky Lívia Atomreaktorok Készítette: Hanusovszky Lívia Tartalom Történeti áttekintés - reaktor generációk Az atomenergia jelenlegi szerepe Reaktor típusok Egzotikus reaktorok 1. Első generációs reaktorok Az 1970-es

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

Energetikai mérnökasszisztens Mérnökasszisztens

Energetikai mérnökasszisztens Mérnökasszisztens A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

235 U atommag hasadása

235 U atommag hasadása BME Oktatóreaktor 235 U atommag hasadása szabályozott láncreakció hasadási termékek: pl. I, Cs, Ba, Ce, Sr, La, Ru, Zr, Mo, stb. izotópok több mint 270 hasadási termék, A=72 és A=161 között keletkezik

Részletesebben

Magyarországi nukleáris reaktorok

Magyarországi nukleáris reaktorok Tematika 1. Az atommagfizika elemei 2. Magsugárzások detektálása és detektorai 3. A nukleáris fizika története, a nukleáris energetika születése 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja

Részletesebben

Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba

Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba Felfedezése 1934 Fermi: transzurán izotóp előállítása neutron belövellésével 1938 Fermi: fizikai Nobel-díj 1938 Hahn:

Részletesebben

Atomenergetika Erőművek felépítése

Atomenergetika Erőművek felépítése Atomenergetika Erőművek felépítése Atomenergetika Az Európai Uniós atomerőművek jellemzése az összes villamosenergia 35%-át adják ám 2015 és 2030 között elérik a tervezett élettartamuk végét Franciaország

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 5/2. előadás: Atomreaktorok Prof. Dr. Aszódi Attila Egyetemi tanár, BME Nukleáris Technikai Intézet Budapest, 2019. március 5. Hasadás, láncreakció U-235: termikus neutronok

Részletesebben

PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR KÖRNYEZETTUDOMÁNYI INTÉZET

PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR KÖRNYEZETTUDOMÁNYI INTÉZET PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR KÖRNYEZETTUDOMÁNYI INTÉZET A jövő (2010-2030) újabb generációs atomerőművei S Z A K D O L G O Z A T Készítette: Agócs Ágnes biológia-környezettan tanárszakos

Részletesebben

Nukleáris energetika. Kérdések 2015 tavaszi félév

Nukleáris energetika. Kérdések 2015 tavaszi félév Nukleáris energetika. Kérdések 2015 tavaszi félév 1. Előadás: Alapismeretek energetikából, nukleáris fizikából NE-1.1. Soroljon fel energia mennyiségeket tartalmazó összefüggéseket a mechanikából, a hőtanból,

Részletesebben

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorok üzemtana Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorban és környezetében keletkező sugárzástípusok és azok forrásai Milyen típusú sugárzások keletkeznek? Melyik ellen milyen

Részletesebben

Magfizika az iskolában

Magfizika az iskolában Magfizika az iskolában Sükösd Csaba BME Nukleáris Technikai Intézet ELTE PhD Iskola Tartalom Nukleáris ismeretek a kerettantervekben Válogatott fejezetek a magfizikából Rutherford kísérlet Láncreakció

Részletesebben

Látogatás egy reprocesszáló üzemben. Nagy Péter. Hajdúszoboszló, ELFT Sugárvédelmi Továbbképző Tanfolyam,

Látogatás egy reprocesszáló üzemben. Nagy Péter. Hajdúszoboszló, ELFT Sugárvédelmi Továbbképző Tanfolyam, Látogatás egy reprocesszáló üzemben Nagy Péter Hajdúszoboszló, ELFT Sugárvédelmi Továbbképző Tanfolyam, 2018.04.17-19. Előzmények European Nuclear Young Generation Forum (ENYGF), Paris, 2015.június 22-24.

Részletesebben

ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA

ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Írta: PÁTZAY GYÖRGY Lektorálta: ELTER ENIKŐ ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA

Részletesebben

Maghasadás (fisszió)

Maghasadás (fisszió) http://www.etsy.com Maghasadás (fisszió) 1939. Hahn, Strassmann, Meitner neutronbesugárzásos kísérletei U magon új reakciótípus (maghasadás) Azóta U, Th, Pu (7 izotópja) hasadási sajátságait vizsgálták

Részletesebben

A MAGTÁBLÁZATOK. A rendszám (Z) a neutronszám (N) függvényében A stabil magok Z=20-ig a os egyenes mentén, utána az alatt helyezkednek el.

A MAGTÁBLÁZATOK. A rendszám (Z) a neutronszám (N) függvényében A stabil magok Z=20-ig a os egyenes mentén, utána az alatt helyezkednek el. A MAGTÁBLÁZATOK A radiokémikusok magtáblázata tartalmazza az összes ismert radioaktív izotópot is. Több mint 2300 ismert nuklid és több mint 400 izomer ismert. Csak 287 izotóp stabil vagy természetben

Részletesebben

Dr. Csom Gyula 4. ATOMERÕMÛVEK. Budapest 2004. június

Dr. Csom Gyula 4. ATOMERÕMÛVEK. Budapest 2004. június Dr. Csom Gyula 4. ATOMERÕMÛVEK Budapest 2004. június E lõszó E z a kiadvány a Magyar Atomfórum Egyesület által közreadott sorozat része, amely a hazai villamosenergia-ellátás jövõjének kérdéseit vizsgálja.

Részletesebben

Magfizikai alapismeretek

Magfizikai alapismeretek Magfizikai alapismeretek 1 Az atommag alkotórészei, szerkezete, mérete Proton Neutron Tömeg 1,6736 10-24 g 1,6747 10-24 g Töltés +1,6 10-19 C 0 Stabilitás igen nem n p+e - +ν a Az atommag mérete:10-15

Részletesebben

Az atomerőművek technikai fejlődése, és generációik

Az atomerőművek technikai fejlődése, és generációik Az atomerőművek technikai fejlődése, és generációik Ó BUDAI EGYETEM ALBA REG I A M ŰSZAKI KAR G ARAI G ÉZA SZABADEGYETEM M ÁSO DI K ÉVFOLYAM 2015. O KTÓBER 7. DR. HABI L. T ÓT H M I HÁLY P ROF. E M E RI

Részletesebben

NEMZETKÖZI ÖSSZEFOGÁS A 21. SZÁZAD ATOMENERGETIKÁJÁÉRT

NEMZETKÖZI ÖSSZEFOGÁS A 21. SZÁZAD ATOMENERGETIKÁJÁÉRT NEMZETKÖZI ÖSSZEFOGÁS A 21. SZÁZAD ATOMENERGETIKÁJÁÉRT Csom Gyula a műszaki tudomány doktora professor emeritus Budapest 2005. április 2 Tartalomjegyzék Bevezetés A fosszilis energiahordozók és az energiaigények

Részletesebben

1. TÉTEL 2. TÉTEL 3. TÉTEL

1. TÉTEL 2. TÉTEL 3. TÉTEL 1. TÉTEL 1. Ismertese az örvényszivattyúk működési elvét és felépítését (fő szerkezeti elemeit)! 2. Ismertesse a fővízköri rendszer és berendezéseinek feladatát, normál üzemi állapotát és üzemi paramétereit!

Részletesebben

NEGYEDIK GENERÁCIÓS REAKTOROK Keresztúri András, Pataki István, Tóta Ádám MTA Energiatudományi Kutatóközpont, Reaktoranalízis Laboratórium

NEGYEDIK GENERÁCIÓS REAKTOROK Keresztúri András, Pataki István, Tóta Ádám MTA Energiatudományi Kutatóközpont, Reaktoranalízis Laboratórium felfedezés idõpontja 3. ábra. Az üstökös abszolút fényességének változása 2011. szeptember 30-a és 2013. november 10-e között. A hullámzó fényesedés a kisméretû, az Oort-felhôbôl elôször érkezô üstökösök

Részletesebben

Atomenergia. Láncreakció, atomreaktorok, atombomba és ezek rövid története

Atomenergia. Láncreakció, atomreaktorok, atombomba és ezek rövid története Atomenergia Láncreakció, atomreaktorok, atombomba és ezek rövid története Előzmények Az energia - amiből korábban sosem volt elég - bőségesen itt van körülöttünk, csak meg kell találnunk hozzá a kulcsot.

Részletesebben

Atomenergia a 21. században

Atomenergia a 21. században Atomenergia a 21. században 1 21. század a jelen Mi történik az atomenergiával a 21. század elején? Meglévő erőművek üzemidő-hosszabbítása 3. generációs erőművek fejlesztése, ilyenek már épülnek is 4.

Részletesebben

A sugárzások és az anyag fizikai kölcsönhatásai

A sugárzások és az anyag fizikai kölcsönhatásai A sugárzások és az anyag fizikai kölcsönhatásai A kölcsönhatásban résztvevő partner 1. Atommag 2. Az atommag erőtere 3. Elektron (szabad, kötött) 4. Elektromos erőtér 5. Molekulák 6. Makroszkopikus rendszerek

Részletesebben

Egyéb reaktortípusok. Atomerőművi technológiák. Boros Ildikó BME NTI

Egyéb reaktortípusok. Atomerőművi technológiák. Boros Ildikó BME NTI Egyéb reaktortípusok Atomerőművi technológiák Boros Ildikó BME NTI 2016.03.23. A forralóvizes reaktor (BWR) Egykörös atomerőművi kapcsolás a turbinára jutó gőz az aktív zónában termelődik a korszerű energetikai

Részletesebben

( t) Mag- és neutronfizika 10. elıadás Emlékeztetı: Láncreakció neutronokkal - - k 1

( t) Mag- és neutronfizika 10. elıadás Emlékeztetı: Láncreakció neutronokkal - - k 1 Mag- és neutronfzka 10. elıadás Emlékeztetı: Láncreakcó neutronokkal Láncreakcó dıbel változása: Késı neutronok, és szerepük! Késı neutron hányad: β Reaktvtás: k 1 ( t) Effektív n-sokszorozásn tényezı:

Részletesebben

Paksi Atomerőmű 1-4. blokk. A Paksi Atomerőmű üzemidő hosszabbítása ELŐZETES KÖRNYEZETI TANULMÁNY

Paksi Atomerőmű 1-4. blokk. A Paksi Atomerőmű üzemidő hosszabbítása ELŐZETES KÖRNYEZETI TANULMÁNY ETV-ERŐTERV Rt. ENERGETIKAI TERVEZÕ ÉS VÁLLALKOZÓ RÉSZVÉNYTÁRSASÁG 1450 Budapest, Pf. 111. 1094 Budapest, Angyal u. 1-3. Tel.: (361) 218-5555 Fax.: 218-5585, 216-6815 Paksi Atomerőmű 1-4. blokk A Paksi

Részletesebben

Jövőnk és a nukleáris energia

Jövőnk és a nukleáris energia Jövőnk és a nukleáris energia MEE 54. Vándorgyűlés Tihany, 2007. augusztus 22. Cserháti András műszaki főtanácsadó 1/31 2007.08.22. Tartalom A múlt, Paks története, biztonságnövelés Sérült üzemanyag tokozása,

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomeergetikai alapismeretek 6. előadás: Atomreaktorok, atomerőművek Prof. Dr. Aszódi Attila Egyetemi taár, BME Nukleáris Techikai Itézet Budapest, 2019. március 12. https://kahoot.it/ az előző órai ayagból

Részletesebben

A leggyakrabban használt nukleáris és technológiai fogalmak. Kisokos

A leggyakrabban használt nukleáris és technológiai fogalmak. Kisokos A leggyakrabban használt nukleáris és technológiai fogalmak Kisokos Aktív zóna: A reaktornak az a térfogata, melyben a láncreakció végbemegy. Alaperőmű: Folyamatosan, nagy kihasználtsággal üzemelő erőmű,

Részletesebben

IV. generációs reaktorok kutatása. Czifrus Szabolcs BME NTI

IV. generációs reaktorok kutatása. Czifrus Szabolcs BME NTI IV. generációs reaktorok kutatása Czifrus Szabolcs BME NTI Az atomenergia jelenlegi helyzete a világon 435 atomerőmű működik (2015. február) 31 ország, összesen 375 000 MWe kapacitás 70 reaktort építenek

Részletesebben

ALLEGRO: Gázhűtésű gyorsreaktor Közép-Európában

ALLEGRO: Gázhűtésű gyorsreaktor Közép-Európában ALLEGRO: Gázhűtésű gyorsreaktor Közép-Európában 2013. október 3-án rendezte meg az Energetikai Szakkollégium a Jendrassik György emlékfélévének második előadását, melynek címe ALLEGRO: Gázhűtésű gyorsreaktor

Részletesebben

Az atomoktól a csillagokig: Az energiaellátás és az atomenergia. Kiss Ádám február 26.

Az atomoktól a csillagokig: Az energiaellátás és az atomenergia. Kiss Ádám február 26. Az atomoktól a csillagokig: Az energiaellátás és az atomenergia Kiss Ádám 2009. február 26. Miért van szükség az energiára? Energia nélkül a társadalmak nem működnek: a bonyolult kapcsolatrendszer fenntartásához

Részletesebben

Készítette: Sánta Kata Budapest, május 1.

Készítette: Sánta Kata Budapest, május 1. A KIÉGETT FŰTŐELEMEK TRANSZMUTÁCIÓJA, SZUBKRITIKUS RENDSZEREK Készítette: Sánta Kata Budapest, 2012. május 1. Bevezetés Köztudott, hogy a világ energiaigénye a gazdasági fejlődés velejárójaként - évről

Részletesebben

Nukleáris hulladékkezelés. környezetvédelem

Nukleáris hulladékkezelés.  környezetvédelem Nukleáris hulladékkezelés http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern/nukleáris környezetvédelem A felhasználási terület meghatározza - a radioaktív izotópok fajtáját, - mennyiségét és -

Részletesebben

ALLEGRO Reaktorral Kapcsolatos Reaktorfizikai Kihívások XV. MNT Szimpózium

ALLEGRO Reaktorral Kapcsolatos Reaktorfizikai Kihívások XV. MNT Szimpózium ALLEGRO Reaktorral Kapcsolatos Reaktorfizikai Kihívások XV. MNT Szimpózium 2016.12.08-09. Pónya Petra BME NTI Czifrus Szabolcs BME NTI ALLEGRO Hélium hűtésű gyorsreaktor IV. Generációs prototípus reaktor

Részletesebben

ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont

ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont ATOMERÔMÛVI HULLADÉKOK KEZELÉSE 1. RÉSZ Fábián Margit MTA Energiatudományi Kutatóközpont Az atomenergia-termelés jelenleg két fontos kérdést vet fel, amelyekre pozitív választ kell találni: az egyik a

Részletesebben

Atomerőművi primerköri gépész Atomerőművi gépész

Atomerőművi primerköri gépész Atomerőművi gépész A /2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Csernobili látogatás 2017

Csernobili látogatás 2017 Csernobili látogatás 2017 A nukleáris technika múltja, jelene, jövője? Radnóti Katalin rad8012@helka.iif.hu http://members.iif.hu/rad8012/ Érintendő témakörök Főbb reaktortípusok A csernobili baleset lefolyása

Részletesebben

Nukleáris energiatermelés

Nukleáris energiatermelés Nukleáris energiatermelés Nukleáris balesetek IAEA (International Atomic Energy Agency) =NAÜ (nemzetközi Atomenergia Ügynökség) Nemzetközi nukleáris esemény skála, 1990 Nemzetközi nukleáris esemény skála

Részletesebben

ATOMERŐMŰ GENERÁCIÓK FEJLŐDÉSÉNEK VONZATAI

ATOMERŐMŰ GENERÁCIÓK FEJLŐDÉSÉNEK VONZATAI XIII. Évfolyam 3. szám 2018. szeptember ATOMERŐMŰ GENERÁCIÓK FEJLŐDÉSÉNEK VONZATAI DEVELOPMENTAL CONSEQUENCES OF ATOMIC POWER PLANT GENERATIONS ANTAL Zoltán; KÁTAI-URBÁN Lajos; VASS Gyula (ORCID: 0000-0001-9373-3454);

Részletesebben

Fukusima: mi történt és mi várható? Kulacsy Katalin MTA KFKI Atomenergia Kutatóintézet

Fukusima: mi történt és mi várható? Kulacsy Katalin MTA KFKI Atomenergia Kutatóintézet Fukusima: mi történt és mi várható? Kulacsy Katalin MTA KFKI Atomenergia Kutatóintézet Áldozatok és áldozatkészek A cunami tízezerszám szedett áldozatokat. 185 000 kitelepített él tábori körülmények között.

Részletesebben

VVER-440 (V213) reaktor (főberendezések és legfontosabb üzemi jellemzők)

VVER-440 (V213) reaktor (főberendezések és legfontosabb üzemi jellemzők) VVER-440 (V213) reaktor (főberendezések és legfontosabb üzemi jellemzők) Reaktor és fővízkör A főkeringtető kör névleges adatai Névleges hőteljesítmény A hőhordozó közepes hőmérséklete Megnevezés Névleges

Részletesebben

Új típusú fűtőelemek bevezetésének megalapozását szolgáló kísérletek, 2015 & 2016

Új típusú fűtőelemek bevezetésének megalapozását szolgáló kísérletek, 2015 & 2016 Új típusú fűtőelemek bevezetésének megalapozását szolgáló kísérletek, 2015 & 2016 Slonszki Emese, Nagy Attila TSO Szeminárium, OAH, 2016. június 7. A projekt célja Vízhűtésű termikus reaktorokhoz használható

Részletesebben

A Nukleáris Technikai Intézet és az atomenergetikai

A Nukleáris Technikai Intézet és az atomenergetikai A Nukleáris Technikai Intézet és az atomenergetikai képzések Budapest, 2012. április 24. A BME NTI Atomtörvény adta országos oktatási feladatok Az intézet két tanszékből áll: Nukleáris Technika Tanszék

Részletesebben

Maghasadás, láncreakció, magfúzió

Maghasadás, láncreakció, magfúzió Maghasadás, láncreakció, magfúzió Maghasadás 1938-ban hoztak létre először maghasadást úgy, hogy urán atommagokat bombáztak neutronokkal. Ekkor az urán két közepes méretű atommagra bomlott el, és újabb

Részletesebben

ENERGIATERMELÉS 8. NUKLEÁRIS ENERGIATERMELÉS

ENERGIATERMELÉS 8. NUKLEÁRIS ENERGIATERMELÉS ENERGIATERMELÉS 8. NUKLEÁRIS ENERGIATERMELÉS VILÁGUNK ATOMOS FELÉPÍTÉSŰ! ATOM NUKLEONOK pozitív atommag, r~10-15 m, protonok és neutronok, negatív elektronfelhő atomsugár~10-10 m, a tömeg az atom kiterjedésének

Részletesebben

A nuklidok csoportosítása

A nuklidok csoportosítása A nuklidok csoportosítása NUKLIDOK STABIL NUKLIDOK számuk: 264 db (pl: 12 C, 14 N, 16 O) RADIOAKTÍV NUKLIDOK Elsődleges természetes radioaktív nuklidok Másodlagos természetes radioaktív nuklidok Indukált

Részletesebben

Atomerőművek. Záróvizsga tételek

Atomerőművek. Záróvizsga tételek Energetikai mérnök BSc képzés - Atomenergetika szakirány Atomerőművek Záróvizsga tételek 1. (AE) Mely reaktortípusok tartoznak a III. generációs reaktorok közé? Ismertesse az EPR fő jellemzőit, berendezéseit!

Részletesebben

A nuklidok csoportosítása

A nuklidok csoportosítása A nuklidok csoportosítása NUKLIDOK STABIL NUKLIDOK számuk: 264 db (pl: 12 C, 14 N, 16 O) RADIOAKTÍV NUKLIDOK Elsődleges természetes radioaktív nuklidok Másodlagos természetes radioaktív nuklidok Indukált

Részletesebben

Energetika II. (BMEGEENAEE4) házi feladat

Energetika II. (BMEGEENAEE4) házi feladat Energetika II. (BMEGEENAEE4) házi feladat A sóolvadékos atomreaktor energetikához köthető felhasználásának lehetőségei Készítette: German Péter Budapest, 2012.04.26 Előszó Az általam választott téma egy

Részletesebben

3. Előadás 2014. Molnár Zsuzsa Radanal

3. Előadás 2014. Molnár Zsuzsa Radanal 3. Előadás 2014 Molnár Zsuzsa Radanal Az atommagban rejlő energia alkalmazása MAGHASADÁS/FISSZIÓ hasadóanyag: 235 U, 239 Pu, 233 U 235 U + n term 137 Te + 97 Zr + 2n gyors + 200 MeV, 4 sec 137 I, 25 sec

Részletesebben

Gyorsreaktorok szerepe az atomenergetika fenntarthatóságában

Gyorsreaktorok szerepe az atomenergetika fenntarthatóságában Gyorsreaktorok szerepe az atomenergetika fenntarthatóságában Szieberth Máté Budapesti Műszaki és Gazdaságtudományi Egyetem () Nukleáris Technikai Intézet () MTA Sugár- és Környezetfizikai Albizottság tudományos

Részletesebben

AES-2006. Balogh Csaba

AES-2006. Balogh Csaba AES-2006 Készítette: Balogh Csaba Mit jelent az AES-2006 rövidítés? Az AES-2006 a rövid neve a modern atomerőműveknek amik orosz tervezésen alapszanak és VVER-1000-es típusú reaktorral vannak felszerelve!

Részletesebben

A SÓOLVADÉKOS REAKTOROKBAN REJLŐ LEHETŐSÉGEK

A SÓOLVADÉKOS REAKTOROKBAN REJLŐ LEHETŐSÉGEK A SÓOLVADÉKOS REAKTOROKBAN REJLŐ LEHETŐSÉGEK Király Márton kiraly.marton@energia.mta.hu MTA Energiatudományi Kutatóközpont Fűtőelem és Reaktoranyagok Laboratórium 2013. december 5. XII. MNT Nukleáris Technikai

Részletesebben

Dr. Pintér Tamás osztályvezető

Dr. Pintér Tamás osztályvezető Mit kezdjünk az atomreaktorok melléktermékeivel? Folyékony radioaktív hulladékok Dr. Pintér Tamás osztályvezető 2014. október 2. MINT MINDEN TECHNOLÓGIÁNAK, AZ ENERGIA- TERMELÉSNEK IS VAN MELLÉKTERMÉKE

Részletesebben

Csernobili látogatás 2017

Csernobili látogatás 2017 Csernobili látogatás 2017 A nukleáris technika múltja, jelene, jövője? Radnóti Katalin rad8012@helka.iif.hu http://members.iif.hu/rad8012/ Érintendő témakörök Főbb reaktortípusok A csernobili baleset lefolyása

Részletesebben

Kis atomerőművekről. MNT szimpózium. Budapest, december 5-6. mindig is volt törekvés kis blokkokra, mostanában a fő sodor mellett erősödik.

Kis atomerőművekről. MNT szimpózium. Budapest, december 5-6. mindig is volt törekvés kis blokkokra, mostanában a fő sodor mellett erősödik. is atomerőművekről MN szimpózium Budapest, 2013. december 5-6. Cserháti András műszaki főszakértő Bevezetés: a kicsi szép Small is beautiful mindig is volt törekvés kis blokkokra, mostanában a fő sodor

Részletesebben

A TERMÉSZETBEN SZÉTSZÓRÓDOTT NUKLEÁRIS ANYAGOK VIZSGÁLATA

A TERMÉSZETBEN SZÉTSZÓRÓDOTT NUKLEÁRIS ANYAGOK VIZSGÁLATA A TERMÉSZETBEN SZÉTSZÓRÓDOTT NUKLEÁRIS ANYAGOK VIZSGÁLATA Széles Éva Nukleáris Újságíró Akadémia MTA IKI, Nukleáris anyagok a környezetben honnan? A nukleáris anyagok legfontosabb gyakorlati alkalmazási

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Lakossági Nukleáris Enciklopédia

Lakossági Nukleáris Enciklopédia Lakossági Nukleáris Enciklopédia verzió: 3.0 2018.01.04. OAH lakossági nukleáris enciklopédia A kifejezések és magyarázatuk feltüntetése az alábbi szerkezetet követi: magyar kifejezés, magyar rövidítés

Részletesebben

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO)

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Sugárvédelem nukleáris létesítményekben Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Tartalom Ki mit nevez nukleárisnak? Hasadóanyagok Neutronos láncreakció, neutronsugárzás Felaktiválódás,

Részletesebben

A Nukleáris Technikai Intézet és az atomenergetikai képzések

A Nukleáris Technikai Intézet és az atomenergetikai képzések A Nukleáris Technikai Intézet és az atomenergetikai képzések Prof. Dr. Aszódi Attila egyetemi tanár, BME Nukleáris Technikai Intézet A Atomtörvény adta országos oktatási feladatok Az intézet két tanszékből

Részletesebben

Az atomenergiáról egyszerűen: az atomerőművek működése, típusaik és jövőjük

Az atomenergiáról egyszerűen: az atomerőművek működése, típusaik és jövőjük Az atomenergiáról egyszerűen: az atomerőművek működése, típusaik és jövőjük Radnóti Katalin 1, Király Márton 2 1Eötvös Loránd Tudományegyetem, Természettudományi Kar 1117 Budapest, Pázmány Péter sétány

Részletesebben

Atomenergia itthon és a világban

Atomenergia itthon és a világban Atomenergia itthon és a világban Sükösd Csaba BME Nukleáris Technikai Intézet 57. Fizikatanári Ankét Eger, 1 Tartalom Energia villamosenergia atomenergia Atomenergia Fukushima után Új építések Európában

Részletesebben

Dél-dunántúli Környezetvédelmi és Természetvédelmi Felügyelőség

Dél-dunántúli Környezetvédelmi és Természetvédelmi Felügyelőség Dél-dunántúli Környezetvédelmi és Természetvédelmi Felügyelőség mint I. fokú hatóság KÖZLEMÉNY környezetvédelmi hatósági eljárás megindulásáról Az ügy tárgya: A MVM Paks II. Atomerőmű Fejlesztő Zrt. által

Részletesebben

Vaskor Dóra Környezettan alapszakos hallgató. Témavezető: Kiss Ádám egyetemi tanár

Vaskor Dóra Környezettan alapszakos hallgató. Témavezető: Kiss Ádám egyetemi tanár Vaskor Dóra Környezettan alapszakos hallgató Témavezető: Kiss Ádám egyetemi tanár Háttérsugárzás Természet része Nagyrészt természetes eredetű (radon, kozmikus, Föld, táplálék) Mesterséges (leginkább orvosi

Részletesebben

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14 C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL Bihari Árpád Molnár Mihály Janovics Róbert Mogyorósi Magdolna 14 C képződése és jelentősége Neutron indukált magreakció

Részletesebben

Kémia azatomerőművekben. és azuránbányákban, és a hulladéktemetőkben, és...

Kémia azatomerőművekben. és azuránbányákban, és a hulladéktemetőkben, és... Kémia azatomerőművekben és azuránbányákban, és a hulladéktemetőkben, és... Fűtőanyagciklus a hulladék sugároz amit lehet újra fel kell használni ami hasznos, ki kell nyerni bánya 235+238 U 300t 239+241

Részletesebben

Hermetikus tér viselkedése tervezési és tervezésen túli üzemzavarok során a Paksi Atomerőműben

Hermetikus tér viselkedése tervezési és tervezésen túli üzemzavarok során a Paksi Atomerőműben MTA SUKO-MNT-Óbudai Egyetem Kockázatok értékelése az energetikában Budapest, 2015.06.15. Hermetikus tér viselkedése tervezési és tervezésen túli üzemzavarok során a Paksi Atomerőműben Tóthné Laki Éva MVM

Részletesebben

Korszerű ENERGIATERMELÉS 8.

Korszerű ENERGIATERMELÉS 8. Korszerű ENERGIATERMELÉS 8. VILÁGUNK ATOMOS FELÉPÍTÉSŰ! NUKLEÁRIS ENERGIATERMELÉS ATOM NUKLEONOK pozitív atommag, r~10-15 m, protonok és neutronok, negatív elektronfelhő atomsugár~10-10 m, a tömeg az atom

Részletesebben

A NUKLEÁRIS ÜZEMANYAGCIKLUS LEZÁRÁSÁNAK LEHETŐSÉGEI

A NUKLEÁRIS ÜZEMANYAGCIKLUS LEZÁRÁSÁNAK LEHETŐSÉGEI A NUKLEÁRIS ÜZEMANYAGCIKLUS LEZÁRÁSÁNAK LEHETŐSÉGEI Dr. Csom Gyula professor emeritus csom@reak.bme.hu Dr. Csom Gyula, BME NTI 35/ 1 Tartalom 1. A nukleáris üzemanyagciklusról 2. Termikus reaktoros atomerőműveket

Részletesebben

Atomreaktorok generációi

Atomreaktorok generációi Tematika 1. Az atmmagfizika elemei 2. Magsugárzásk detektálása és detektrai 3. A nukleáris fizika története, a nukleáris energetika születése 4. Az atmreaktr 5. Reaktrtípusk a felhasználás módja szerinti

Részletesebben

Új reaktortípusok fogják fellendíteni az atomenergia-ipart

Új reaktortípusok fogják fellendíteni az atomenergia-ipart ENERGIATERMELÉS, -ÁTALAKÍTÁS, -SZÁLLÍTÁS ÉS -SZOLGÁLTATÁS 2.5 4.4 Új reaktortípusok fogják fellendíteni az atomenergia-ipart Tárgyszavak: atomenergia; hatékonyság; versenyképesség; villamos energia; hidrogéntermelés,

Részletesebben

DOBOS RÓBERT SZEMINÁRIUMI DOLGOZAT

DOBOS RÓBERT SZEMINÁRIUMI DOLGOZAT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR ENERGETIKAI GÉPEK ÉS RENDSZEREK TANSZÉK DOBOS RÓBERT SZEMINÁRIUMI DOLGOZAT A nukleáris villamosenergia-termelés jelenlegi helyzete és jövője

Részletesebben

ENERGIATERMELÉS 8. NUKLEÁRIS ENERGIATERMELÉS

ENERGIATERMELÉS 8. NUKLEÁRIS ENERGIATERMELÉS ENERGIATERMELÉS 8. NUKLEÁRIS ENERGIATERMELÉS VILÁGUNK ATOMOS FELÉPÍTÉSŰ! ATOM pozitív atommag, r~10-15 m, protonok és neutronok, negatív elektronfelhő atomsugár~10-10 m, a tömeg az atom kiterjedésének

Részletesebben

Atomenergia: Egyesült Államok, Németország és Svájc

Atomenergia: Egyesült Államok, Németország és Svájc ENERGIATERMELÉS, -ÁTALAKÍTÁS, -SZÁLLÍTÁS ÉS -SZOLGÁLTATÁS 2.8 1.6 Atomenergia: Egyesült Államok, Németország és Svájc Tárgyszavak: nukleáris üzem; működés; leállítás; urándúsítás; népszavazás; Svájc; Németország.

Részletesebben

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1024/2013 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1024/2013 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1024/2013 nyilvántartási számú akkreditált státuszhoz Az MVM Paksi Atomerőmű Zrt. Üzemviteli Igazgatóság Vegyészeti Főosztály Vegyészeti

Részletesebben

Balesetelhárítási ismeretek

Balesetelhárítási ismeretek Balesetelhárítási ismeretek Atomerőművek (és balesetek) Radioaktív hulladék Radiológiai események Salik Ádám salik.adam@osski.hu Országos Sugárbiológiai és Sugáregészségügyi Kutató Igazgatóság Bővített

Részletesebben

ALLEGRO: gázhűtésű gyorsreaktor Közép-Európában. Czifrus Szabolcs BME Nukleáris Technikai Intézet

ALLEGRO: gázhűtésű gyorsreaktor Közép-Európában. Czifrus Szabolcs BME Nukleáris Technikai Intézet ALLEGRO: gázhűtésű gyorsreaktor Közép-Európában Czifrus Szabolcs BME Nukleáris Technikai Intézet A nukleáris energiatermelés fő problémái Fenntarthatóság Radioaktív hulladékok és kiégett üzemanyag kérdése

Részletesebben

13. Nukleáris hasadóanyag előállító, felhasználó és radioaktív hulladékkezelő technológiák A nukleáris energetika komplex rendszere

13. Nukleáris hasadóanyag előállító, felhasználó és radioaktív hulladékkezelő technológiák A nukleáris energetika komplex rendszere 13. Nukleáris hasadóanyag előállító, felhasználó és radioaktív hulladékkezelő technológiák. A fejezet tartalomjegyzéke 13.1. A nukleáris energetika komplex rendszere 13.2. Hasadóanyag tartalmú ércek feldolgozása

Részletesebben

A HPLWR tanulmányozásához használt csatolt neutronfizikai-termohidraulikai programrendszer továbbfejlesztése

A HPLWR tanulmányozásához használt csatolt neutronfizikai-termohidraulikai programrendszer továbbfejlesztése A HPLWR tanulmányozásához használt csatolt neutronfizikai-termohidraulikai programrendszer továbbfejlesztése Reiss Tibor, Dr. Fehér Sándor, Dr. Czifrus Szabolcs Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Közérthető összefoglaló. a KKÁT üzemeltetési engedélyének módosításáról. Kiégett Kazetták Átmeneti Tárolója

Közérthető összefoglaló. a KKÁT üzemeltetési engedélyének módosításáról. Kiégett Kazetták Átmeneti Tárolója Közérthető összefoglaló a KKÁT üzemeltetési engedélyének módosításáról Kiégett Kazetták Átmeneti Tárolója Bevezetés A világ iparilag fejlett országaihoz hasonlóan a nukleáris technológiát Magyarországon

Részletesebben

A VVER-1200 biztonságának vizsgálata

A VVER-1200 biztonságának vizsgálata A VVER-1200 biztonságának vizsgálata Boros Ildikó Egyetemi tanársegéd BME Nukleáris Technikai Intézet (BME NTI) 2015.05.28. TSO szeminárium 1 Tartalom Feladat Felhasznált források, anyagok A VVER-1200

Részletesebben

ÜZEMLÁTOGATÁS AZ MTA CSILLEBÉRCI TELEPHELYÉN

ÜZEMLÁTOGATÁS AZ MTA CSILLEBÉRCI TELEPHELYÉN ÜZEMLÁTOGATÁS AZ MTA CSILLEBÉRCI TELEPHELYÉN 2016.09.27. 2016. szeptember 27-én délután az Energetikai Szakkollégium szervezésében a Magyar Tudományos Akadémia csillebérci telephelyére látogattunk el.

Részletesebben

AZ ATOMENERGIA. 186 Firka /5

AZ ATOMENERGIA. 186 Firka /5 AZ ATOMENERGIA Az atomenergia megjelenése mint energiaforrás vagy egy akármilyen más új technológia megjelenése olyan, mintha egy új faj jelenne meg az élőlények világában: alá kell magát vetnie a természetes

Részletesebben

A radioaktív hulladékokról

A radioaktív hulladékokról A radioaktív hulladékokról Dr. Kereki Ferenc ügyvezető igazgató RHK Kft. Miskolc, 2013. november 29. Radioaktív hulladékok forrásai Radioaktív izotópok széleskörű felhasználása (pl.: nukleáris energetika,

Részletesebben

A teljesítménysűrűség térbeli eloszlása

A teljesítménysűrűség térbeli eloszlása A teljesítménysűrűség térbeli eloszlása Primer és szekunder korlátok Primer korlátok Nem vagy nem feltétlenül mérhető mennyiségek Közvetlenül megadják, hogy egy feltétel teljesül-e Szekunder korlátok Mérhető

Részletesebben

Quo vadis nukleáris energetika

Quo vadis nukleáris energetika Quo vadis nukleáris energetika Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem Győr Az előadás vázlata Energiaéhség Energiaforrások Maghasadás és magfúzió Nukleáris energetika Atomerőmű működése

Részletesebben