A mérés III. Írta: dr. Majoros Mária. felhasznált segédanyag. Számegyenes. Tankönyv, feladatlapok, feladatgyűjtemény



Hasonló dokumentumok
Követelmény a 6. évfolyamon félévkor matematikából

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

Osztályozóvizsga követelményei

Előadó: Horváth Judit

Matematika. 1. évfolyam. I. félév

Matematika 5. osztály Osztályozó vizsga

Matematika 6. osztály Osztályozó vizsga

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

Követelmény az 5. évfolyamon félévkor matematikából

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

2016/2017. Matematika 9.Kny

Fényi Gyula Jezsuita Gimnázium és Kollégium Miskolc, Fényi Gyula tér Tel.: (+36-46) , , , Fax: (+36-46)

2016/2017. Matematika 9.Kny

Követelmény a 7. évfolyamon félévkor matematikából

Kamatos kamat II. Írta: dr. Majoros Mária

SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA. matematika

Követelmény a 8. évfolyamon félévkor matematikából

3. OSZTÁLY A TANANYAG ELRENDEZÉSE

5. osztály. Matematika

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

A SZÁMFOGALOM KIALAKÍTÁSA

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Óravázlat. Tananyag: Műveletvégzés a 20-as számkörben tízes átlépéssel. A természetes szám fogalmának mélyítése a számtulajdonságok megfigyelésével.

16. modul: ALGEBRAI AZONOSSÁGOK

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

A fejlesztés várt eredményei a 1. évfolyam végén

Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, szeptember

2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS

2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN

Amit a törtekről tudni kell 5. osztály végéig Minimum követelményszint

17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK

TERÜLETSZÁMÍTÁS évfolyam

A matematikai feladatok és megoldások konvenciói

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

Tematikus terv. Az iskola neve: Dátum: A tanulási-tanítási egység témája: tizedes törtek

TANMENET. Matematika

Függvény fogalma, jelölések 15

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

Osztályozóvizsga-tematika 8. évfolyam Matematika

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;

Milyen messze van a faltól a létra? Milyen messze támasztotta le a mester a létra alját a faltól?

Előadó: Horváth Judit

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM

Matematika. 1. osztály. 2. osztály

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez

Amit a törtekről tudni kell Minimum követelményszint

2018/2019. Matematika 10.K

Feladatok a MATEMATIKA. standardleírás 3. szintjéhez

PISA2000. Nyilvánosságra hozott feladatok matematikából

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.

Matematika 8. osztály

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

OECD adatlap - Tanmenet

AZ ORSZÁGOS KOMPETENCIA MÉRÉS EREDMÉNYEINEK ÉRTELMEZÉSE 2007 AZ ELEMI SZÁMOLÁSI KÉSZSÉG KIÉPÜLÉSE GYAKORLOTTSÁGÁNAK FEJLŐDÉSE

A figurális számokról (III.)

Matematika 5. évfolyam

Szandaszőlősi Általános Iskola, Művelődési Ház és Alapfokú Művészetoktatási Intézmény

A 5-ös szorzó- és bennfoglalótábla

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika A 9. szakiskolai évfolyam. 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA. Készítették: Vidra Gábor és Koller Lászlóné dr.

11. modul: LINEÁRIS FÜGGVÉNYEK

TANMENET ... Az iskola fejbélyegzője. a matematika tantárgy. tanításához a 9. a, b osztályok számára

I. Egyenlet fogalma, algebrai megoldása

Osztályozó- és javítóvizsga. Matematika tantárgyból

Tanmenet a Matematika 10. tankönyvhöz

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11.

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont

Hraskó András, Surányi László: spec.mat szakkör Tartotta: Hraskó András. 1. alkalom

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

1. Halmazok, számhalmazok, alapműveletek

MILYEN ÚJDONSÁGOK VANNAK AZ OFI ÚJ TANKÖNYVEIBEN? OSZTÁLY

CSAHÓCZI ERZSÉBET CSATÁR KATALIN KOVÁCS CSONGORNÉ MORVAI ÉVA SZÉPLAKI GYÖRGYNÉ SZEREDI ÉVA: MATEMATIKA 7.

Matematika 8. osztály

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor

Matematika pótvizsga témakörök 9. V

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

Középkori matematika

TANMENET IMPLEMENTÁCIÓ ELŐREHALADÁS BESZÁMOLÓ. Rendszerezés, kombinativitás. Induktív gondolkodás általánosítás. megtalálása különböző szövegekben.

4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet

KOVÁCS BÉLA, MATEMATIKA I.

Lineáris egyenletrendszerek Műveletek vektorokkal Geometriai transzformációk megadása mátrixokkal Determinánsok és alkalmazásaik

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK!

EGYENLETEK, EGYENLŐTLENSÉGEK

2017/2018. Matematika 9.K

Vizsgakövetelmények matematikából a 2. évfolyam végén

A feladatok megoldásához szükséges gondolkodási műveletek. Írta: dr. Majoros Mária

Előadó: Horváth Judit

Átírás:

Írta: dr. Majoros Mária A matematika axiomatikus felépítésű. Természetesen az ismeretszerzés nem lehet axiomatikus felépítésű. De azt a kérdést joggal tehetjük fel, hogy léteznek-e a matematikai tapasztalatszerzésben a cselekvés szintű megismerésben olyan tevékenységek, amelyeket a matematikai fogalomalkotás szempontjából alapvetőnek kell tekintenünk. A tanítás gyakorlati síkjára lefordítva ez azt jelenti, hogy milyen tevékenységekből kiindulva tudjuk a matematikai fogalmakat felépíteni. Egyszer az iskolában, ahol dolgozom, azt a pedagógiai elemzési feladatot kaptuk, hogy a saját tantárgyunkban a különböző témákat a tanítás során alkalmazott tevékenységekből kiindulva próbáljuk meg feldolgozni a következő táblázat alapján. Két téma általam elkészített vázlatos feldolgozását ismertetem:. osztály: Törtek tanulói tevékenységi formák rajz, mérés kapcsolódó tartalom Törtek ábrázolása a számegyenesen, nagyságrendi viszonyok eldöntése kimeneti követelmény biztos tájékozódás a számegyenesen felhasznált segédanyag Számegyenes. Tankönyv, feladatlapok, feladatgyűjtemény értékelés módja, eszköze, időpontja folyamatosan a feladat teljesítésének szabályai önálló munka mérés számolás átfogalmazások, következtetések, szöveg értelmezése és algebrai leírása mérés, Törtrész és egész rész számítása Műveletek törtekkel Nyitott mondatok törtekre, szöveges Törtek sokféle alakja, bővítés, egyszerűsítés, egész számok tört alakban,tizedes törtek és közönséges törtek kapcsolata Közönséges törtek átírása tizedes törtre, a helyi értékes jelölésmód szerepe értelmezés biztos számolás a racionális számkörben A művelet fogalom értelmezése és a, biztos következtetések A tört értéke és alakja közötti kapcsolat értelmezése Biztos tájékozódás a helyi értékes jelölésben témazáró csoportmunka témazáró önálló munka folyamatosan. folyamatosan. folyamatosan, témazáró csoportmunka önálló munka önálló /7

Mérés, darabolás, Tört fogalmának bevezetése, az egész számok tört alakja Tört mennyiségek megadása értelmezés 7. osztály: Egyenes és fordított arányosság, arányos következtetések tanulói tevékenységi formák kapcsolódó tartalom kimeneti követelmény felhasznált segédanyag értékelés módja, eszköze, időpontja a feladat teljesítésének szabályai Rajzolás, mérés, számolás A szabályos ötszög átlói az aranymetszés szabályainak felelnek meg Hámori Miklós:Arányok és talányok Házi feladat elkészítése, a megfelelő ábrák megrajzolása, és a mérések elvégzése. mérés, Arányosság fogalma, egyenes és fordított arányosság Az arány fogalmának biztos ismerete és a Tankönyv Órai munka, házi szövegértelmezés Gyakorlati megoldása értelmezés és Tankönyv, házi rajz, mérés, Összetett megoldása sal értelmezés és Bergengóc Példatár, házi értelmezés Különböző feladathelyzetekben a megfelelő összefüggések felismerése értelmezés és témazáró olvasás, értelmezés Nevezetes ókori problémák a matematika történet ismerete Lénárd Ferenc: A ráció üzenetei otthoni olvasmány, beszámoló mérés,, az egység megválasztása Arányossági megoldása méréssel, sal egyenletek bevezetése nélkül a feladathelyzet értelmezése, és a megfelelő összefüggések feltárása, és matematikailag megfogalmazása tankönyv, verseny gyűjteményei Órai munka, témazáró Órai munka, házi 2/7

Ha megnézzük, akkor azt látjuk, hogy a mérés, a leggyakrabban előforduló tevékenység. (Csak zárójelben jegyzem meg, hogy teljesen ismeretlen területen járunk, mert a matematika tanítása szempontjából még az sem tisztázott, hogy egyáltalán mit is tekintsünk tevékenységnek. Arra gondolok, hogy például bizonyos értelemben az absztrakció is tevékenység.) Egy pillanatra visszautalnék az irracionális szám fogalmának létrejöttére. Az is a méréssel hozható kapcsolatba. A görögök jöttek arra rá, hogy ha meg tudják mérni a négyzet oldalát, akkor nem tudják megmondani az átló hosszát és fordítva, mert a két mennyiség összemérhetetlen. A matematika tanítása során a matematikai fogalmakhoz próbálunk tevékenységeket és szemléltetéseket rendelni. Most fordítsuk meg ezt tekintsük a mérést és az t és nézzük meg milyen fogalmak és szemléletek kialakulását köthetjük ehhez a tevékenységhez.. Előjeles számok kivonása: különbség (távolság) meghatározására vezethető vissza: 4 20 8 0 0 3 8 0 4 20. ábra A számegyenesről leolvashatók a megoldások. Amikor a kivonás tulajdonságaihoz jó szemléletes képek rögzülnek, akkor a gyerekek maguktól fogják a számegyenest kidobni, és használják az absztrakt fogalmat. 2. Törtek osztása: az osztás minden esetben mérés,. Az egész számok 9 2 esetében ugyanúgy, mint a törtek esetében. Nézzünk egy konkrét példát: :. Az 7 összemérhetőség miatt az egészet 3 egyenlő részre bontjuk. 3 7 A fenti szemléltetésből leolvasható a két tört ának eredménye: 9 2 3 4 : = 3 + = 7 4 4 Általánosítsuk a megfigyelést, és nézzük meg, hogy két tört osztása esetén igazából miről is van szó: a c : b d Az összemérhetőség miatt az egészet 2 2. ábra a b d egyenlő részre osztjuk. Az törtet b c a d egység fejezi ki, a törtet pedig b c egység. Tehát a d -re felmérjük b c -t. d 4 6 9 7 3/7

Mindkét szám b d -edeket összeszámláló egész szám. Ennek az osztásnak az eredménye:. Tehát a korábban megalkotott osztásfogalomból tökéletesen levezethető a a d b c törtek osztására vonatkozó írásbeli szabály. Nagyon fontosnak tartom, hogy ebben a felépítésben nem az osztás fogalma változik, hanem a törtek írott alakjára keresünk egy műveletvégzési szabályt. Úgy gondolom, hogy a tankönyvekben előforduló magyarázatok nem az osztás valódi tartalmára, hanem annak írásbeli elvégezhetőségére vonatkoznak. A törtek osztása az egyik legjobb példa arra, hogy a mérés és bizonyos matematikai fogalmak esetén egy esszenciális szemléletbeli kérdés. 3. Egyenletek. A mérés különleges jelentőséggel bír az egyenletek tanítása szempontjából, mert az általános és középiskolában tanított szöveges egyenletek többsége arról szól, hogy egy ismeretlent úgy próbálunk meghatározni, hogy kétféle módon megmérjük, és a mérések eredményét összehasonlítjuk. a. Ókori babiloni feladat: Az egyik területről négyzetméterenként 3 2 kg búzát arattam. A másik földem minden négyzetméterén 2 kg búza termett. A két terület 2 terméshozama között a különbség 00 kg. A két földterület összesen 800 m. Hány négyzetméter a két földem külön-külön? ( A megoldás elolvasható Lévárdi László és Sain Márton A ráció üzenetei című könyvében.) b. A nyuszinak nyúlugrásnyi előnye van, amikor a kutya üldözőbe veszi. Két kutyaugrás akkora, mint három nyúlugrás. De amíg a kutya négyet ugrik, a nyuszi ötöt. Utoléri-e a kutya a nyuszit, és ha igen, hány ugrással? Egyenlettel nagyon bonyolultan, méréssel és sal nagyon egyszerűen megoldható feladat. (Az itt ismertetett megoldás Bárány Judit 2 éves gyerektől származik.) Ha a kutya 4 ugrásának ugyanannyi idő alatt a nyuszi ugrása felel meg, akkor az ugrások hosszát is figyelembe véve ugyanannyi idő alatt a kutya 6 nyúlugrást teljesít, míg a nyuszi -öt. A kutyának nyúlugrásnyi hátrányt kell ledolgoznia, ezt időegység alatt teszi meg. Minden időegységben 4-et ugrik, így 60 ugrással éri utol a nyulat. c. Hamupipőkének egy zsák lencsével összekevert babot kellett szétválasztania. A lencse és a bab tömegének az aránya 2:3 volt. Hamupipőke gonosz mostohájának úgy tűnt, hogy kevés a lencse, ezért még két kilogramm lencsét a zsákba szórt. Így a lencsének a babhoz való aránya annyi lett, mint amennyi előtte a bab aránya volt a lencséhez. Végül hány kilogramm lencsét és, hány kilogramm babot kellett Hamupipőkének szétválasztania? lencse bab eredeti hozzáöntés után +2 kg 3. ábra 4/7

A bab mennyisége eredetileg három egységnek felelt meg, a hozzáöntés után ugyanez a mennyiség csak két új egység. Ebből látjuk, hogy az új egység az eredeti egység másfélszerese. Így a 2 kilogramm lencse 2, eredeti egységnek felel meg. Egy eredeti egység tehát 0,8 kilogrammot szemléltet. d. A és B városból egyszerre indul el egymással szemben egy kerékpáros és egy gyalogos. Egy óra múlva a gyalogos ugyanolyan messze lesz B-től mint a kerékpárostól. Negyed óra múlva találkoznak. Hány óra alatt teszi meg B-ből A- ba az utat? A kerékpáros hányszor akkora sebességgel halad? (Az itt ismertetett megoldás Dénes Máté 4 éves fiútól származik.) óra múlva: B 4 óra múlva: B A? A? a teljes táv: B A 4. ábra óra után a gyalogos ugyanolyan messze van B-től mint a kerékpárostól. Negyed óra múlva találkoznak Ebben a negyed órában a kerékpáros és a gyalogos összesen a gyalogos egy órai útját tette meg, a kerékpáros tehát a háromnegyedét tette meg. Ebből következik, hogy a kerékpáros sebessége háromszor akkora, mint a gyalogosé. Tehát az első órában a kerékpáros a gyalogos útjának háromszorosát tette meg, így a gyalogosnak órára van szüksége a két város közötti út megtételéhez. e. Egy város 2 iskolájában 240 gyerek tanul. Az egyik iskola tanulói számának négy ötöd része egyenlő a másik iskola tanulói számának három negyed részével. Hány gyerek jár az egyes iskolákba? (Az itt ismertetett megoldás Zelczer Tamás 3 éves fiútól származik.) Az első iskola tanulóinak létszámát egyenlő részre bontjuk, és az egyenlő részekből 4-et veszünk. Ez a mennyiség egyenlő lesz azzal, ha a másik iskola tanulóinak létszámát 4 egyenlő részre bontjuk, és az egyenlő részekből 3- at veszünk. Az összemérhetőség miatt olyan beosztást kell keresni, ami egyszerre bontható 3 illetve 4 egyenlő részre. egyik iskola: másik iskola:. ábra + 6 = 3 egység, ami 240-nek felel meg. egység 40 gyereknek. /7

f. Egy osztályban a tanulók 20%-ának van jelese matematikából. Ha kettővel kevesebb gyerek kapna jelest, akkor hatszor annyi gyereknek lenne jelestől különböző osztályzata. Hány gyerek jár az osztályba? -ször kettőből 2 hetedet lehet összerakni, tehát egy hetednek gyerek felel meg. Így az osztálylétszám 3. 4. Átdarabolások: a tanítás során nagyon gyakran előforduló mérési helyzet. Csak négy példát említenék: a. A Pitagorasz- tétel bizonyítása (lásd pl. http://matek.fazekas.hu/portal/szakkorok/2004/08spec/8evf_int_index.html, 200. január -ei szakkör: http://matek.fazekas.hu/portal/szakkorok/2004/08spec/8evf_fpi 2004_szakkor_ora_meg.pdf ) b. Törtrészek meghatározása 6. ábra Az eredeti (bal oldali) ábrán a besatírozott törtrészen nem látszik jól, hogyan mérhető össze az egész négyzettel. Ezért célszerű az ábrát átdarabolni. c. Bizonyos végtelen sorok összegének meghatározása. 7. ábra A 7. ábrán azt mutatjuk meg, hogy + + + +... =. Az eredetileg egységnyi 2 3 4 3 3 3 3 2 hosszúságú fekete szakaszt mindig felosztjuk három egyenlő részre: egy zöldre, egy feketére és egy sárgára. 8. ábra 6/7

A 8. ábrán azt mutatjuk meg, hogy + + + +... =. Az eredetileg egységnyi 2 3 4 4 4 4 4 3 területű szürke alakzatot mindig felosztjuk négy egyenlő (területű) részre: egy zöldre, egy sárgára, egy kékre és egy szürkére (a megoldás Kenyeres Márton 4 éves fiútól származik). d. Polinomok szorzása: erre az előző fejezetben hoztunk példát. Amikor külföldi egyetemistákat tanítok matematikára, akkor általában nem kíváncsiak a matematikai összefüggések tartalmára. Azt kérik tőlem, hogy csak arra tanítsam meg őket, hogyan kell használni az adott kifejezést. A matematika tanításában mióta csak iskolában dolgozom mindig jelen volt két irányzat harca. Az egyik az értelmes tanulást részesítette előnyben, ami időnként lassúbb haladást jelent, de a 2 iskolai év végén a gyerekek lényegesen többet tudnak, és bármilyen helyzetben tudják alkalmazni a megszerzett tudást. A másik irányzat a pillanatnyi eredményességre törekszik, ezért kész algebrai megoldások tömegét zúdítja a gyerekekre azzal a céllal, hogy rövidtávon eredményes tudjon lenni. Ilyenkor előfordul, hogy bizonyos pillanatokban a külső szemlélő számára úgy tűnhet, hogy a gyerek értelmére kevésbé támaszkodó tanítási eljárások eredményesebbek, mert a gyerekek több algebrai kifejezéssel tudnak formálisan bánni. Hosszú távon ugyanakkor sokkal kisebb a hatékonysága. Többször leírtuk, hogy a tanításban nincsenek univerzális igazságok. Mindig az adott gyereket vagy gyerekcsoportot kell fejlesztenünk úgy, hogy közben megfeleljünk egy olyan társadalmi elvárásnak is, hogy használható tudást adunk a gyerekeke kezébe. Mégis az értelem védelmében elmondanám, hogy az idő előtt kapott megoldási sémák (például egyenletek) a gyerekek értelmi fejlődését fogják vissza. Irodalomjegyzék: Lévárdi László-Sain Márton: A ráció üzenetei - Typotex, Budapest, 993. Andrásfai Béla: Versenymatek gyerekeknek Calibra, Budapest Kalmár László verseny feladatai 2007. Majoros Mária: Oktassunk vagy buktassunk?-budapest, Calibra Kiadó, 992. 7/7