AZ ATP SZENZITÍV KÁLIM CSATORNA: KARMESTER A GÜKÓZHOMEOSZTÁZIS ENDOKRIN ÉS IDEGI SZABÁLYOZÁSÁBAN



Hasonló dokumentumok
A szövetek tápanyagellátásának hormonális szabályozása

Gyógyszerészeti neurobiológia. Idegélettan

Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet

Glikolízis. emberi szervezet napi glukózigénye: kb. 160 g

Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál

Szénhidrátok monoszacharidok formájában szívódnak fel a vékonybélből.

a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg:

Érzékszervi receptorok

Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika

Az idegsejtek kommunikációja. a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Membránpotenciál, akciós potenciál

a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció. Szinaptikus jelátvitel.

Transzportfolyamatok a biológiai rendszerekben

Egy idegsejt működése

A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban

Orvosi élettan. Bevezetés és szabályozáselmélet Tanulási támpontok: 1.

Receptorok és szignalizációs mechanizmusok

Vércukorszint szabályozás

A sejtek közöti kommunikáció formái. BsC II. Sejtélettani alapok Dr. Fodor János

Orvosi élettan. Bevezetés és szabályozáselmélet Tanulási támpontok: 1.

Orvosi élettan. Bevezetés és szabályozáselmélet Tanulási támpontok: 1.

ÖSSZ-TARTALOM 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás

Jelutak ÖSSZ TARTALOM. Jelutak. 1. a sejtkommunikáció alapjai

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

IONCSATORNÁK. Osztályozás töltéshordozók szerint: pozitív töltésű ion: Na+, K+, Ca2+ negatív töltésű ion: Cl-, HCO3-

Membránpotenciál. Nyugalmi membránpotenciál. Akciós potenciál

1. Mi jellemző a connexin fehérjékre?

Ca 2+ Transients in Astrocyte Fine Processes Occur Via Ca 2+ Influx in the Adult Mouse Hippocampus

Új terápiás lehetőségek (receptorok) a kardiológiában

Az akciós potenciál (AP) 2.rész. Szentandrássy Norbert

ÖSSZ-TARTALOM. 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás 4. Idegi kommunikáció 3.

Dózis-válasz görbe A dózis válasz kapcsolat ábrázolása a legáltalánosabb módja annak, hogy bemutassunk eredményeket a tudományban vagy a klinikai

TÁJÉKOZTATÓ lobbitevékenységről a évi XLIX. törvény 30. alapján

4. Egy szarkomer sematikus rajza látható az alanti ábrán. Aktív kontrakció esetén mely távolságok csökkenése lesz észlelhető? (3)

A neuroendokrin jelátviteli rendszer

Szénhidrát anyagcsere. Kőszegi Tamás, Lakatos Ágnes PTE Laboratóriumi Medicina Intézet

MEDICINÁLIS ALAPISMERETEK BIOKÉMIA A SZÉNHIDRÁTOK ANYAGCSERÉJE 1. kulcsszó cím: A szénhidrátok anyagcseréje

IONCSATORNÁK. I. Szelektivitás és kapuzás. III. Szabályozás enzimek és alegységek által. IV. Akciós potenciál és szinaptikus átvitel

ZSÍRSAVAK OXIDÁCIÓJA. FRANZ KNOOP német biokémikus írta le először a mechanizmusát. R C ~S KoA. a, R-COOH + ATP + KoA R C ~S KoA + AMP + PP i

Homeosztázis A szervezet folyadékterei

2. A jelutak komponensei. 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék

Citrátkör, terminális oxidáció, oxidatív foszforiláció

Jelutak. 2. A jelutak komponensei Egy tipikus jelösvény sémája. 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Szignalizáció - jelátvitel

9. előadás Sejtek közötti kommunikáció

A sejtek közötti kommunikáció módjai és mechanizmusa. kommunikáció a szomszédos vagy a távoli sejtek között intracellulári jelátviteli folyamatok

Az idegi működés strukturális és sejtes alapjai

Az emésztôrendszer károsodásai. Lonovics János id. Dubecz Sándor Erdôs László Juhász Ferenc Misz Irén Irisz. 17. fejezet

Biológus Bsc. Sejtélettan II. Szekréció és felszívódás a gasztrointesztinális tractusban. Tóth István Balázs DE OEC Élettani Intézet

PAJZSMIRIGY HORMONOK ÉS A TESTSÚLY KONTROLL

A szívizom akciós potenciálja, és az azt meghatározó ioncsatornák

Eredmény: 0/337 azaz 0%

Az adenohipofizis. Az endokrin szabályozás eddig olyan hormonokkal találkoztunk, amelyek közvetlen szabályozás alatt álltak:

Az ingerületi folyamat sejtélettani alapjai

Asztroglia Ca 2+ szignál szerepe az Alzheimer kórban FAZEKAS CSILLA LEA NOVEMBER

A köztiagy (dienchephalon)

Cukorbetegek kezelésének alapelvei

Az idegrendszer és a hormonális rednszer szabályozó működése

Premium Health Concepts A módszer tudományos alapjai

A D-vitamin anyagcsere hatásai ECH Molnár Gergő Attila. PTE KK, II.sz. Belgyógyászati Klinika és NC. memphiscashsaver.com

Farmakodinámia. - Szerkezetfüggő és szerkezettől független gyógyszerhatás. - Receptorok és felosztásuk

Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet.

Immunológia alapjai. 10. előadás. Komplement rendszer

A membránpotenciál. A membránpotenciál mérése

A jel-molekulák útja változó hosszúságú lehet. A jelátvitel. hírvivő molekula (messenger) elektromos formában kódolt információ

Az agytörzsi dorzális vagus komplex glukokináz expressziójának molekuláris. és funkcionális változásai I-es típusú diabetes egérmodelljében

Endokrinológia. Közös jellemzők: nincs kivezetőcső, nincs végkamra - hámsejt csoportosulások. váladékuk a hormon

Tények a Goji bogyóról:

Glikolízis. Csala Miklós

Membránszerkezet, Membránpotenciál, Akciós potenciál. Biofizika szeminárium

Membrántranszport. Gyógyszerész előadás Dr. Barkó Szilvia

Nemszinaptikus receptorok és szubmikronos Ca2+ válaszok: A két-foton lézermikroszkópia felhasználása a farmakológiai vizsgálatokra.

Orvosi élettan. Bevezetés és szabályozáselmélet Tanulási támpontok: 1.

NÖVÉNYÉLETTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Intelligens molekulákkal a rák ellen

Kémiai érzékelés. Legısibb erıs befolyás. Külsı és belsı kemoszenzoros mechanizmusok. Illatok, ízek viselkedés (túlélési és sexuális információ)

Élettan írásbeli vizsga (PPKE BTK pszichológia BA); 2014/2015 II. félév

A diabetes mellitus laboratóriumi diagnosztikája

Immunológia alapjai. 16. előadás. Komplement rendszer

Szívelektrofiziológiai alapjelenségek. Dr. Tóth András 2018

Zsírsav szintézis. Az acetil-coa aktivációja: Acetil-CoA + CO + ATP = Malonil-CoA + ADP + P. 2 i

LIPID ANYAGCSERE (2011)

A glükóz reszintézise.

Élettan szemináriumok 1. félév Bevezetés. Dr. Domoki Ferenc Szeptember 6

NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Élettan szemináriumok 1. félév Bevezetés

Az elmúlt években végzett kísérleteink eredményei arra utaltak, hogy az extracelluláris ph megváltoztatása jelentősen befolyásolja az ATP és a cink

Sejtek közötti kommunikáció:

A sejtfelszíni receptorok három fő kategóriája

Sejtek membránpotenciálja

Glükóz transporter-1 defektus. Glükóz koncentráció az agyban. Membrántranszport folyamatok (1) szinonímák: - De Vivo szindróma

A biológiailag aktív Sugar Crush táplálékkiegészítő nyílt, nem randomizált kísérleti tanulmánya KÍSÉRLETI EREDMÉNYEK

A bioenergetika a biokémiai folyamatok során lezajló energiaváltozásokkal foglalkozik.

Táplákozás - anyagcsere

Integráció. Csala Miklós. Semmelweis Egyetem Orvosi Vegytani, Molekuláris Biológiai és Patobiokémiai Intézet

A piruvát-dehidrogenáz komplex. Csala Miklós

VEGETATIV IDEGRENDSZER AUTONOM IDEGRENDSZER

Átírás:

Egészségtudományi Közlemények, 1. füzet, 1. szám (2011), 85 94. AZ ATP SZENZITÍV KÁLIM CSATORNA: KARMESTER A GÜKÓZHOMEOSZTÁZIS ENDOKRIN ÉS IDEGI SZABÁLYOZÁSÁBAN KOSKA PÉTER 1, KISS-TÓTH ÉVA 1, JUHÁSZNÉ SZALAI ADRIENN 1, DR. KISS-TÓTH EMŐKE 1, DR. BARKAI LÁSZLÓ 1, DR. FODOR BERTALAN 1 Összefoglaló: Az inzulin vércukor szinttől függő felszabadulásában és a vegetatív idegrendszer glükóz homeosztázist szabályozó szerepében egyaránt kulcsszerepet játszanak az ATP szenzitív kálium csatornák (K ATP ). A növekvő vércukorkoncentárció a béta sejt növekvő ATP termelésének következtében a csatornák záródását eredményezi, amely membrán depolarizációt, majd a akciós potenciált eredményez. Az akciós potenciál hatására a béta sejtekből inzulin szabadul fel. A csatorna mutációi a béta sejtek inzulin szekréciós zavaraihoz vetnek, amelynek eredményeként csecsemőkori diabétesz vagy hyperinzulinémia és agykárosodást okozó hiperglikémia léphet fel. A vegetatív idegrendszert szabályozó hipotalamikus tápanyag érzékelő neuronok K ATP csatornái azok GABA felszabadulását szabályozza. A glükóz homeosztázis idegi szabályozása a vegetatív idegrendszer szimpatikus és paraszimpatikus efferenseinekgaba-erg gátlásán vagy gátlásoldásán (dezinhibícó) útján valósul meg. A szimpatikus aktiváció a vér glükózszintjének növelésével, míg a paraszimpatikus aktiváció a csökkentésével jár. Kulcsszavak:glükóz homeosztzis, ATP szenzitív kálium csatorna, akciós potenciál, inzulin felszabadulás, vegetatív idegrendszer Az inzulin szekréció elektrogén modellje A vér glükózszintjének viszonylagos állandósága dinamikus egyensúlyi állapot következménye, amelyet hormonális és idegi szabályozó mechanizmusok tartanak fent. A hormonális szabályozás egyik nélkülözhetetlen tényezője az inzulin vércukor szinttől függő felszabadulása. A hasnyálmirigy béta sejt inzulinszekréciójának kiváltója a vér glükózszintjének 5-5,5mM értékig történő növekedése. A béta sejtglükózkoncentráció függő inzulin szekréciója a sejt glukokináz enzimjének, és az ATP szenzitív K + csatornáinak összehangolt működésén alapul. A béta sejtekben lévő glükokináz enzim aktivitása eltérően más sejtek glükokinázától erősen szubsztrátkoncentrációfüggő. Míg az egyéb testi sejtekben az enzim már 0,1mM glükóz koncentráció esetén maximális aktivitással működik, addig a béta sejtekglükokinázának enzimaktivitása 5,5mM glükózkoncentrációnál éri el a maximális aktivitás 50%-át. A glükokináz enzim szükséges a glükóznak glükóz-6 1 Miskolci Egyetem Egészségügyi Kar, Nanobiotechnológiai és Regeneratív Medicina Tanszék, Miskolc

86 Koska Kiss-Tóth Juhászné Szalai Kiss-Tóth Barkai Fodor foszfáttá történő alakításához, amely a glikolízisbe lép. A sejtben előállított ATP mennyisége arányos a glikolízisbe belépő glükóz-6-foszfát mennyiségével. [1]A béta sejt inzulin szekrécióját -hasonlóan az idegsejtek neurotranszmitter felszabadulásához- membrán depolarizáció, és Ca + beáramlás kiváltotta akciós potenciál okozza. A béta sejt membránjának nyugalmi potenciálja -60mV. Az alappotenciál a béta sejt membrán K/Na pumpáinak és ATP szenzitív K csatornáinak eredményeként jön létre. A K/Na pumpa a sejtbe 2K iont kifelé viszont 3Na iont transzportál ezért a nettó töltésegyenleg a membrán belső oldalán negatív lesz. A K ATP csatorna a sejtben lévő K-ion többletből folyamatosan enged át valamennyit az extracelluláris térbe, így a béta sejt membránpotenciálja -70mV körül stabilizálódik. A K ATP csatorna pórusformáló komplexből (Kir 6.2) és egy ún. szulfonil-urea receptor alegység komplexből (SUR) áll. Ez utóbbi fehérje komplex alegység szabályozza a K ATP csatorna K + áteresztőképességét. A szabályozó alegység nukleotid kötőhelyekkel rendelkezik. Ezekhez a kötőhelyekhez ATP és ADP egyaránt kapcsolódik. Az ATP/ADP arány csökkenése a K ATP csatorna nyitását ezzel K + kiáramlást és növekvő membrán potenciált (hiperpolarizációt), míg az ATP arányának növekedése a csatorna zárását és csökkenő membránpotenciált (depolarizációt) eredményez. 1.ábra Az ATP szenzitív K csatornák szerkezete. Sulfonilurea receptor (SUR) alegységek Kir6.2 csatorna alegység A SUR alegységeken ható csatorna blokkolók: szulfonilureák,(glibencalmid), ATP Csatorna aktiválók: diazoxid A csatorna pórus formáló alegységére ható csatorna blokkolók: ATP Csatorna aktiválók:foszfatidilinozitoldifos zfát, hosszú láncú zsírsavak Az 1. ábrán látható hogy a csatorna több transzmembrán doménből álló fehérjék komplexéből áll. A szabályozó alegységek (kék színnel vannak jelölve, három transzmembrán komplexből épülnek fel: TDM0, TDM1, és TDM2. Az NBD1 és NBD2 nukleotid kötő helyek, az ADP és ATP kapcsolódásának a helye. A szulfonilure származékok a három transzmembrán komplexhez kapcsolódva fejtik ki hatásukat

Az ATP szenzitív kálim csatorna 87 2. ábra A 2. ábra felülnézetből ábrázolja a csatorna komplexet. A pórusformáló és a szabályozó egység egyaránt 4-4 fehérje komplexből tevődik össze Amíg a vércukor szint a béta sejt glükokináz Km értéke alatt van, a béta sejt metabolizmusa és ATP termelése minimális. Ahogy a vér glükóz koncentrációja eléri az 5,5mM-t a glükokináz aktivitás a maximálishoz közelít, amely a béta sejt metabolizmusának és ATP termelésének gyorsulásával jár. A béta sejt ATP koncentrációjának növekedése a K ATP csatornák záródását eredményezi, amely membrán depolarizációval jár. Amikor a béta sejt membrán potenciálja eléri a küszöbpotenciált (-40mV) akciós potenciál következik be. Az akciós potenciál feszültségfüggő Ca csatornák (VDCC) megnyílásának a következménye. A Ca beáramlás következtében a béta sejt inzulin tartalmú vezikulái dokkolódnak membrán belső oldalán, majd a membránfúzió után a vezikulák tartalma a vérbe ürül. Az akciós potenciál csúcsa -10mVnál van. A béta sejt membrán repolarizációjábanban feszültség függő kálium csatornák játszanak szerepet (K v ). Amikor a membrán potenciál -10mV értéket ér el a feszültség függő K csatornák megnyílnak, így megkezdődik a K + kiáramlás a sejtekből, vagyis a membránpotenciál növekedni kezd. A béta sejtek depolarizációjának és akciós potenciáljának kiváltására nemcsak glükóz, hanem aminosavak is képesek. Az alanin és a glicin a Na + ionnal együtt kotranszporttal jut be a sejtbe. Az aminosavakkal bejutott Na + ionfelelős a depolarizációért. Az arginin pozitív töltést visel, így a citoplazmába történő beáramlása szintén depolarizációt okoz. [2,3,4] Az ATP szenzitív K csatorna (K ATP ) antagonistái és agonistái A szulfonil-urea csoportot tartalmazó vegyületek legismertebbagja a tobutamid. A tolbutamidot és rokon vegyületeit 2-es típusú diabetes kezelésében alkalmazzák. A cukorbetegségnek ebben a típusában az endogén inzulin szekréció nem elégséges a glikémiás kontroll fenntartásához, ezért az endogén inzulin szekréciót fokozni

88 Koska Kiss-Tóth Juhászné Szalai Kiss-Tóth Barkai Fodor kell. Ezt többek közöttk ATP csatorna blokkolókkal lehet elérni: Glibenclamid, Glipizid, Tolbutamid, vagy a Gliclazid.[5] A diazoxid a K ATP csatorna agonistája, azaz a csatorna SUR alegységéhez kapcsolódva növeli az ioncsatorna K áteresztőképességét, ily módon hiperpolarizációt okoz, amely az inzulinszekréció gátlásával jár. A béta sejt membrán potenciáljának modulálása a feszültség függő kélium csatornák csatornákfoszorilációjával A béta sejt feszültségfüggő K + csatornái a K ATP csatornákkal együttműködve jelentősen módosítják az inzulin szekréciót, javítják a glikémiás kontrollt. Az inkretin hormonok felfedezésének az alapjául az a megfigyelés szolgált, hogy az orálisan adott glükóz hatására több inzulin szabadul fel, mint ugyanolyan mennyiségű intravénásan beadott glükóz. Az étkezés hatására bekövetkező inzulin szekréció többletet a vékonybélből felszabaduló peptid hormonok okozzák. A vékonybél hámsejtjeinek K sejtjei a bélbe kerülő tápanyagok hatására a glükóz dependensinzulinotroppeptidet (GIP), az L sejtek pedig a glukagon szerű peptidet (GLP) bocsátják ki. Mindkét hormonnak van receptora a hasnyálmirigy béta sejtjein. A GIP és a GLP receptora hét transzmembrán doménből álló G fehérjével kapcsolt receptor családba tartozik, amelyek adenilát-ciklázt aktiválnak. A camp a protein kináz A-t (PKA) aktiválja. A PKA a K v csatorna intracellulárisdoménjétfoszforillálja. Az ioncsatorna K áteresztő képessége a foszforilláció hatására csökken, így a béta sejt membránpotenciálja a küszöbpotenciál érték közelében marad. Ennek következtében sorozatos akciós potenciál keletkezik, amely fokozott inzulinszekréciót eredményez. Az inkretinek a K v csatorna blokkolásán keresztül potencírozzák a vér glükóz koncentráció növekedésének inzulin szekréciót fokozó hatását, és gyorsítják az étkezések után bekövetkező inzulin elválasztást.[6] A K ATP csatorna mutációinak örökletes betegségek A K ATP csatorna mutációi alapvetően két típusba sorolhatók. Az egyik típusba azok a mutációk tartoznak, amelynek következményeként a csatorna záródása károsodik,pl az ATP nem idézi elő a csatorna blokkolását. Így az ilyen típusú mutációk az inzulin szekréció károsodásával járnak, melynek klinikai megjelenési formája az újszülött kori diabétesz. E betegségcsoport többségében az egyetlen tünet a magas vércukorszint, amely szulfonilurea származékokkal és inzulinterápiával helyreállítható. Néhány esetben azonban a cukormetabolizmus zavara más kórképekkel is társul: motoros és kognitív funkciók is károsodnak, amely a beszéd és a járáskészség kései kialakulásában, izomgyengeségben nyilvánul meg. Ennek a kórképnek az egyik súlyos formája a DEND szindróma, amelyben az említett tüneteken kívül fejlődési rendellenesség és epilepszia is kialakul. A központi idegrend-

Az ATP szenzitív kálim csatorna 89 szeri tünetek legvalószínűbb oka, hogy a K ATP csatornák a központi idegrendszerben is fontos szerepet töltenek be, jelenlétüket kimutatták a hippocampus és a cortex neuronjaiban is. A mutációk másik csoportja inaktív csatornát eredményez, amely csak kismértékben vagy egyáltalán nem engedi át a K + iont. Ekkor a béta sejt depolarizált állapota miatt túl gyakran alakul ki akciós potenciál, amely inzulin hiperszekrécióhoz vezet. Ez a mutáció újszülött kori hyperinzulinémiában manifesztálódik, amely esetenként a hypoglikémia miatt bekövetkező súlyos agykárosodást okoz. A betegség már szültéskor, de legkésőbb a gyerek egy éves koráig megnyilvánul, amely enyhe esetben diazoxiddal, vagy megfelelő diétával karbantartható. Azonban az esetek nagy részében részleges hasnyálmirigy eltávolítást kell végezni.ekkor viszont diabétesz lép fel így a beteg élethosszig tartó inzulin terápiára szorul. Születéskori hyperinzulinémmia úgyis létrejöhet, hogy a glükokináz enzim mutációja következtében megnövekszik az enzimaktivitása. Ennek eredményként már 5.5mM glükóz szint alatt is az egészségesnél nagyobb lesz a béta sejt ATP produkciója, amely blokkolva a K ATP csatornát fokozott inzulintermelést indukál. [7,8] A K ATP csatorna szerepea glükóz homeosztázis idegrendszeri szabályozásában A vér glükóz szintjének szabályozásában a központi idegrendszer aktívan részt vesz. Mivel a szervezet összes nyugalmi glükóz felhasználásának több, mint feléből az agy részesedik, ezért a hipoglikémiás epizódokra különösen érzékeny. A központi idegrendszeri glükózszint szabályozás egy része a vegetatív idegrendszer által alkotott reflexíveken keresztül valósul meg. A reflexív afferens paraszimpatikus idegei alkotják az un. hepatoportalis rendszert, amely a májkapuérben lévő vér glükóz szintjét érzékeli. A nervusvagusafferensei által közvetített ingerületek a hypotalmusban a paraszimpatikus és a szimpatikus idegrendszer efferens idegeire egyaránt átkapcsolódnak. A szimpatikus idegrendszer efferensei a hasnyálmirigy alfa sejtjeiben serkentik a glukagonszekrációt, a béta sejtekben gátolják az inzulin elválasztást. A mellékvesében fokozzák az adrenalin elválasztást és fokozzák a máj glükóz produkcióját. A paraszimpatikus efferensek a hasnyálmirigy bétasejtjeinek inzulinszekrécióját fokozzák, a máj glükózprodukcióját pedig gátolják. [9] A központi idegrendszeri glükózszint szabályozás nemcsak a vegetatív idegrendszer afferens és efferens ágai alkotta reflexíveken keresztül valósul meg. A hipotalmuszból kiinduló paraszimpatikus és szimpatikus idegek efferens ágaira a hipotalamuszmban lévő glükózszint érzékelő neuronok ingerületei is átkapcsolódnak.a neuronálisglükózszint érzékelés két fő metabolikus folyamat eredményeként valósul meg. Az egyik a közvetlen glükózérzékelés, amelynek során a glükózlebontás útján termelt ATP hasonlóan az inzulintermelő béta sejtekhez a K ATP csatornák blokkolását időzi elő, amely a mebrándepolarizáció következtében akciós potenciált indukál. Az akciós potenciál gátló (GABA) vagy excitatórikusneurotranszmitterek(acetil-kolin)felszabadulását eredményezi. Az

90 Koska Kiss-Tóth Juhászné Szalai Kiss-Tóth Barkai Fodor utóbbi évek kutatásai szerint az agyi glükózszint érzékelésben a közvetlen neuronálisglükózmetabolizmusnál fontosabb szerepet játszik az asztrocita és neuron közötti metabolikus kölcsönhatás. Ennek során az asztrocita által felvett glükóz laktáttámetabolizálódik. A laktátot az idegsejt laktátdehidrogenáza oxidálja piruváttá, majd a piruvátdekarboxilázacetil-coa-vá, amely a terminális oxidációba lépve ATP szintézist eredményez. Az előbbiek miatt a neuron ATP produkciója a szomszédos asztrocitaglükózmetabolizmusának intenzitásától az általa termelt laktát mennyiségétől függ. [10] A neuronális K ATP csatornák aktivitását (K áteresztőképességét) nemcsak a glükóz illetve laktát metabolizmus során keletkező ATP, hanem a vérből felvett hoszszúláncú szabad zsírsavak is befolyásolják. A hosszú láncú zsírsavak közvetlenül, illetve a PKC aktivitásán keresztül aktiválják a neuronális K ATP csatornákat, hiperpolarizációt idézve elő. A K ATP közvetített hipotalmikus válaszok hipoglikémia esetén Amennyiben a vér glükózszintje 5mM alá csökken, a szimpatikus idegrendszer aktiválódik. A hipoglikémiára a hasnyálmirigy alfa sejtjei fokozott glukagonszekrécióval reagálnak, a mellékvesékből adrenalin szabadul fel, növekszik a máj glükózprodukciója. Az utóbbi években számos kísérlettel igazolták, hogy a vércukorszintet növelő ellensúlyozó reakciókban kulcssszerepük van bizonyos hipotalamikusneuroncsoportoknak, amelyek K ATP csatorna dependens módon szabályozzák a glukagonszekréciót. Intracerebroventrikulárisan(ICV) adott glükóz antimetabolitokkal, 2-dezoxi glükózzal, vagy tioglükózzal kísérleti állatokban fokozott glukagonszekréciót lehet előidézni. A glükóz antimetabolitokkal előidézett glukagonszekréciót ICV adott K ATP csatorna blokkolókplglibenclamid felfüggesztik. Más glükózantimetabolitokkal előidézett hipoglikémia modellekben a hypotalamikus magvak aktivitását vizsgálták c-fos festéssel és azt tapasztalták, hogy a glukagonszekréciót bizonyos nyúltvelőikatecholaminerg neuronok aktiválódása megelőzi. Más vizsgálatokban megfigyelték, hogy a hipoglikémiával előidézett glukagon szekréciója a hipotalamiku a GABA-erg neuronok aktivitásának csökkenésével jár. Ebből az következik, hogy 5mM/l feletti glükóz szint esetén a hipotalmikusglükózérzékelő neuronok K ATP csatornáit az ATP zárva tartja, amely akciós potenciált és GABA felszabadulást eredményez. A normál körülmények közötti fokozott hypotalamikus GABERG aktivitás a szimpatikus efferensek tónusos gátlásával jár. A hasnyálmirigy alfa sejtjeit innerváló szimpatikus efferensek csökkent aktivitása csak alapszintű glukagon szekréciót tesz lehetővé. Hipoglikémia esetén a hipotalamikus K ATP csatornák áteresztőképességének növekedésével a GABA-erg neuronok hiperpolarizálódnak, aktivitásuk lecsökken. A szimpatikus efferensek felszabadulnak a gátlás alól, aktivitásuk fokozódik, amely a hasnyálmirigy alfa sejtjeiben fokozott glukagonszekréciót, a májban pedig növekvő glükózprodukciót eredményez.

Az ATP szenzitív kálim csatorna 91 Más hipotalmikusneuroncsoportok a paraszimpatikus efferenseken keresztül gátolják a glükózprodukciót a májban. Kísérletes modellekben az intacerebroventrikulárisan adott hosszú láncú zsírsavak a máj glükóztermelését csökkentették. Az agy a zsírsavakat nem metabolizálja, viszont koncentrációjuk megemelkedése a vérben az agy tápanyagszenzorai számára tápanyagbőség hírvivőként működik. Az agy acyl-coaszintetázinhibítorával, a májat innerválóvagus ág átvágásával, vagy K ATP blokkolóval az ICV injektált hosszúláncú zsírsav glükózszint csökkentő hatása megszűnik. Így a modell szerint a neuronba jutott zsírsav neuronálisacyl-coaszintetáz hatására acyl-coa-vá alakul. Az acyl-coa növeli a K ATP csatorna áteresztőképességét, amely hiperpolarizációval és a neuron aktivitásának csökkenésével jár. Ennek csökkent GABA termelés a következménye. [12,13,14]. Így a vagusefferensekfelszabdulnak a gátlás alól, amelyek fokozott aktivitásuk lévén csökkentik a máj glükóztermelését. Összességében K ATP csatornáknak kulcsszerepe van a szimpatikus és a paraszimpatikus idegrendszer tónusos gátlásában, és a gátlásoldáson keresztül történő aktivációjában (dezinhibíció). Ez a mechanizmus a vér glükóz koncentráció ingadozásaira gyorsabban reagál, mint az endokrin szabályozás. [15,16,17] Összefoglalás, konklúziók A szervezet glükózegyensúlyának szabályozásában endokrin és központi idegrendszeri folyamatok egyaránt részt vesznek. A vérben mért 4-5,5mM/l glükóz koncentráció dinamikus egyensúlyi állapot eredménye. A szervezet energia- és ezzel együtt glükózigénye a fizikai aktivitásváltozással párhuzamosan változik. A glükózegyensúly mindenkori fenntartásához hormonális (endokrin) és központi idegrendszeri szabályozórendszerre van szükség. E szabályozásának egyik fő hormonja az inzulin. A béta sejt inzulin szekrécióját a vércukor szint szabályozza. A béta sejt glükózkoncentráció érzékelésének kulcseleme, a glükokináz enzim, melynek Km értéke 5,5mM, valamint az ATP szenzitív K csatornája (K ATP ). A vér glükózszintjének emelkedésével a glükokináz enzim aktivitása nő, amely gyorsuló glükózmetabolizmust és magasabb ATP produkciós rátát eredményez. A K ATP csatorna SUR alegységének nukleotid kötőhelyeihez kapcsolódó ATP a csatorna záródását okozza, amely az intracelluláris kálium szint növekedése miatt membrán depolarizációt eredményez. A membrándepolarizáció elérve a küszöbpotenciált akciós potenciált indukál, ennek hatására következik be az inzulin szekréciója. A K ATP csatorna pórusformáló (Kir6.2) és szabályozó alegységből (SUR1) álló membránfehérje komplex. A szulfonilurea származékok asur alegységekhez kapcsolódva K ATP csatorna záródását okozzák, az intracelluláris ATP szintjétől függetlenül idéznek elő inzulin szekréciót. A szulfonilurea származékokat így a 2-es típusú diabetes kezelésében alkalmazzák. Az utóbbi évek kutatásai felfedték, hogy a csatorna szabályozásában nemcsak asur fehérjék, hanem maga a pórusformáló Kir6.2 fehérje komplex is részt vesz, nukleotid kötőhelyekkel rendelkeznek. Ezek a

92 Koska Kiss-Tóth Juhászné Szalai Kiss-Tóth Barkai Fodor régiók többek között az ATP és ADP Mg dependens kötőhelyeit tartalmazzák, amelyek fokozzák a K ATP csatorna áteresztőképességét. A K ATP csatorna kulcsszerepét a szervezet glükóz egyensúlyának megtartásában, azok a kórképek mutatják, amelyeket a csatorna mutációi okoznak. A mutációk egyik típusa a K ATP csatorna elveszíti ATP szenzitivitását, 5,5mM-nál magasabb glükózkoncentráció esetében sem záródnak. Így a béta sejtek hiperpolarizáltak, amely gátolja az inzulinszekréciót. Ennek klinikai megjelenési formája a születéskori diabétesz, amely enyhébb esetekben szulfonilurea származékokkal karbantartható. A súlyosabb formák izomgyengeséggel, valamint a kognitív és motoros funkciók károsodásával is járnak, sőt DEND szindrómában e tünetekhez epileptikus rohamok is társulnak, jelezve hogy a K ATP csatornáknak centrálisan is szerepük lehet. Ezt támasztják alá azok a tanulmányok, amelyek igazolták jelenlétüket a hippokampusz gátló interneuronjaiban és a piramidális neuronokban egyaránt. A mutációk másik típusában a K ATP csatorna, káliumot nem enged át. Ennek következtében a béta sejtek depolarizált állapota tartós, amely szabályozhatalan inzulintermeléssel jár. A klinikai megjelenési forma a születéskori hiperinzulinémia, amely súlyos életveszélyes hipoglikémiához vezet, amely visszafordíthatatlan agykárosodást okozhat. Jelenleg egyetlen kezelési mód a szubtotálispankreatotómia, amelynek viszont iatrogéndiabetesz a következménye, ezért a beteg élethosszig tartó inzulinterápiára szorul. A glükózegyensúly fenntartásának központi idegrendszeri mechanizmusaiban is vesznek részt K ATP csatornák. Ezek egy része a vegetatív idegrendszer efferens ágainak aktiválását szabályozza. A szimpatikus efferensek a vér glükóz szintjének növelésében játszanak szerepet, a máj glükózprodukciójának növelésével, valamint a glukagonszekréció fokozásával. A paraszimpatikus efferensek a máj glükózprodukcióját csökkentik. A paraszimpatikus és a szimpatikus efferensekethipotalamikusgaba-erg neuronok gátolják. A K ATP csatorna záródása depolarizációt okoz, amely GABA felszabadulást és a posztszinaptikus vegetatív efferens gátlását eredményezi. A csatorna nyitása hiperpolarizációval jár, amely a GABA felszabadulást csökkenti. Ez a posztszinaptikus vegetatív efferens aktivációjához vezet. A metabolizmust szabályozó hipotalamikus neuronok azonosítása, anatómiai lokalizációjuk meghatározása intenzív kutatások tárgya. A K ATP csatornák nélkülözhetetlen elemei a béta sejtek inzulin szekréciójának, valamint a metabolizmus centrális szabályozásának. Szerkezetük és szabályozásuk részletes megismerése, a csatorna újabb farmakológiai támadáspontjainak meghatározása olyan metabolikus zavarok hatékonyabb terápiájának kifejlesztését segítheti, mint a 2-es típusú diabétesz, vagy az elhízás.

Az ATP szenzitív kálim csatorna 93 Köszönetnyilvánítás Jelen munka a TÁMOP-4.2.1.B-10/2/KONV-2010-0001 jelű projekt részeként - az Új Magyarország Fejlesztési Terv keretében- az Európai Unió résztámogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg. Irodalomjegyzék [1] Burdakov D:K+ channels stimulated by glucose: a newenergy-sensingpathway Eur J Physiol (2007) 454:19 27 [2] Hiriart M. and Aguilar-Bryan L.: Channel regulation of glucoses ensing in the pancreaticβ-cell. Am J Physiol Endocrinol Metab 295: E1298 E1306, 2008. [3] J. C. Henquin: Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia (2009) 52:739 751 [4] McTaggart J.S, Clark R.H, and Ashcroft F.M The role of the KATP channel in glucosehomeostasis in health and disease: more than meets the islet: J Physiol588.17 (2010) pp 3201 3209 [5] Peter Proks, Frank Reimann, Nick Green, Fiona Gribble and Frances Ashcroft Sulfonylurea Stimulation of Insulin Secretion. Diabes, vol. 51, Supl 3,S368 S376 December 2002 [6] YutakaSeino, MitsuoFukushima, DaisukeYabe: GIP and GLP-1, the two incretin hormones: Similarities and differences Journal of Diabetes InvestigationVolume 1 Issue 1/2 February/April 2010 [7] Ashcroft F.M: ATP-sensitive potassium channelopathies: focus on insulin secretion J. Clin. Invest. 115:2047 2058 (2005). [8]James S. McTaggart, Rebecca H. Clark, and Frances M. Ashcrof: The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet J Physiol588.17 (2010) pp 3201 3209 [9] NellMarty, Michel Dallaporta and Bernard Thorens Brain Glucose Sensing, Counterregulation, and Energy Homeostasis Physiology 22:241-251, 2007. [10] Lam C.K.L, Chari M and Lam T.K.T: CNS Regulation of Glucose Homeostasis PHYSIOLOGY Volume 24 June 2009 [11] Demuro G. MD, and ObiciS, MD: Central Nervous System and Control ofendogenous Glucose Production Current Diabetes Reports2006, 6:188 193 [12] Hiriart M. and Aguilar-Bryan L.: Channel regulation of glucose sensing in the pancreaticβ-cell Am J Physiol Endocrinol Metab 295: E1298 E1306, 2008. [13] Jordan D.S, A. ChristineKonner, Jens C:Bruning Sensing the fuels: glucose and lipidsignaling in the CNS controlling energy homeostasis Cell. Mol. Life Sci. (2010) 67:3255 3273 [14] Lam T.K.T:Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production Cellscience. 2007 ; 3(4): 63 69. [15] Levin E.B, Dunn-Meynell A.A, Routh V.H Brain glucose sensing and body energyhomeostasis:role in obesity and diabetes Am. J. Physiol. 276 (RegulatoryIntegrative- Comp. Physiol. 45): R1223 R1231, 1999.

94 Koska Kiss-Tóth Juhászné Szalai Kiss-Tóth Barkai Fodor [16] Marty N., Dallaporta M. and Thorens B.Brain Glucose Sensing, Counterregulation, and Energy Homeostasis Physiology22:241-251, 2007 [17] Routh V.HGlucose Sensing Neurons in the Ventromedial Hypothalamus Sensors 2010, 10, 9002-9025; doi:10.3390/s101009002