törtet, ha a 1. Az egyszerűsített alak: 2 pont

Hasonló dokumentumok
1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

VI. Felkészítő feladatsor

MATEMATIKA ÉRETTSÉGI május 5. KÖZÉPSZINT I. a a. törtet, ha a 1. (2 pont)

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =

2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.

MATEMATIKA ÉRETTSÉGI október 13. I.

Kisérettségi feladatgyűjtemény

Számelmélet Megoldások

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

Függvények Megoldások

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

Koordináta-geometria feladatok (középszint)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

IV. Felkészítő feladatsor

Az egyszerűsítés utáni alak:

MATEMATIKA ÉRETTSÉGI május 06. KÖZÉPSZINT I.

Azonosító jel: ÉRETTSÉGI VIZSGA május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Matematika kisérettségi I. rész 45 perc NÉV:...

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

4. A d és az e tetszőleges valós számot jelöl. Adja meg annak az egyenlőségnek a betűjelét, amelyik biztosan igaz (azonosság)!

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

NULLADIK MATEMATIKA ZÁRTHELYI

MATEMATIKA ÉRETTSÉGI május 7. KÖZÉPSZINT

1. Feladatsor. I. rész

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

1. feladatsor Beadási határidő: február 5., hétfő

MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI SZÓBELI TÉMAKÖRÖK

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI október 15. KÖZÉPSZINT I.

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

Érettségi feladatok: Síkgeometria 1/6

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

MATEMATIKA ÉRETTSÉGI október 16. KÖZÉPSZINT I.

c.) Mely valós számokra teljesül a következő egyenlőtlenség? 3

MATEMATIKA ÉRETTSÉGI február 21. KÖZÉPSZINT I.

Feladatok MATEMATIKÁBÓL II.

Kisérettségi feladatsorok matematikából

ÉRETTSÉGI VIZSGA október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00. Időtartam: 45 perc

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Harmadikos vizsga Név: osztály:

2009. májusi matematika érettségi közép szint

Feladatok MATEMATIKÁBÓL II.

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

MATEMATIKA ÉRETTSÉGI október 19. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI október 20. KÖZÉPSZINT I.

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

Próbaérettségi feladatsor_b NÉV: osztály Elért pont:

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

MATEMATIKA ÍRÁSBELI VIZSGA május 5.

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

(1 pont) (1 pont) Az összevont alak: x függvény. Melyik ábrán látható e függvény grafikonjának egy részlete? (2 pont)

Függvény fogalma, jelölések 15

ÉRETTSÉGI VIZSGA május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Feladatok MATEMATIKÁBÓL

MATEMATIKA ÉRETTSÉGI október 25. EMELT SZINT

MATEMATIKA ÉRETTSÉGI május 3. KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT

Síkgeometria. c) Minden paralelogramma tengelyesen szimmetrikus. (1 pont) 5) Egy háromszög belső szögeinek aránya 2:5:11. Hány fokos a legkisebb szög?

hatványt olyan alakban, hogy ne szerepeljen benne negatív kitevő! (2 pont)

I. rész. 4. Határozza meg a valós számok halmazán értelmezett x x 2 4x függvény szélsőértékét és annak helyét! Válaszát indokolja!

PRÓBAÉRETTSÉGI VIZSGA január 18.

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

Gyakorló feladatsor a matematika érettségire

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!

MATEMATIKA ÉRETTSÉGI május 28. KÖZÉPSZINT I.

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

Érettségi feladatok: Koordináta-geometria 1/5

Javítóvizsga témakörök, gyakorló feladatok 13. i osztály Témakörök

a.) b.) c.) d.) e.) össz. 4 pont 2 pont 4 pont 2 pont 3 pont 15 pont

7. 17 éves 2 pont Összesen: 2 pont

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

PRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0,

XVIII. Nemzetközi Magyar Matematika Verseny

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Síkgeometria

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

Átírás:

1. Egyszerűsítse az 3 2 a + a a + 1 törtet, ha a 1. Az egyszerűsített alak: 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 361 X szám 6-tal osztható? X = 3. Minden szekrény barna. Válassza ki az alábbiak közül annak a mondatnak a betűjelét, amelyik tagadása a fenti kijelentésnek! A) Van olyan szekrény, amelyik nem barna. B) Nincs barna szekrény. C) Van olyan szekrény, amelyik barna. D) Pontosan egy szekrény barna. Az állítás tagadásának betűjele: írásbeli vizsga, I. összetevő 3 / 8 2015. május 5. 1512

2 4. Az x + bx 10 = 0 másodfokú egyenlet diszkriminánsa 49. Számítsa ki b értékét! Számítását részletezze! b = 5. Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)! A) Minden paralelogramma tengelyesen szimmetrikus négyszög. B) A kocka testátlója 45 -os szöget zár be az alaplappal. C) A szabályos tizenhétszögben az egyik csúcsból kiinduló összes átló a tizenhétszöget 15 háromszögre bontja. A) B) C) 6. Adja meg a valós számok halmazán értelmezett helyét és értékét! 2 x ( x 2) függvény minimumának A minimum helye: A minimum értéke: írásbeli vizsga, I. összetevő 4 / 8 2015. május 5. 1512

7. Egy mérőállomáson az egyik év júliusának tizenhárom egymást követő napján az alábbi csapadékértékeket mérték (milliméterben): 2; 26; 8; 1; 6; 1; 21; 10; 22; 49; 5; 25; 9. Adja meg az adatsor terjedelmét és mediánját! A terjedelem: mm A medián: mm 8. Rajzoljon olyan hatpontú gráfot, amelyben a pontok fokszáma: 0; 1; 2; 2; 3; 4. 9. Egy bomlási folyamatban a radioaktív részecskék száma kezdetben 6 10 23, amely érték percenként az előző érték századrészére csökken. Számítsa ki a radioaktív részecskék számát 10 perc elteltével! A radioaktív részecskék száma 10 perc elteltével: írásbeli vizsga, I. összetevő 5 / 8 2015. május 5. 1512

2 2 10. Egy kör egyenlete: ( x + 3) + ( y 4) = 25. Adja meg a kör középpontjának koordinátáit és a kör átmérőjének hosszát! A kör középpontja: A kör átmérője: 11. Az ábrán látható kocka A csúcsából kiinduló élvektorai AB = p; AD = q és AE = r. Fejezze ki p, q és r segítségével a GC, az AG és az FH vektorokat! GC = AG = FH = írásbeli vizsga, I. összetevő 6 / 8 2015. május 5. 1512

12. Két különböző színű szabályos dobókockával egyszerre dobunk. Adja meg annak a valószínűségét, hogy a dobott számok szorzata prímszám lesz! Megoldását részletezze! 3 pont A kérdéses valószínűség: írásbeli vizsga, I. összetevő 7 / 8 2015. május 5. 1512

2 1. Oldja meg az x 4x 21 = 0 egyenletet a valós számok halmazán! x = 2. Egy ABC háromszög A csúcsnál lévő külső szöge 104 -os, B csúcsnál lévő belső szöge 74 -os. Hány fokos a háromszög C csúcsnál lévő külső szöge? Válaszát indokolja! A C csúcsnál lévő külső szög nagysága: 3. Adja meg a valós számok halmazán értelmezett f ( x) = 1+ sin x függvény értékkészletét! Az értékkészlet: írásbeli vizsga, I. összetevő 3 / 8 2015. október 13. 1513

4. Az alábbi függvények a pozitív számok halmazán értelmezettek: f ( x) = 5x ; g( x) = 5 x ; 5 h( x) = ; x i ( x) = 5 x. Adja meg annak a függvénynek a betűjelét, amelyik fordított arányosságot ír le! A válasz: 5. Az A halmaz elemei a 28 pozitív osztói, a B halmaz elemei a 49 pozitív osztói. Adja meg az A B és a B \ A halmazokat elemeik felsorolásával! Megoldását részletezze! A B = B \ A = írásbeli vizsga, I. összetevő 4 / 8 2015. október 13. 1513

6. Hány kételemű részhalmaza van a {2; 3; 5; 7; 11} halmaznak? A kételemű részhalmazok száma: 7. Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)! A) ( 5) 2 = 5 B) Minden x R esetén x = x. 5 C) 2 2 = 32 2 A) B) C) 8. Az x-nél 2-vel nagyobb számnak az abszolútértéke 6. Adja meg x lehetséges értékeit! x = írásbeli vizsga, I. összetevő 5 / 8 2015. október 13. 1513

9. Határozza meg az alábbi adatsor terjedelmét, átlagát és szórását! 1; 1; 1; 1; 3; 3; 3; 5; 5; 7 A terjedelem: Az átlag: A szórás: 10. Az 50-nél nem nagyobb pozitív páros számok közül egyet véletlenszerűen kiválasztunk. Mennyi a valószínűsége annak, hogy néggyel osztható számot választunk? Válaszát indokolja! A kérdéses valószínűség: írásbeli vizsga, I. összetevő 6 / 8 2015. október 13. 1513

11. A ruházati cikkek nettó árát 27%-kal növeli meg az áfa (általános forgalmi adó). A nettó ár és az áfa összege a bruttó ár, amelyet a vásárló fizet a termék vásárlásakor. Egy nadrágért 6350 Ft-ot fizetünk. Hány forint áfát tartalmaz a nadrág ára? Megoldását részletezze! A nadrág ára tartalmaz. Ft áfát 12. Az iskolai asztaliteniszbajnokságon heten indulnak. Mindenki mindenkivel egyszer játszik. Mostanáig Anita már mind a 6 mérkőzését lejátszotta, Zsuzsa 2, Gabi, Szilvi, Kati és Orsi pedig 1-1 mérkőzésen vannak túl. Hány mérkőzését játszotta le mostanáig a bajnokság hetedik résztvevője, Flóra? Flóra mostanáig játszotta le. mérkőzését írásbeli vizsga, I. összetevő 7 / 8 2015. október 13. 1513

1. Adott az A, a B és a C halmaz az elemeivel: A = {1; 2; 3; 4; 5}, B = {3; 4; 5; 6; 7}, C = {6; 7; 8; 9; 10}. Adja meg az A B, B C és A \ B halmazokat elemeik felsorolásával! A B = B C = A \ B = 2. Adja meg az alábbi hatpontú gráfban a pontok fokszámának összegét! A fokszámok összege: írásbeli vizsga, I. összetevő 3 / 8 2015. május 5. 1413

3. Adja meg a következő állítások logikai értékét (igaz vagy hamis)! A) = 8 B) A kettes számrendszerben felírt 11100 szám tízes számrendszerbeli alakja 56. C) A derékszögű háromszög magasságpontja egybeesik a háromszög egyik csúcsával. 16 4 3 A) B) C) 4. Az ábrán a [ 3; 0] intervallumon értelmezett x ( x + 2) 2 + 2 függvény grafikonja látható. Adja meg a függvény értékkészletét! Az értékkészlet: írásbeli vizsga, I. összetevő 4 / 8 2015. május 5. 1413

5. Végezze el a következő műveleteket és a lehetséges összevonásokat! A számítás menetét részletezze! 2 ( a + 9)( a 1) + ( a 4) Az összevont alak: 6. Egy mértani sorozat első tagja 2, második tagja 6. a) Határozza meg a sorozat hányadosát! b) Adja meg a sorozat negyedik tagját! A sorozat hányadosa: A sorozat negyedik tagja: 7. Egy családban három gyerek van. A gyerekek kétévente születtek, életkoruk összege 45 év. Hány éves a legidősebb gyerek? A legidősebb gyerek éves. írásbeli vizsga, I. összetevő 5 / 8 2015. május 5. 1413

8. Ábrázolja a [ 2; 3] intervallumon értelmezett x x +1 2 függvényt! 3 pont 9. Egy forgáskúp alkotója 41 cm, alapkörének sugara 9 cm hosszú. Hány centiméter a kúp magassága? Válaszát indokolja! A kúp magassága cm. írásbeli vizsga, I. összetevő 6 / 8 2015. május 5. 1413

10. Adjon meg öt pozitív egész számot, melyek mediánja 4, átlaga 3. Az öt szám: 3 pont 2 2 11. Mekkora az x + y 6y + 5 = 0 egyenletű kör sugara? Számítását részletezze! A kör sugara: 12. Szabályos pénzérmével háromszor dobunk egymás után. Adja meg a FEJ-ÍRÁS-FEJ dobássorozat valószínűségét! A valószínűség: írásbeli vizsga, I. összetevő 7 / 8 2015. május 5. 1413