FIZIKA KÖZÉPSZINTŐ ÉRETTSÉGI TÉTELSOR KÍSÉRLETEI



Hasonló dokumentumok
A középszintű fizika érettségi témakörei:

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI Témakörök

Eszközök: Két egyforma, könnyen mozgó iskolai kiskocsi rugós ütközőkkel, különböző nehezékek, sima felületű asztal vagy sín.

A fizika középszintű szóbeli érettségi vizsga témakörei és a hozzá kapcsolódó kísérletek/ mérések/ ábraelemzések 2015.

A fizika középszintű szóbeli érettségi vizsga témakörei és a hozzá kapcsolódó kísérletek/ mérések/ ábraelemzések 2016.

Középszintű érettségi témakörök fizikából 2015/2016-os tanév

2010. május- június A fizika szóbeli érettségi mérései, elemzései

Témakörök fizikából ősz

A es május-júniusi érettségi témakörök és elvégzendő kísérletek fizikából:

EMELT SZINT SZÓBELI MINTATÉTELSOR ÉS ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI

FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete

1. A gyorsulás Kísérlet: Eszközök Számítsa ki

11. ÉVFOLYAM FIZIKA. TÁMOP Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

5. Pontszerű és merev test egyensúlya, egyszerű gépek.

Szaktanári segédlet. FIZIKA 10. évfolyam Összeállította: Scitovszky Szilvia

Tanulói munkafüzet. FIZIKA 10. évfolyam 2015.

Gáztörvények. Alapfeladatok

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja

FIZIKA SZÓBELI ÉRETTSÉGI TÉMAKÖRÖK KÖZÉPSZINT 2014/2015. TANÉV MÁJUS

A jármővek méreteire vonatkozó üzemeltetési mőszaki feltételek

Fizika 11. osztály. 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron) Lenz törvénye: Waltenhofen-inga, Lenz-ágyú...

TERMOELEM-HİMÉRİK (Elméleti összefoglaló)

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag egyetemi docens

Fúrógép forgásának vizsgálata az Audacity hangszerkesztő szoftver segítségével

Tanulói munkafüzet. FIZIKA 9. évfolyam egyetemi docens

FIZIKA MUNKAFÜZET EME LT SZI NT

Fizika évfolyam

12. FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete

1. tesztlap. Fizikát elsı évben tanulók számára

Fizika verseny kísérletek

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Analóg kijelzésû mutatós villamos mérõmûszerek

Tanulói munkafüzet. Fizika. 8. évfolyam 2015.

BALESETVÉDELMI TUDNIVALÓK ÉS MUNKASZABÁLYOK

Használati utasítás

Elektrosztatika tesztek

FELHASZNÁLÓI KÉZIKÖNYV

A középszintő fizika érettségi témakörei

Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: Épületgépészeti elektromos szerelések és irányítástechnika

Érettségi témakörök fizikából őszi vizsgaidőszak

2. MINTAFELADATSOR KÖZÉPSZINT

A hegesztési eljárások áttekintése. A hegesztési eljárások osztályozása

A lendületmegmaradás vizsgálata ütközı kiskocsikkal PIC idıméréssel fotokapukkal

1. MINTAFELADATSOR KÖZÉPSZINT

1. Mozgások, vonatkoztatási rendszerek Mi, mi, mi, mi, mi, mi, mi? Mi, mi, mi, mi, mi, mi, mi? Mi mozog a zöld leveles csipkebokorban?

Középszintű fizika érettségi kísérlet és eszközlista képekkel 2017

Élethelyzetek. Dr. Mészáros Attila. Élethelyzetek. Élethelyzetek. Élethelyzetek. Élethelyzetek. 2. Élethelyzetek, konfliktusok

FIZIKA KÖZÉPSZINTŰ ÉRETTSÉGI

FIZIKA MUNKAFÜZET 7-8. ÉVFOLYAM IV. KÖTET

Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben! Határozza meg a buborék sebességét a rendelkezésre álló eszközökkel!

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

1. Cartesius-búvár. 1. tétel

21. A testek hőtágulása

Szoftveres jelfeldolgozás mágneses tér szondával

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Szerelési és használati útmutató Art.-No gázgrillhez

OSZTÁLYOZÓ VIZSGA TÉMAKÖREI

1.8. Ellenőrző kérdések megoldásai

Középszintű érettségi témakörök

EMELT SZINTŰ ÍRÁSBELI VIZSGA

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba

KEZELÉSI UTASÍTÁS CE 0085AQ0327

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

1. Newton-törvényei. Az OH által ajánlott mérés

EMELT SZINTŰ ÍRÁSBELI VIZSGA

GÁZTERASZHİSUGÁRZÓ 12016

Galilei lejtő golyóval (golyó, ejtő-csatorna) stopperóra, mérőszalag vagy vonalzó (abban az esetben, ha a lejtő nincsen centiméterskálával ellátva),

Egyenes vonalú egyenletes mozgás vizsgálata

Fizika 12. osztály. 1. Az egyenletesen változó körmozgás kinematikai vizsgálata Helmholtz-féle tekercspár Franck-Hertz-kísérlet...

4. elıadás A KRISTÁLYFIZIKA ALAPJAI

B. feladat elvégzendő és nem elvégzendő kísérletei, kísérletleírásai. 1. Cink reakciói

FIZIKA PRÓBAÉRETTSÉGI FELADATSOR - B - ELSŐ RÉSZ

Háromjáratú keverı- és osztószelepek

Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök segítségével! Eszközök: Kiskocsi-sín, Stopperóra, Mérőszalag

101/2003. (XII. 23.) GKM rendelet. a nemzetközi közúti áru- és személyszállítás végzésének egyes feltételeirıl. A rendelet hatálya

K Ü L Ö N L E G E S T R A N S Z F O R M Á T O R O K

H A S Z N Á L A T I Ú T M U T A T Ó. Vontatott növényvédı permetezıgép Leeb GS 6000 / Leeb GS Az eredeti használati útmutató fordítása

I. tétel Egyenes vonalú mozgások. Kísérlet: Egyenes vonalú mozgások

13. ábra SPIROMATIC 316 típusú légzésvédı készülék

N450 Felhasználói kézikönyv User Manual V1.2

Ultrahangos Párásító Készülék GYVH21 HASZNÁLATI ÚTMUTATÓ. Kérjük üzembe helyezés előtt figyelmesen olvassa el a használati útmutatót!

- *36123% 18(4VSHYGXW%OXMIRKIWIPPWGLEJX 7EEVFVµGOIR +IVQER]

Fizika 8. osztály. 1. Elektrosztatika I Elektrosztatika II Ohm törvénye, vezetékek ellenállása... 6

Elektromágneses indukció, váltakozó áram

Nyílt sérülések

Szakköri segédlet. FIZIKA 7-8. évfolyam Összeállította: Bolykiné Katona Erzsébet

KÉMIA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI, KÍSÉRLETEI ÉS KÍSÉRLETLEÍRÁSAI. A feladat témakörei

FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI

41. A minıségügyi rendszerek kialakulása, ISO 9000 rendszer jellemzése

Mechanika 1. Az egyenes vonalú mozgások

EMELT SZINTŰ ÍRÁSBELI VIZSGA

Használati utasítás. Kalibra 59 Bt. RISHMulti 18s digitális multiméterekhez

Az akkumulátor szenzoros vizsgálata összeállította: Gilicze Tamás lektorálta: Dr. Laczkó Gábor

jωjlh 69 használati utasítás

HSA Használati útmutató

Az osztályozó vizsgák tematikája fizikából évfolyam 2015/2016. tanév

B TÉTEL Fémek oldása sósavban Végezze el a következő kísérleteket: Híg sósavba tegyen cinket, Híg sósavba tegyen rezet! Magyarázza a tapasztaltakat!

Vályús mángorlók. hu-hu a felállítás - installálás - üzembevétel elõtt. Ezáltal önmagát is védi és elkerüli a készülék károsodását. M.-Nr.

Divatos termék-e a kondenzációs kazán?

Átírás:

FIZIKA KÖZÉPSZINTŐ ÉRETTSÉGI TÉTELSOR KÍSÉRLETEI 2011 Barabás Péter

AZ EGYENLETESEN GYORSULÓ MOZGÁS VIZSGÁLATA Lejtın leguruló golyó (vagy kiskocsi) gyorsulásának mérése különbözı meredekség esetén. hosszú sín, oldalán centiméterskálával, golyó (kiskocsi), fahasábok a lejtı meredekségének beállítására, mérıszalag, stopper. Elıször egy majd több fahasábbal állítson be többféle lejtı meredekséget és mindegyiknél mérje meg többször az adott távolságot befutó golyó (kiskocsi) mozgásának idejét! Legalább három-három mérés eredményét átlagolja, majd számítsa ki a hozzájuk tartozó gyorsulás értékeket! Az energiamérleg alkalmazásával számítsa ki az adott magasságból érkezı gyorsuló test sebességét, majd vesse össze a mérés alapján számított értékekkel! Indokolja meg az eltérést!

AZ EGYENLETES MOZGÁS FELTÉTELÉNEK VIZSGÁLATA Állandó maximális motorteljesítményt feltételezve elemezze egy autó sebességnövekedését megadó táblázatot: t(s) 0 5 10 15 20 25 30 35 40 v(km/h) 0 50 90 120 140 150 155 160 160 A kísérletelemzés szempontjai: Vesse össze az azonos idıtartamok alatti sebességváltozást! Mi indokolja v/ t hányados csökkenését, majd a v=0 értéket? Milyen hatás okozza ezt? Lineárisnak tekinthetı e ez a hatás?

RUGALMAS ÉS RUGALMATLAN ÜTKÖZÉSEK VIZSGÁLATA Vizsgálja meg a kétféle ütközés során a kölcsönhatások eredményét! sín, két kiskocsi rugós ütközıkkel ill. mágnesrudak a rugalmatlan ütközés vizsgálatához, nehezékek A vízszintes sínen helyezzen el két kiskocsit rugalmas ütközıkkel! Kezeivel távolítsa el ıket egymástól, majd próbálja egyenlı nagyságú sebességekkel egymásnak lökni ıket! Ez után álló kiskocsinak ütköztessen mozgót! Növelje az egyik kocsi tömegét a kétszeresére (+ nehezék); az álló kocsinak ütköztetést végezze el úgy is, hogy a könnyebb ill. a nehezebb kocsi álljon! Szedje le a rugós ütközıt és tegyen mindkét kocsira ellentétes pólusaival egymás felé fordított (vonzó) mágnest! Az elızı rugalmas ütközés feltételeit ismételje meg ez esetben is, kizárólag m tömegő kocsikat használva. Az összes ütközés után becsülje meg mindkét kocsi ütközés utáni sebességét és vesse össze az impulzusmegmaradás törvényével! (A kezdıfeltételek tehát: rugalmas ütközésnél m, v; m, -v; majd m, v; m, v=0, illetve m, v; 2m, v=0 és 2m, v; m, v=0 rugalmatlan ütközésnél m, v; m, -v; majd m,v; m,v=0)

A SÚRLÓDÁS VIZSGÁLATA A csúszási és tapadási súrlódás vizsgálata lejtın. állítható magasságú lejtı a meredekség szögének beállításával, nehezék kampóval, rugós erımérı, dörzspapír. Kétféle meredekség szöget beállítva mindkét esetben egyenletesen fölfelé húzva a testet a rugós erımérıvel, annak leolvasása, majd óvatosan álló helyzetbıl a test kimozdításához szükséges erı leolvasása. A mért erıkbıl ill. a lejtı hajlásszögébıl számítsa ki -t, -t!

A HARMONIKUS REZGİMOZGÁS VIZSGÁLATA Rugón függıleges rezgésbe hozott test rezgésidejének mérése. állvány befogóval, két egyforma rugó, négy azonos tömegő nehezék, rugós erımérı, stopper. Egy rugót, majd két rugót sorba kötve használva mindkét esetben 2 majd 4 nehezékkel mérje meg 10-10 rezgés idejét! A rugón lévı nehezékeket óvatosan (kicsit kitérítve) függılegesen hozza rezgésbe! Az egyik esetben kétféle kitérítést (amplitúdót) is használjon annak kimutatására, hogy T nem függ A-tól! Mérje meg a használt nehezékek tömegét (rugós erımérıvel való súlymérésbıl számolva)! Számítsa ki a rugók direkciós erejét (D)!

GYORSULÓ KOORDINÁTARENDSZEREK VIZSGÁLATA Végezzen képzeletbeli kísérletet gyorsuló (fékezı) és kanyarodó metrószerelvényben a gyorsulás mérésére! fonál, nehezék, vízszintmérı eszköz, szögmérı Egy kapaszkodó rúdra kösse fel a kb. 60-80 cm-es vékony kötelet, erısítse rá a nehezéket és még álló helyzetben a vízszintmérı rudat a vízszintezı buborék beállításával fogja a kapaszkodó rúdhoz függıleges helyzetben! Gyorsuláskor (kanyarodáskor) mérje meg a kitért inga kitérési szögét! Számítsa ki a mért szögbıl a szerelvény gyorsulását! (Tételezzük fel, hogy a méréskor a pálya vízszintes)

A HİTÁGULÁS VIZSGÁLATA Vizsgálja meg a levegı tágulását kisebb melegítés hatására! Vizsgálja meg egy termosztát bimetálljának ki/bekapcsoló funkcióját hımérséklet változás hatására! kismérető lombik, száján alumínium ötvenfilléressel, szétszerelt termosztát, kis fızıpohár vízzel, lehőtött üres ásványvizes palack Nedvesítse meg a lombik száját, tegye rá az ötvenfilléres érmét és néhány csepp vizet úgy, hogy az érme peremén körbefusson. Fogja kezei közé és melegítse a lombikot. Csupán a testhımérséklet hatására annyit változik a levegı nyomása, hogy megemeli az érmét többször egymás után jelezve a hıtágulást. A termosztát hıfokszabályozóját finoman állítva a terem hımérsékletének elérésekor jól láthatóan megszakít egy érintkezıt, majd óvatosan kissé alacsonyabb hımérsékletre állítva bekapcsol. A szobahımérsékleten lezárt üres palackot a mélyhőtıbe helyezzük, majd onnan kivéve kapja kézhez. Figyelje meg az alakját, majd kis idı elteltével annak változását! Magyarázza meg a tapasztalatokat!

A TERMIKUS KÖLCSÖNHATÁS VIZSGÁLATA Mérje meg adott üveg mérıedény hıkapacitását! üveg mérıedény szoba-hımérséklető vízzel, üvegpohár olvadó (~ 0 C-os) jéggel, hımérık, keverıpálca Olvassa le a mérıedényben lévı víz mennyiségét és hımérsékletét, majd a hımérıt a vízben tartva dobjon bele 2-3 olvadó jégkockát! Néha megkeverve várja meg a jégkockák elolvadását és akkor olvassa le a lehőlt víz hımérsékletét! Számítással határozza meg a mérıedény hıkapacitását!

AZ IDEÁLIS GÁZOKRA VONATKOZÓ TÖRVÉNYEK VIZSGÁLATA Orvosi fecskendı segítségével a T, V állapotjelzık közötti egyenes arányosság megállapítása (közel állandó nyomás esetén), majd a dugattyú benyomásával a p, V állapotjelzık közötti fordított arányosság megállapítása (közel állandó hımérséklet esetén). orvosi fecskendı, jeges hőtött víz edényben A szobahımérséklető fecskendıt maximálisan kihúzott dugattyúval nyílását lezárva hideg vízre helyezzük. Rövid idı múlva a dugattyút a csökkenı térfogat nyomáskülönbségébıl adódó erıhatás befelé húzza. Ismét szobahımérsékletre melegítve a nyílást befogva a dugattyú benyomásával érezhetı a nyomás arányos növekedése.

HİTANI FİTÉTELEK HİSZIVATTYÚ Elemezze hıszivattyús főtési rendszer energiafelhasználási és főtıteljesítményi értékeit a táblázat alapján! (a külsı hımérséklet állandónak vehetı) Főtési melegvíz hımérséklete ( C) 20 25 30 35 40 45 Villamos energiafelhasználás/h (kw) 0,5 0,7 1,0 1,5 2,0 2,5 Főtıteljesítmény (kw) 2,0 2,5 3,0 3,5 4,0 4,5 A kísérletelemzés szempontjai: Hasonlítsa össze és értelmezze a főtési melegvíz hımérsékletének és a főtıteljesítménynek adatait! Ugyanúgy értelmezze a melegvíz hımérsékletének és a villamos energiafelhasználásnak az arányát. A különbözı hımérséklető melegvíz elıállításához szükséges villamos energiafogyasztást adja meg a főtıteljesítmény %-ban!

AZ ELEKTROMOS TÖLTÉS VIZSGÁLATA Végezzen képzeletbeli kísérletet elektroszkóp kalibrálására! kalibrált és kalibrálatlan elektroszkóp, két fémlemez szigetelı tartókkal, kis állvány, fonálon fémgolyócskával, vezetékek, földelı csatlakozás. A kalibrált elektroszkópot különbözı mértékben töltjük föl, majd az egyik fémlemezt csatlakoztatva hozzá a másik fémlemezt párhuzamosan szembeállítva vele leföldeljük. A két lemez közé lógatjuk a kis alumínium golyócskát úgy, hogy 3-5 mm-t tudjon a lemezek között azokhoz ütközve mozogni. Ezzel az elektromos harangjátékkal az adott töltés levezetéséhez tartozó harangozások számát mérjük, majd a kalibrálatlan elektroszkóp különbözı töltéseinél ugyanezt a mérést elvégezve a koppanások számához adjuk meg az arányos töltésértékeket. Értelmezze a harangjáték mőködését!

A KONDENZÁTOR VIZSGÁLATA EGYENÁRAMÚ KÖRBEN Egyenfeszültségő áramforrásról töltött kondenzátor feszültségének és töltıáramának vizsgálata. elektromos kísérleti készlet kapcsolókkal, nyomógombokkal, ellenállások, két kondenzátor párhuzamosan kapcsolva (a nagyobb kapacitás létrehozására), vezetékek, zsebtelep, áram- és feszültségmérık, négyzetrácsos papír, stopper A kapcsolási rajz alapján állítsa össze a mérést! A kapcsoló bekapcsolása után 1, 2, 3, 4, 5, 10, 15, 20, 25, 30 másodperc elteltével jegyezze fel az árammérın mért értékeket (az elsı öt értéket öt különbözı méréssel egyesével mérje)! Utóbb ugyanúgy jegyezze fel a voltmérın mért adatokat! Minden mérés elıtt a kapcsolót kapcsolja ki és a nyomógombbal süsse ki a kondenzátort (amit a feszültségmérın leolvasott 0 érték jelez)! Koordinátarendszerben ábrázolja I és U idıfüggését! Értelmezze a mérés eredményét!

ZSEBTELEP TULAJDONSÁGAINAK VIZSGÁLATA Végezzen áram- és feszültségmérést különbözı terhelések esetén a zsebtelep belsı ellenállásának meghatározására! elektromos kísérleti készlet kapcsolókkal, izzókkal, vezetékekkel, áramforrás, mérımőszerek A kapcsolási rajz alapján állítsa össze a mérést! A kétféle terheléskor a mőszereken olvassa le I 1, I 2, U 1, U 2 értékeit! Az áramköröket csak 10-20 másodpercre hagyja bekapcsolva! ismertesse Ohm törvényét a teljes áramkörre, majd mutassa meg, hogy R b =. Számítsa ki R b -t!

AZ ELEKTROMÁGNESES INDUKCIÓ VIZSGÁLATA Vizsgálja meg a mozgási és nyugalmi indukció jelenségét, mérje meg az indukált feszültséget (áramot) és annak polaritását! demonstrációs mőszerek, vezetékek, banándugók, krokodilcsipeszek, áramforrás (zsebtelep), két tekercs vasmaggal (demonstrációs transzformátor), elektromágnes-rúd, felfüggesztett tekercs, iránytő, mágnesrudak, patkómágnes Mutassa meg az elektromos áram mágneses hatását! A felfüggesztett tekercs egyik ágát fogja össze a patkómágnessel ( mágneses hinta ), majd a tekercset kapcsolja az áramforrásra! Értelmezze a Lorentz-erı hatását! Tekercset kössön a középállású mérımőszerre, majd egy ill. két rúdmágnest különbözı sebességgel mozgasson a tekercs belsejébe illetve onnan kifelé! Mérje meg az indukált feszültséget (áramot)! Értelmezze annak polaritását Lenz törvényével! Állítsa össze a demonstrációs transzformátort, majd a primer tekercsre néhány másodpercig kapcsoljon egyenfeszültséget az áramforrás segítségével miközben a szekunder tekercs a középállású mérımőszerhez csatlakozik! A méréshatárt most egy egységgel nagyobbra tegye! Értelmezze a mérés eredményeit!

TEKERCS VISELKEDÉSE EGYEN- ÉS VÁLTÓÁRAMÚ KÖRBEN Adjon mérési eljárást tekercs egyen- és váltóáramú ellenállásának meghatározására. Egyen- és váltóáramú áramforrás, tekercs, ellenállás, mérımőszerek, kétállású kapcsoló. Egyenáramú körben a tekercs vezetékének ellenállását mérhetjük, ami azonban jóval kisebb a vele sorba kötött ellenállásnál, gyakorlatilag közel nullának vehetı. Váltóáram esetén az ellenállása jóval nagyobb (X L = 2πfL ), amit a voltmérın mért nagyobb feszültségérték és az ampermérın mért kisebb áramerısség jelez.

LENCSÉK KÉPALKOTÁSÁNAK VIZSGÁLATA Határozza meg domború lencse fókusztávolságát rögzített kép-tárgytávolság esetén! optikai pad kis ernyıvel, gyertyával, tartókkal, lencsékkel, mérıszalag, gyufa Helyezze el az optikai padon a befogott domború lencsét és vegye azt közre a tartóra helyezett gyertya ill. kis papírernyı. Gyújtsa meg a gyertyát, állítsa be a megfelelı magasságokat, majd tolja a lencse tartóját abba a helyzetbe, hogy éles nagyított (1), egy másik pozícióban pedig éles kicsinyített kép (2) keletkezzen! Mérje meg a kép-tárgy távolságot (d), valamint a lencse két pozíciója közöttit (s)! Számítsa ki a lencse fókusztávolságát!

FÉNY ELHAJLÁSÁNAK ÉS INTERFERENCIÁJÁNAK VIZSGÁLATA Monokromatikus, koherens (lézer)fény interferenciájának és elhajlásának vizsgálata. lézerceruza, lézer-fényforrás kis réssel, optikai rácsok A lézerceruza által kibocsátott fénysugár útjába tett kétféle optikai rács interferenciaképeinek tanulmányozása és értelmezése, majd a lézeres vízszintezı igen erıs fényelhajlási jelenségének kimutatása papírlapon, ill. nagyobb falfelületen.

RADIOAKTÍV ANYAG AKTIVITÁSÁNAK VIZSGÁLATA Elemezze a táblázat adatait, amely a víztartályba került radioaktív jódizotóp mért aktivitását mutatja! Napok száma 2 4 6 8 10 Aktivitás (Bq) 2.210 1.810 1.610 1.310 10 8 Mind az elbomlott atomok számát, mind az aktivitást exponenciális lecsengés jellemzi: N= N 0 2 -t/t ; a=a 0 2 -t/t Vesse össze a mért adatokat az exponenciális összefüggéssel! Mit nevezünk felezési idınek? Hogyan alkalmazható az aktivitás idıbeli csökkenése kormeghatározásra?

TÉR-IDİ GRAFIKON ELEMZÉSE: A FÉNYSEBESSÉGNÉL NAGYOBB SEBESSÉG ABSZURDUMA Az alábbi két tér-idı grafikon értelmezése, elemzése.

TÉR-IDİ GRAFIKONOK ELEMZÉSE A mellékelt ábrákon értelmezze és elemezze az ikerparadoxont és annak feloldását, az egyidejőség relativitását (az idıbeli sorrend felcserélıdését), a hosszkontrakciót, az idıdilatációt. Az ikerparadoxon ábrázolása

Az egyidejőség relativitása (az idırendi sorrend felcserélıdése)

A hosszkontrakció ábrázolása

Az idıdilatáció ábrázolása