A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos



Hasonló dokumentumok
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző

Halmazállapot-változások

A hőmérséklet változtatásával a szilárd testek hosszméretei megváltoznak, mégpedig melegítéskor általában növekednek. Ez azzal magyarázható, hogy a

TestLine - Fizika hőjelenségek Minta feladatsor

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

Halmazállapotok. Gáz, folyadék, szilárd

A halmazállapot-változások

Kémia I. 6. rész. Halmazállapotok, halmazállapot változások

FOLYADÉK rövidtávú rend. fagyás lecsapódás

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

Légköri termodinamika

Halmazállapot-változások (Vázlat)

A hőtan fő törvényei, fő tételei I. főtétel A tárgyak, testek belső energiáját két módon lehet változtatni: Termikus kölcsönhatással (hőátadás, vagy

Általános és szervetlen kémia Laborelıkészítı elıadás I.

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F

A hő terjedése (hőáramlás, hővezetés, hősugárzás)

Termodinamika (Hőtan)

Energiaminimum- elve

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

tema08_

Gázrészecskék energiája: Minél gyorsabban mozognak a részecskék, annál nagyobb a mozgási energiájuk. A gáz hőmérséklete egyenesen arányos a

Altalános Kémia BMEVESAA101 tavasz 2008

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Folyadékok és szilárd anyagok

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium

Belső energia, hőmennyiség, munka Hőtan főtételei

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

A nyomás. IV. fejezet Összefoglalás

AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István

Szárazjeges tisztítás hatásai hegesztő szerszámokon 2012 GESTAMP 0

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

Művelettan 3 fejezete

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Termokémia, termodinamika

Bevezetés a lézeres anyagmegmunkálásba

A termodinamika törvényei

Hütökészülékek. Oktatás - II. rész. BUDAPEST - Attila Kovács. ESSE - Wilhelm Nießen

Termodinamika. 1. rész

Hőtágulás - szilárd és folyékony anyagoknál

Kémiai alapismeretek 1. hét

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.

Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek E A J 2. N m

Szabadentalpia nyomásfüggése

Az anyagi rendszer fogalma, csoportosítása

Tiszta anyagok fázisátmenetei

Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia

A gázok. 1 mol. 1 mol H 2 gáz. 1 mol. 1 mol. O 2 gáz. NH 3 gáz. CH 4 gáz 24,5 dm ábra. Gázok moláris térfogata 25 o C-on és 0,1 MPa nyomáson.

óra C

1. SI mértékegységrendszer

Méréstechnika. Hőmérséklet mérése

Az élethez szükséges elemek

Folyadékok és gázok mechanikája

Fizika minta feladatsor

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye

Termodinamika. Belső energia

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Feladatlap X. osztály

Általános kémia vizsgakérdések

Halmazállapot-változások vizsgálata ( )

KÖZSÉGI VERSENY KÉMIÁBÓL (2016. március 5.)

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA I.

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

Halmazállapot-változások tesztek. 1. A forrásban lévő vízben buborékok keletkeznek. Mi van a buborékban? a) levegő b) vízgőz c) vákuum d) széndioxid

Hidrosztatika. Folyadékok fizikai tulajdonságai

3. Halmazállapotok és halmazállapot-változások

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges

A FÖLD VÍZKÉSZLETE. A felszíni vízkészlet jól ismert. Összesen km 3 víztömeget jelent.

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

Kötések kialakítása - oktett elmélet

A fizika kétszintű érettségire felkészítés legújabb lépései Összeállította: Bánkuti Zsuzsa, OFI

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Energia. Energiamegmaradás törvénye: Energia: munkavégző, vagy hőközlő képesség. Az energia nem keletkezik, nem is szűnik meg, csak átalakul.

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

Fázisok. Fizikai kémia előadások 3. Turányi Tamás ELTE Kémiai Intézet. Fázisok

Mivel foglalkozik a hőtan?

az Anyagtudomány az anyagok szerkezetével, tulajdonságaival, az anyagszerkezet és a tulajdonságok közötti kapcsolatokkal, valamint a tulajdonságok

Diffúzió 2003 március 28

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Reológia Mérési technikák

Spontaneitás, entrópia

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok.

Átírás:

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy gáz, illetve plazma halmazállapotba. film

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos testekben szabályos térbeli rácsot alkotva. Amorf testekben (pl. viasz, üveg) a részecskék szabálytalanul helyezkednek el, ezek tulajdonképpen megdermedt, rendkívül nagy viszkozitású folyadékok.

A folyadékok nem rendelkeznek meghatározott alakkal, felveszik a tartó edény alakját; összenyomni azonban nagyon nehéz őket (az ideális jelző folyadékoknál összenyomhatatlanságot jelent). Részecskéik egymáshoz közel, de rendezetlenül helyezkednek el, és egymáshoz képest a hőmérséklettel együtt növekvő sebességgel könnyen elmozdulhatnak.

A gázok kitöltik a rendelkezésre álló teret, és könnyen változtatják térfogatukat. Részecskéik egymástól távol vannak, és a hőmérséklettel együtt növekvő sebességgel egymással és az edény falával rugalmasan ütközve rendezetlen mozgást végeznek.

A plazmaállapotban lévő anyag ionizált magas hőmérsékletű gáz. Elektronokból és pozitív ionokból áll. Kifelé általában elektromosan semleges. A képen egy plazma hajtóműben láthatók a kiáramló ionizált magas hőmérsékletű gázok.

Halmazállapot-változásnak azt a fázisátalakulást nevezzük, amikor az anyag egyik halmazállapotából a másikba jut. Hőmérséklet, vagy nyomás emelkedésekor: szilárd olvadás folyékony párolgás, forrás gáz szilárd szublimáció gáz Hőmérséklet, vagy nyomás csökkenésekor: gáz lecsapódás vagy kondenzáció folyadék fagyás szilárd gáz kicsapódás szilárd

Attól kezdve, hogy a szilárd test hőmérséklete elérte az anyagi minőségére jellemző olvadáspontot (T o ), a felvett hő nem a test melegítésére, hanem a részecskéit összetartó kémiai (ionos, fémes, kovalens) kötések felbontására fordítódik.

Egységnyi tömegű olvadásponton levő szilárd anyag megolvasztásához szükséges hő. Jele: J L, o Lo kg Az olvadáshő a kristályszerkezet felbontásához szükséges. L o Q olvadás Amorf anyagoknál kristályszerkezet hiányában nem beszélhetünk olvadáshőről. m

Egységnyi tömegű olvadásponton levő folyadék fagyásakor felszabaduló hő. Jele: L L fagyás Egy test fagyásakor ugyanakkora hő szabadul fel, mint amennyi a megolvasztásához szükséges, ezért. fagyás, Lfagyás Q m fagyás L L fagyás o J kg

Olyankor alakul ki, amikor a folyadékokat - folyadék állapotban tartva - fagyáspontjuk alá hűtik. Ez az állapot instabil. A túlhűtött folyadék, ha megzavarják, az adott hőmérsékleten stabil szilárd állapotba megy át. Túlhűtött állapot jön létre a felhőkben, a jégkristályok képződése előtt, tavak felületének befagyásakor és liofilizálásnál.

A forráspont alatti folyadék gáz átmenet. Párolgás közben a folyadék felszínén levő részecskék némelyike elszakad a testtől, lévén akkora a mozgási energiája, hogy le tudja győzni a folyadék belseje felé ható kohéziós (azonos részecskék között ható) erőt. Párolgáshő: egységnyi tömegű, adott hőmérsékletű folyadék elpárolgásához szükséges hő. Jele: L L p, p J kg L p Q párolgás m

Egységnyi tömegű forrásponton levő folyadék elforralásához szükséges hő. Jele: Lf, Lf J kg L f Q m forrás Forráspontnak azt a hőmérsékletet nevezzük, amikor a gőz nyomása egyenlő a külső nyomással. A folyadék kisebb nyomáson (pl. a magasabb hegyeken) alacsonyabb hőmérsékleten forr, nagyobb nyomáson (pl. a kuktafazékban) magasabb. A forráspont jellemző az adott anyagra.

Egységnyi tömegű forrásponton levő gőz lecsapódásakor felszabaduló hő. Jele: L L l, l J kg L l Q lecsapódás m Egy test lecsapódásakor ugyanakkora hő szabadul fel, mint amennyi az elforralásához szükséges, ezért: L L l f

A szilárd fázis átmenete közvetlenül légnemű fázisba, más szóval a szilárd anyag párolgása. Légköri nyomáson szublimáló anyag pl. a szilárd szén-dioxid (szárazjég) és a jód vagy a kámfor. Szárazjég (szilárd szén-dioxid (CO 2 ) Valamennyire minden anyag szublimál, ezért érezzük illatát, szagát sok szilárd anyagnak is.