A RÁDIÓLOKÁCIÓ ALAPJAI A RÁDIÓLOKÁCIÓ FOGALMA



Hasonló dokumentumok
CÉLKOORDINÁTOROK alkalmazástechnikája CÉLKOORDINÁTOROK FELÉPÍTÉSI ELVE

A REPÜLÉSBEN ALKALMAZOTT RADARRENDSZEREK

közelnavigációs és a leszállító rádiólokációs rendszerek.

Időjárási radarok és produktumaik

RÁDIÓLOKÁCIÓ ALAPJAI

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

RFID rendszer felépítése

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

Hullámok, hanghullámok

Intelligens Közlekedési Rendszerek 2

Járműipari környezetérzékelés

Automatikus Fedélzeti Irányító Rendszerek. Navigációs rendszerek a pilóta szemszögéből Tóth Gábor

Zaj- és rezgés. Törvényszerűségek

Audiofrekvenciás jel továbbítása optikai úton

Murinkó Gergő

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ

2. Elméleti összefoglaló

Rallyinfo.hu - GPS rendszer működésének technikai leírása V1

A távérzékelés és fizikai alapjai 4. Technikai alapok

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]

A NEM-IONIZÁLÓ SUGÁRZÁSOK. Elektromágneses sugárzások és jellemzőik

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Akusztikai tervezés a geometriai akusztika módszereivel

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Járműipari környezetérzékelés

DRÓNOK HASZNÁLATA A MEZŐGAZDASÁGBAN

T E R M É K T Á J É K O Z TAT Ó

Felhasználói kézikönyv

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

Érzékelők csoportosítása Passzív Nem letapogató Nem képalkotó mh. radiométer, graviméter Képalkotó - Kamerák Letapogató (képalkotó) Képsíkban TV kamer

A feladatsor első részében található 1-20-ig számozott vizsgakérdéseket ki kell nyomtatni, majd pontosan kettévágni. Ezek lesznek a húzótételek.

Az Ampère-Maxwell-féle gerjesztési törvény

Anyagvizsgálati módszerek

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Optika fejezet felosztása

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Csillagászati eszközök. Űrkutatás

Látás. Látás. A környezet érzékelése a látható fény segítségével. A szem a fényérzékelés speciális, páros szerve (érzékszerv).

A tanulók gyűjtsenek saját tapasztalatot az adott szenzorral mérhető tartomány határairól.

DistanceCheck. Laser nm

AZ AHEAD LŐSZER BEMUTATÁSA

Távérzékelés, a jöv ígéretes eszköze

A feladatsor első részében található 1-20-ig számozott vizsgakérdéseket ki kell nyomtatni, majd pontosan kettévágni. Ezek lesznek a húzótételek.

HONVÉDELMI MINISZTÉRIUM TECHNOLÓGIAI HIVATAL LÉGVÉDELMI FEJLESZTÉSI PROGRAMIRODA

INFRA HŐMÉRŐ (PIROMÉTER) AX Használati útmutató

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Ugye Ön is tudta már? Kérdések és válaszok a bázisállomás működése kapcsán

Néhány gondolat a rádiólokációs rendszertechnikáról

zturbinák kompresszorának akusztikus

A kézi hőkamera használata összeállította: Giliczéné László Kókai Mária lektorálta: Dr. Laczkó Gábor

Neo Neon DJ Scan (SRL-114) Felhasználói Kézikönyv

Mérés: Millikan olajcsepp-kísérlete

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata


Mérés és adatgyűjtés

OPTIKA. Geometriai optika. Snellius Descartes-törvény szeptember 19. FIZIKA TÁVOKTATÁS

MIKROFYN GÉPVEZÉRLÉSEK. 2D megoldások:

Felhasználói kézikönyv

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

(Forrás:

e 120 KÁRTYÁS KÖZPONTI ZÁR VEZÉRLŐ KÉSZÜLÉK (K-CARD)

Felhasználói kézikönyv

BME Mobil Innovációs Központ

Adatátviteli rendszerek Vezetékes kommunikációs interfészek. Dr. habil Wührl Tibor Óbudai Egyetem, KVK Híradástechnika Intézet

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

A forgalomsűrűség és a követési távolság kapcsolata

PRGH433PP PROGRAMOZÁS

Térinformatika és Geoinformatika

A hőmérsékleti sugárzás

HVLS Biztonság Teljesítmény Vezérlés. HVLS ventilátorok szeptember 1.

TÉRINFORMATIKA II. Dr. Kulcsár Balázs egyetemi docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

ELEKTROMOSSÁG ÉS MÁGNESESSÉG

11. Intelligens rendszerek

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

HOSSZ FIZIKAI MENNYISÉG

Hogyan lehet meghatározni az égitestek távolságát?

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

Alapvető Radar Mérések LeCroy oszcilloszkópokkal Radar impulzusok demodulálása és mérése

Légköri vízzel kapcsolatos mérések TGBL1116 Meteorológiai műszerek

A regionális gazdasági fejlődés műszaki - innovációs hátterének fejlesztése

A fény visszaverődése

Rezgések és hullámok

AMIRŐL A RADARTÉRKÉP MESÉL WHAT THE RADARMAPS TELL US ABOUT

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

Ultrahangos anyagvizsgálati módszerek atomerőművekben

Radarmeteorológia. Makra László

a közeinavigációs és a leszállító rádiónavigációs rendszerek

1.1 Emisszió, reflexió, transzmisszió

Minden mérésre vonatkozó minimumkérdések

A rádió használata. FM vételi jellemzők. Az FM és az AM vétel különbségei. Elhalkulás. Használat

Click to edit Master title style

TestLine - nummulites_gnss Minta feladatsor

Benapozásvédelmi eszközök komplex jellemzése

A modern fizika születése

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

1. Az üregsugárzás törvényei

Szenzorok megismerése Érzékelők használata

Átírás:

Paulik Lotti A RÁDIÓLOKÁCIÓ ALAPJAI A RÁDIÓLOKÁCIÓ FOGALMA Az emberi érzékelés véges. Az ember, hogy véges érzékleteit kibővítse, nagyon sok mindent szolgálatába állított és állít napjainkban is. Az ember információ-felvételeinek (érzékelésnek) bővítése érdekében szerkesztette meg a RADAR-t. A RADAR angol eredetű szó, mely nálunk a II. Világháborúban lett ismeretes. Betűszók csoportjába tartozik: Radio Detection and Ranging kezdőbetűiből áll. Jelentése: Rádiófelderítés és helymeghatározás. Ez azt jelenti, hogy a készülék a rádióhullámok segítségével fedezi fel a célpontot, és térképszerűen ábrázolja a tárgyak térbeli helyzetét. Mivel a rádióhullámok ködön, füstön, felhőkön (sőt, amint azt a rádiókészülékünk működése igazolja: még a falakon) át is terjednek, ezek a készülékek az éjjeli sötétségben, a fény számára áthatolhatatlan tárgyakon át is kitűnően látnak. Ismert, hogy a denevérek vagy delfinek ultrahang-lokátora kiváló érzékszervként működik. Ezek az állatok az általuk kibocsátott, és a környező tárgyakról, élőlényekről visszaverődő ultrahangot érzékelik, így azokat felismerik és a helyüket is meghatározzák. A radar ugyanezen az elven működik. Egy antennával rádióhullámokat sugároz ki, majd ugyanazzal az antennával figyeli a visszaverődő hullámokat. Hogy rövid idő alatt igen sok irányt kutathasson át, a radar másodpercenként több elektromos jelet is kibocsát, közben az antennája folyton körbefordulva "figyel". A radarimpulzusokat úgy időzítik, hogy a kibocsátott impulzus elérje célját és visszaérkezzen, mielőtt a következő elindulna. Megmérve egy jel visszatérési idejét, kiszámítható a célpont távolsága. Rádiólokátor kibocsátott és visszavert hullámai Ez az értelmezés a rádiólokáció, rádiólokátor szavak meghonosodásához vezetett. A RÁDIÓLOKÁTOR

A rádiólokátor olyan elektronikus berendezés, amely elektromágneses hullámok segítségével a vizuális látási körülményektől függetlenül megadja a környező tárgyak (pl.: repülőgépek, hajók, épületek, tereptárgyak terepalakulatok) helyzetét. A RÁDIÓLOKÁTOROK OSZTÁLYOZÁSA A rádiólokátorok sokoldalú felhasználásának megfelelően igen sokféle berendezést fejlesztettek ki. Ezek osztályozására egységes szempontok nincsenek. A leginkább elterjedt osztályozási módok alapján a rádiólokátorokat felosztják a telepítés helye (földi, hajó, repülőgép stb.), az elsődleges feladat (keresés, követés, válaszadás, stb.), az alkalmazott adó modulációs eljárás (folytonos vagy impulzusüzemű), a használatos hullámhossz (méteres, deciméteres, milliméteres hullámú) szerint. A RÁDIÓLOKÁTOROK ELVI FELÉPÍTÉSE, FŐBB RÉSZEI Minden aktív radar alapvető eleme az adó-vevő, az antenna és tápvonalrendszer, az indikátor, az antennavezérlő rendszer, valamint az áramforrás. A passzív rendszerű radaroknak adóberendezése nincs. A folyamatos üzemű radarok a kiválasztott céltárgy radiális sebességének meghatározására (a Doppler-effektus felhasználásával) alkalmasak. A légtérellenőrzés eszközeként az impulzus-rendszerű, amplitúdó-modulált radarok terjedtek el. Antenna Adóimpulzus VÉTEL ADÁS Tápvonal Vett jel ADÓ VEVŐ ANTENNA VEZÉRLŐ Indító jel az időzítő egységből SZINKRONIZÁLÓ Képjel INDIKÁTOR BERENDEZÉS ÁRAMFORRÁS

A szinkronizáló egység a radar működésének összehangolására szolgál. A folyamatok egyeztetése indító- és szinkronizáló impulzusokkal történik. Az adóberendezés impulzus-amplitúdómodulált, nagy teljesítményű, rövid idejű, nagyfrekvenciás energiát állít elő, mely a koaxiális-, vagy cső-tápvonalon, és az adás-vétel kapcsolón keresztül az antennára jut. Az antenna az energiát elektromágneses hullámok formájában, irányítottan sugározza ki. Amikor az elektromágneses hullámok valamilyen hatásos visszaverő felülettel rendelkező tárgyhoz érkeznek, akkor arról a tér minden irányában-így a radar felé is-visszaverődnek. Az adás-vétel kapcsoló adáskor a nagyteljesítményt az antennára juttatja, nem engedi a vevő irányába, vételkor a kisteljesítményű vett jelet az antennától a vevő irányába engedi. A visszaverődő elektromágneses hullámokat az antenna felfogja és a nagyfrekvenciás jelet a tápvonalon és adás- vétel kapcsolón keresztül a vevő bemenetére juttatja. A vevő un. super-heterodin-, amely a bemenetére érkező nagyfrekvenciás jeleket nagyfrekvenciás erősítés után középfrekvenciás jellé alakítja át, több fokozaton keresztül erősíti, majd detektálja és megjelenítésre az indikátor berendezésre juttatja. Az indikátor berendezés a tárgyakról visszavert jeleket vizuális megfigyelésre és a cél koordinátáinak meghatározására alkalmas jelekké alakítja át. Antenna vezérlő berendezés által történik az antenna forgatása megadott fix, vagy folyamatos fordulatszámmal (pl.:2-4-6 fordulat/perc, illetve 0,3-6 fordulat/perc), valamint tetszőleges oldalszögön való leállítása. Ugyancsak a berendezés részét képező forgásjel követő rendszerrel lehetséges az antenna, a radar indikátorának idővonala, valamint más berendezések indikátorai idővonalának szinkron forgása. Ez a jelátvitel régebbi radarok esetén elektromotoros követőrendszerekkel, az újabbaknál digitalizált, komplex jellel valósul meg. Az antenna adáskor a nagyteljesítményű, nagyfrekvenciás energiát a légtérbe sugározza a sugárzási karakterisztikának megfelelően, vételkor ebből a térrészből felfogja a visszaérkező jeleket. Feladatának, működési frekvenciájának megfelelően különböző antennákat alkalmaznak. Az áramforrás a radarberendezés működéséhez és a kezelőszemélyzet munkakörülményeihez biztosít megfelelő villamos energiát olyan esetekben amikor nincs kiépített elektromos hálózat, vagy az áramellátás megszűnik, illetve megszűnése esetén a feladat végrehajtása veszélybe kerülhet. Az áramforrás lehet áramfejlesztő (aggregátor), vagy áramátalakító a szükséges frekvenciájú tápfeszültségek biztosításához. A RÁDIÓLOKÁTOR MŰKÖDÉSI ELVE Az elektromágneses hullámok visszaverődésén alapul, melyet általában időmérésre vezetnek vissza. Az adóval előállított és az antenna által a légtérbe kisugárzott nagyfrekvenciás energia 3*108 m/s sebességgel terjed. Idegen közeg (fém, kő, felhő, stb ) határfelületéről a kisugárzott energia egy része visszaverődik. Ezt a visszaverődött jelet a vevőantenna felfogja, a vevő felerősíti, majd az indikátorernyőre juttatja, ahol látható információvá alakul át.

Folyamatos üzemű rádiólokátor működése Vannak folytonos adású és impulzus üzemű lokátorok. A folytonos üzemű lokátor állandóan sugározza az energiát és általában külön antennával folyamatosan veszi a visszavert jeleket. Az impulzus üzemű lokátor csak meghatározott időközönként bocsát úgynevezett impulzuscsomagokat, s ezekből a csomagokból visszaérkező (visszaverődött) jeleket felfogja, majd információvá (látható jellé) alakítja át. Az adás-vétel kapcsoló lehetővé teszi a közös (adó-vevő) antenna használatát. A rádiólokáció fizikai elvéhez hasonlítható a visszhangjelenség létrejötte is. Impulzus üzemű rádiólokátor működése Hadseregben: A RÁDIÓLOKÁCIÓ ALKALMAZÁSI TERÜLETEI célfelderítés, célelfogás, célkövetés, célpontmeghatározás és tűzvezetés rakéták és torpedók irányítása, parancsjeles távvezérlés, mélységmérés és kikötőbe való bevezetés repülőgépek fel- és leszállásának irányítása, a cél koordinátáinak meghatározása és az ellenséges célra való rávezetés felismerés és zavarás

Vadászrepülőgép, légvédelmi tüzérség és légvédelmi rakéta alkalmazása Polgári életben: Közlekedésben: légi, földi és vízi járművek felkutatása, irányítása, balesetek esetleges megelőzése, sebesség és egyéb koordináták megállapítása Iparban: megfigyelés, kutatás és hibahelymeghatározás Meteorológiában: felhők vándorlásának megfigyelése, koordinátáinak meghatározása, szélsebesség mérése és az időjárás előrejelzése Mezőgazdaságban: terménybecslés Űrkutatásban: Rádiólokátor használata a meteorológiában Természetes és mesterséges égitestek felkutatása, megfigyelése, követése, koordinátáinak meghatározása, űrhajók fel- és leszállásának irányítása.

Távolságmérés: KOORDINÁTÁK RÁDIÓLOKÁCIÓS MEGHATÁROZÁSA Rádiólokátoroknál a távolságmérés időméréssel történik. A terjedési sebességből következik, hogy a rádióhullámok 1 km utat 3,33 μsec alatt tesznek meg. Ahhoz, hogy az 1 km távolságban (R) levő céltárgytól a visszaverődés megérkezzen, a hullámnak kétszer kell az utat megtennie, amihez 6,66 μsec szükséges. Ha a terjedési sebesség C, akkor az idő t=2r/c. Ténylegesen az adás és a visszaérkező jel vétel között eltelt időt mérjük; a tárgy távolságát az időből kell kiszámítani R=Ct/2. A céltárgyak távolságának méréséhez a rádióhullámok nagy terjedési sebessége miatt igen rövid időközök mérésére van szükség. Ha pl a távolságot 150m-en belüli pontossággal kívánjuk megállapítani, akkor t=2*150/3*108=1/1,06=1 μsec, ezért az időt 1 μsec-on belüli pontossággal kell mérni. E feladat csak elektronikus időmérő módszerekkel végezhető el, amelyeket a rádiólokátorokkal kapcsolatban igen magas fokra fejlesztette ki. Távolságmérésre különösen alkalmas indikátor a katódsugárcső. Távolságmérés Távolsági felbontóképeség: Azonos irányban lévő célok közötti minimális távolság (Rmin), melyen a két célt a lokátor külön észleli. Pl. közel azonos irányban két cél van, amelyeknek a lokátortól mért távolságkülönbsége R, és a lokátor adója τ időtartamú impulzusokat sugároz. A τ időtartamú jel τ*c hullámkötegnek felel meg. A közelebbi céltárgyról a visszaverődés azon t1 időpillanatban indul meg, amikor a hullámköteg eleje elérte a céltárgyat. A távolabbiról pedig, ha a hullámköteg azt is eléri. A távolabbi céltárgytól a jel eleje t2 érkezik vissza az első céltárgyhoz. Ahhoz, hogy a két céltárgyról visszavert jelek még szétválaszthatók legyenek, szükséges, hogy a hullámköteg vége a közelebbi céltárgyat a t2 időpontban már elhagyja. A két céltárgy akkor választható szét, ha t2-t1 τ. A szétválasztáshoz szükséges R távolság a hullámköteg hosszának fele ( R=C* τ/2). A τ időnek megfelelő radartávolságot a pulzuscsomag hosszának nevezzük (C* τ/2). Eszerint 1 μsec tartalmú jellel Rmin=150m. Ehhez azonban még hozzá kell adni a vevő feléledési idejét is. A vevő feléledési ideje: 1-3 μsec. τ és a feléledési idő csökkentésével a felbontóképesség növelhető.

Rádiólokátor működése több cél esetén Célok szögkövetése: SZÖGKÖVETÉS A RÁDIÓLOKÁCIÓBAN Az antenna vonatkozási iránya folyamatosan a célra néz. A szögkövetés kézi vagy automatikus lehet. Kézi szögkövetésnél a kezelő K vagy L típusú indikátorok alapján két síkban vízszintes és függőleges vezérlik az antennát. Automatikus szögkövetésnél a vezérlést és kiértékelést egy megfelelő automata és szervorendszer végzi. Szögkövetésre célkövető lokátoroknál mindig kúpos letapogatási módszert alkalmaznak. Kúpos letapogatás: A kúpos letapogatás azt jelenti, hogy az élesen irányított sugárnyalábot egy kis nyílásszögű kúp palástja mentén, állandó frekvenciával pörgettyűk. Automatikus szögkövetésnél a szervorendszer működtetéséhez szükséges hibajeleket elektronikusan kell előállítani. Erre a célra a kúpos letapogatás által létrejött modulációt használják fel. Pl. ha a céltárgy pontosan az antennatükör tengelyirányában van, akkor a sugárzó, vagy a tükör forgatása közben a vétel erőssége nem változik. Ha a céltárgy iránya eltér a tükör tengelyirányától, akkor a vétel erőőssége a sugárzó, vagy tükör forgásának megfelelően lüktet modulálva van. Kúpos letapogatást úgy lehet elérni, hogy vagy a sugárzót az antennatükör tengelye körül, vagy a tükröt sugárzó körül megforgatják.

Kúpos letapogatás A vett jelek burkológörbéjének amplitúdója a szögeltérés nagyságával arányos, fázisa pedig a céltárgy és az antennatükör tengelye közötti eltérés irányától függ.