A KUKORICA ALAPÚ BIOETANOL MAGYARORSZÁGI ELÔÁLLÍTÁSÁNAK EXERGIAELEMZÉSE
|
|
- Csilla Balázsné
- 9 évvel ezelőtt
- Látták:
Átírás
1 on-line üzemanyag-betöltés vagy csere, nincs kazettaátrakodás, passzív biztonság, csak a grafit moderátorok között van termikus neutron, az üzemanyag gyorsan és biztonságosan eltávolítható grafit magból, fagyott dugó, negatív termikus reaktivitás-visszacsatolás a só hôtágulása miatt, a radioaktív hulladék fluorapatit vagy üvegolvadék formában biztonságosan tárolható, nincs utólagos reprocesszálás, mûködés közbeni szeparáció lehetséges, értékes orvosi izotópok ( 99 Mo, 213 Bi, 225 Ac, 229 Th, 125 I, 16 Ru, 9 Y). A folytatásban a tóriumos tenyésztôreaktorok mûködése kerül bemutatásra. Irodalom Aszódi Attila, Boros Ildikó: Az atomenergia jövôje Fukusima után. Fizikai Szemle 62 (212) 23 27, Cserháti András: A leépítôk osztrák, olasz, német, svájci és japán atomenergia. Nukleon 212. szeptember, hu/nukleon/download.php?file=nukleon_5_3_115_cserhati.pdf 4. US DOE, Generation IV International Forum: A Technology Roadmap for Generation IV Nuclear Energy Systems, GIF-2-, M. W. Rosenthal: Molten-Salt Reactor Program Semiannual Progress Report For Period Ending February ORNL-4548, Oak Ridge National Laboratory (197) 9. Salt_Reactor_hu.svg 1. Yamaji Bogdán: A sóolvadékos reaktor és a hozzá kapcsolódó hûtôkör termohidraulikája. Diplomamunka, BME NTI, 22, 28. A KUKORICA ALAPÚ BIOETANOL MAGYARORSZÁGI ELÔÁLLÍTÁSÁNAK EXERGIAELEMZÉSE Herman Edit egyetemi hallgató, ELTE-TTK/BME-VBK Kádár József ELTE, TTK, Környezettudomány Doktori Iskola Martinás Katalin ELTE TTK, Atomfizika Tanszék Bezegh András Bezekon Kft., Budapest A világ gazdasági fejlôdése az energiaszükséglet növekedését hozta magával. Ezt az igényt a hagyományos, fosszilis tüzelôanyagok segítségével sokáig ki lehetett elégíteni, azonban ezek mennyisége véges. Ez a tény, valamint az, hogy a szükséges energiamennyiség jelenleg is évrôl-évre nô, arra késztette az embereket, hogy alternatív megoldások után nézzenek. Egyik lehetôség a szükséges energiamennyiség csökkentése (energiatakarékosság, -hatékonyság), másik pedig az egyéb energiaforrások alkalmazása. A hagyományostól eltérô energiaforrások iránti igényt a fosszilis eredetû széndioxid-kibocsátás csökkentésének szándéka is erôsíti. A Nap energiájának egyik közvetett hasznosítása a bioüzemanyagok felhasználása, azonban meg kell vizsgálni, hogy a használat mennyire gazdaságos. Jelen munkánkban erre teszünk kísérletet. Konkrétan megnézzük, hogy egy jelenleg már használt bioüzemanyag, a bioetanol mekkora fizikai hatékonysággal jellemezhetô. E témában már számos kutatás készült, azonban a mi vizsgálatunk újnak tekinthetô egyrészt a vizsgált terület, másrészt a vizsgálati módszer tekintetében. A bioetanol szerves vegyület, valójában etilalkohol. Elôállítása bármilyen növénybôl, növényi részbôl történhet, amennyiben annak van cukor- vagy más szénhidráttartalma, a bioetanolt ugyanis legegyszerûbben a cukor erjesztésével lehet elôállítani. Az, hogy végül melyik növénybôl készítenek bioetanolt, a gazdaságosságtól függ. Ezt jelentôsen befolyásolja egy adott terület éghajlati adottsága, mezôgazdasági fejlettsége, valamint gazdasági helyzete, támogatási rendszere. A leggyakoribb alapanyagok a cukornád, cukorrépa, kukorica, búza. Magyarországon a kukorica a legelterjedtebb alapanyag cukortartalma, valamint eltarthatósága miatt. Az éghajlati adottságok kedvezôek e növény nagy mennyiségû termesztésére, amit a növény viszonylag magas terméshozammal hálál meg (1. ábra). A bioetanolt alapvetôen autók tüzelôanyagaként hasznosítják önmagában, vagy a benzinhez különbözô arányban keverve. Elônye az eredete, valamint a jobb oktánszáma, azonban jelentôs hátránya a 1. ábra. Kukoricahozam Magyarországon. Forrás: KSH STADAT termésátlag (kg/hektár) év HERMAN E. ÉS TÁRSAI: A KUKORICA ALAPÚ BIOETANOL MAGYARORSZÁGI ELŐÁLLÍTÁSÁNAK EXERGIAELEMZÉSE 125
2 benzinnél rosszabb fûtôértéke: a tiszta etanol fûtôértéke csak 26,8 MJ/kg, szemben a benzin 43,9 MJ/kgos értékével. Ez a hétköznapokban az autók nagyobb fogyasztásban jelenik meg. De a keverékek használata, valamint az etanol nagyobb oktánszáma miatt kevesebb a többletfogyasztás (mintegy 2-25%-os), mint ami a fûtôértékek különbségébôl következne. A megfelelô vizsgálati módszer éppúgy nélkülözhetetlen, mint a tökéletes körbetekintés abban az esetben, ha egy folyamat vagy termék gazdaságosságát vizsgáljuk. Jelenleg is nagyon sokszor az energia, mint fizikai mennyiség segítségével próbáljuk összehasonlítani az anyagokat aszerint, hogy melyik folyamatba mennyi energiát kell befektetni, és a végén mennyit tudunk kinyerni belôle. Azonban a termodinamika II. fôtételébôl az entrópia mellett egy másik fizikai mennyiség is levezethetô, ez pedig az exergia. Ez az anyag adott környezetbeli maximális munkavégzô-képességét adja meg. Az exergia fogalmát elôször egy szlovén tudós, Z. Rant használta a múlt század közepén. A gyakorlati alkalmazás az 198-as évek második felében terjedt el, amikor J. Szargut lengyel mérnök megmutatta, hogy a különbözô technológiai folyamatok leírására ez a fogalom nagyon alkalmas [1]. A környezeti folyamatok vizsgálatában az exergia használata az 199-es évek második felében jelent meg [2]. Az exergia használatával összehasonlításra használhatóbb módszert kapunk. Minden irreverzibilis jelenség exergiaveszteséget okoz, amely jelzi az energia hasznosságának, illetve hasznosíthatóságának csökkenését. Az exergiaelemzés fô célja a vizsgált eljárásban azonosítani és számszerûsíteni a termodinamikai törvényeket. Számos anyagról és folyamatról már az eddigiekben is kiderült, hogy ugyan az energetikai mérleg alapján nyereségesnek tekinthetjük, azonban az exergetikai számítások szerint a folyamat veszteséges. A bioetanol elôállításának exergiafolyamata a következô: a kiválasztott földet elôkészítjük, majd elvetjük benne a vetômagot. Ezek a folyamatok exergiabefektetést igényelnek. Ezt követôen a növény növekedni kezd a locsolás (exergiabefektetés), illetve a napsugárzás hatására. A Napból jövô sugárzás tiszta exergiának tekinthetô, a növény ezt felveszi és elraktározza magában. Amikor a termés megérett, akkor a termelô részérôl szintén exergiabefektetés a betakarítás, a szállítás. Ezt követi a feldolgozás. Az elôállított bioetanolt pedig elszállítják a töltôállomásokra, ott bekerül az autók motorterébe, majd elég. Az égés során az általunk befektetett, valamint a Napból kinyert exergia szabadul fel. Minél több az emberi input, annál kisebb az exergianyereség. Megtérülônek akkor tekinthetünk egy folyamatot, ha egy teljes ciklust tekintve legalább annyi az exergiaoutput (vagyis a nyereség), mint az input. Az egyik legnehezebb vizsgálati tényezô az emberi munka számbavétele. Ez az exergiamérleg tekintetében nagyon komplex: ahhoz, hogy mi, emberek munkát végezhessünk, szükséges táplálékot fogyasztani, ami jelentôs exergiainput. Továbbá nemcsak a többlettáplálék-fogyasztás, hanem a közlekedés, ruházkodás is exergiafelhasználással jár. Azonban a nagyüzemi kukoricatermesztésnél az emberi munka biztosításához szükséges exergiafelhasználás elhanyagolható az üzemanyag-felhasználáshoz képest. Számítás Vizsgálatunkban az elôzô fejezetben leírt folyamat exergiaértékeit számszerûsítjük. A Napból elnyelt exergiát nem lehet egyszerûen meghatározni, ezért helyette megbecsüljük, hogy mekkora a termesztés során az exergiainput, illetve megnézzük, körülbelül mekkorák az egyes folyamatok veszteségei. Ezt követôen pedig megvizsgáljuk a kinyert exergiát. Elméletileg a különbség a haszon, az az exergia, amit a Napból jövô exergiából fel tudtunk használni. Mérlegünk és számításunk azonban csak a termelési-elôállítási folyamatra vonatkozik, a motorban történô égésre nem. A témában hazánkban már készült elemzés [3], amibôl azt a megállapítást tehetjük, hogy a bioetanol hatásfoka a motorban nagyjából megegyezik a benzinével. A számítás menete a következô: lépésrôl-lépésre elemezzük a vizsgált folyamatot. Megállapítjuk, melyik lépés milyen anyag-, illetve energia-befektetést (inputot) igényel, illetve azt, hogy ezen inputok mennyisége mekkora. Ezt követôen megnézzük, hogy mik a különbözô végtermékek, illetve megkeressük, hogy mekkorák a különbözô anyagokhoz tartozó fajlagos exergiaértékek. Az exergiával foglalkozó szakirodalom elég széleskörû, így gyakorlatilag a legtöbb anyaghoz tartozó érték megtalálható. Ez a számérték azonban nemcsak az anyagi minôségtôl, hanem a környezettôl is függ. Az összehasonlíthatóság érdekében éppen ezért a kutatók a standard környezethez viszonyítva adják meg az értékeket. Számításainknál a különbözô fajlagos exergiaértékeket eltérô kutatási eredményekbôl kaptuk meg, ahol a standard környezet is eltérhet. Azonban az ebbôl fakadó eltérés még mindig kisebb és így elhanyagolható a többi paraméter változékonyságához képest. A fajlagos exergia és a bevitt anyagok mennyisége alapján egyértelmûen meghatározható a bevitt összes exergia mennyisége (= a mennyiség és a fajlagos érték szorzata a különbözô anyagokra nézve), és ehhez hasonlóan a kinyert exergia is. Ennek mérlege az, amivel elsô körben meg lehet állapítani, hogy egy folyamat fizikai hatékonysága pozitív vagy negatív. Ennél pontosabb értéket is kaphatunk, ha a folyamatot behatóbban tanulmányozzuk. A különbözô inputok ugyanis szintén egy folyamat végtermékei, így ezeknek is van egy, a folyamatra jellemzô fizikai hatékonyságuk. És hiába pozitív a fô folyamat hatékonysága önmagában, ha minden egyes input csak exergiaveszteséggel állítható elô. Ez a vizsgálati folyamat a teljes életciklus elemzés (LCA), ami azonban túlmutat jelen munkánkon. 126 FIZIKAI SZEMLE 213 / 4
3 Az azonban egyértelmû, hogyha az elsôdleges vizsgálat vagyis csak az inputok és outputok teljes exergiájának mérlege negatív, akkor egy részletesebb vizsgálat sem fog pozitív végeredményt adni, tehát egy ilyen mérleg elkészítése értékes tájékoztató információt nyújthat a számunkra. Alapanyag elôállítása Magyarországon, mint ahogy azt már korábban említettük a legelterjedtebb bioetanol-alapanyag a kukorica. A kukorica termesztésének nagy hagyománya és gyakorlata van az országban, így könnyen lehet vele dolgozni. További elônye, hogy nem csak a kukoricaszemekbôl lehet a bioetanolt elôállítani, hanem a növény többi részébôl is kivonható a keményítô (amit át lehet alakítani etanollá): a szárból, csôbôl, levélbôl egyaránt. Jelen tanulmányunkban csak a morzsolt kukoricát vesszük figyelembe, összességében azonban javíthat a mutatókon, ha a teljes növénnyel számolunk, hiszen akkor egységnyi termôterületen több bioetanolt lehet elôállítani, ráadásul kevesebb hulladék keletkezik (ami szintén exergiaveszteségnek tekinthetô). Maga a termesztés folyamata a következô: a kukorica elvetéséhez körülbelül 2 kg/ha mag szükséges. Mielôtt a magot elvetjük, el kell végeznünk számos talajmûvelési folyamatot. Elsônek fel kell szántanunk a földet, majd következik a fogasolás és a kombinátorozás. Ezután kerül sor a mûtrágyázásra és a vetésre. A trágyázás célja a talaj tápanyagokban való gazdagítása a kultúrnövények növekedése, fejlôdése érdekében, így biztosítva a magasabb terméshozam elérését. A mûtrágyák növényi tápanyagot tartalmazó, ipari eredetû, illetve bányászati anyagok, amelyek célja a termôföldre való kiszórással az elhasznált tápanyagok pótlása. Így lényegesen nagyobb terméshozamot érhetünk el, mint a hagyományos, természetes eredetû trágyával. A mûtrágyaigény nitrogén esetében 34 kg/ha, foszfor esetében 21,6 kg/ha és kálium esetében 1,2 kg/ha. A mûtrágya kiszórása, valamint a különbözô talaj-elôkészítési folyamatok gépeket és emberi munkát igényelnek. Miután elvetettük a magokat és elkezd növekedni a termény, a növényvédelem következik. Ennek feladata a kultúrnövények védelme, a termelésbiztonság, a minôségbiztosítás a lehetô legkisebb környezeti terhelés és takarékos energiafelhasználás figyelembevételével. A növényvédelmi eljárások döntô többségében szórással juttatják ki a hatóanyagot a kezelendô felületre. A magok elvetése és a növény kifejlôdése után következik a betakarítás. A kukorica esetén ez az idôszak októberre esik. A vizsgált terület termésátlaga 25-ben 7631 kg/ha, míg 27-ben 2981 kg/ha volt. Ezek után a szárított kukoricát elszállítják a bioetanolgyárhoz. Ezeknek az üzemeknek lehetôség szerint az alapanyag közelében kell letelepedniük, hogy minél alacsonyabbak legyenek az alapanyag-szállítási költségek. Felhasznált adatok Az általunk készített exergiaelemzés egy magyarországi, átlagos termôterület valós adataira vonatkozik (Jász-Nagykun-Szolnok megye, csernozjom talaj), emiatt elôfordulhat, hogy az ország más régióban eltérô eredményeket kapunk a kukorica-bioetanol folyamat gazdaságosságára. Az analízis jelen esetben nem tekinthetô LCA-nak, sokkal inkább a szûk, közvetlen exergiaigények feltüntetését célozza meg. Ennek köszönhetôen inkább tájékoztató, semmint konkrét eredménynek tekinthetôk az adatok. Annak érdekében, hogy az összegyûjtött és kiszámolt számadatokat viszonyíthassuk valamihez, T. W. Patzek egyik hasonló elemzésével [4] vetettük össze értékeinket, ezáltal lehetôségünk nyílt arra, hogy a fizikai-környezeti gazdaságosság alapján a magyar és az USA-beli kukoricatermesztést összehasonlítsuk. Hangsúlyozni kell azonban, hogy ez csak a kinyerhetô exergiára (munkavégzô-képességre) vonatkozik, nem pedig a pénzbeli gazdaságosságra. Az egységnyi exergiaértékek bizonyos esetben eltérôek lehetnek, attól függôen, kit választunk forrásként. Az eltérések abból következnek, hogy az értékeket a kutatók más-más kiindulási, illetve végállapotra határozták meg. Fontos azonban, hogy az eltérô források értékei nagyságrendileg azonosak, emiatt valamint amiatt, mert nem teljes életcikluselemzést végeztünk összességében el lehet tekinteni a különbözô szerzôk adataiból származó eltérésektôl. Mindemellett azt a tényt sem szabad figyelmen kívül hagyni, hogy a többi paraméter adatainak változékonysága sokkal jelentôsebb, mint ezek az eltérések, így a fajlagos exergiaértékek közti különbségek elhanyagolhatóak. A vizsgálat a következô volt: a magyarországi átlagos termôterületre megnéztük, hogy a termeléshez milyen anyagok szükségesek, valamint ezekbôl mennyit kell felhasználni (1 ha-ra nézve). A mennyiségi adatok (input) tapasztalati értékek. A külföldi szakirodalomban már számtalan információ található a befektetett anyagok fajlagos exergiaértékére, amiket felhasználtunk a saját folyamatunk elemzésére. Mint már korábban láthattuk, a következô anyagok szükségesek a kukorica megtermeléséhez: vetômag, N-, P-, K-tartalmú mûtrágya, növényvédô és rovarölô szer, dízelolaj, benzin, emberi munka, gépek. Az ábrákban nemcsak alapanyagok találhatóak meg, hanem néhány egyéb tényezô is, amelyek azonban mind jelentôsek (2. és 3. ábra). Az emberi munka alatt azt az emberi exergiabefektetést értjük, ami a termelés folyamatában nélkülözhetetlen. Ennek meghatározása becslésen alapszik: azt tudjuk meghatározni, hogy mi egy ember napi exergiabevitele. Fizikai munkát végzô embernél ezt a kutatók,7 MJ/h-ban határozták meg [5]. Az emberi feladatok közé tartozik a gépek kezelése, adott esetben kétkezi fizikai munka (gépek feltöltése vetômaggal, mûtrágyával stb.). Az érték meghatározásánál pedig a következô módszert alkalmazták: HERMAN E. ÉS TÁRSAI: A KUKORICA ALAPÚ BIOETANOL MAGYARORSZÁGI ELŐÁLLÍTÁSÁNAK EXERGIAELEMZÉSE 127
4 exergia (MJ) ábra. A magyar kukoricatermés hektáronkénti exergiaigénye emberi munka gép dízelolaj benzin nitrogén foszfor kálium vetõmag növényvédõszer rovarölõszer öntözés elektromosság szállítás exergia (MJ) morzsolt kukorica 3359 víz 188 nátrium-hidroxid 65 karbamid 29 7 ammónia kénsav amiláz a gluko-amiláz élesztõ 343 benzin 3. ábra. Bioetanol elôállításának exergiamérlege megnézték, hogy egy termésszak alatt összesen hány órát dolgoztak az emberek, majd ezt az értéket vetítették egy hektárra (körülbelül 7 h/ha). Másik, szintén értelmezést igénylô tétel a gépek csoportja. A gépek befektetett mennyisége nem az egyes gépek tömegét jelenti, hanem az elôállításukhoz befektetett anyagmennyiséget, valamint egy kicsit nehezebben számolható tételt, az amortizációjukat, aminek mértéke egy termésszakra szintén meghatározható és így egy hektárra vetíthetô. Az adott anyagra nézett exergiainput értéke a bevitt mennyiség és a fajlagos exergia szorzataként kapható meg. Ezeket az adatokat megvizsgálva, három csoportra jól elkülöníthetôk a befektetett mennyiségek, amik között nagyságrendi különbségek vannak. A legkevésbé jelentôsek: az elektromos energia, a kálium, mint mûtrágya, valamint az emberi munkaerô (körülbelül 1 MJ/ha). A következô csoportban már egy nagyságrenddel nagyobb értékeket találunk: növény- és rovarölôszerek, valamint a gépek (néhány 1 MJ hektáronként). A harmadik csoportban találhatjuk a legjelentôsebb exergiaértékeket, ezek azok, amelyek a legnagyobb mértékben növelik az input összmennyiségét, ezek értéke néhány ezer MJ/ha. Természetesen ide tartozik a vetômag, ám emellett az üzemanyagok és a többi mûtrágya jelentôsége sem elhanyagolható. A dízelolaj kiugróan magas értékkel képviselteti magát, ezt azonban csökkenteni lehetne abban az esetben, ha üzemanyagként visszaforgatnák a gyártott etanolt, mert akkor nem (vagy csak kisebb mértékben) lenne szükség a fosszilis üzemanyagok használatára. Összesen körülbelül 11 GJ exergiát kell befektetni egy hektárnyi föld megmûvelésébe kukorica megtermesztésénél. Azonban a kukoricát ezt követôen el kell szállítani, és a szállítási költség erôsen függ a távolságtól. Jelen esetünkben a távolságot 5 kgkm-nek vettük ha az országban nem mindenhol van feldolgozó üzem, akkor könnyedén lehet ebbôl 2 kgkm is, ami 13 GJ-ra emeli az összes, termelésbe befektetett exergiát. Ha ezeket az értékeket összevetjük a morzsolt kukoricából kinyerhetô exergiamennyiséggel, látható, hogy igencsak fontos érték a terület hozama. Jó termés esetén 74,8 GJ a kinyert exergia, míg rosszabb (például: aszályosabb) évben 29,2 GJ, ami alig több, mint kétszerese a befektetett mennyiségnek, vagyis ez esetben a hatásfok rossz. A termelés a folyamat csupán egyik része, a morzsolt kukoricából ugyanis kémiai reakciók során állítják elô a bioetanolt. A vizsgálat szigorúan csak az alapanyagokra vonatkozik, így nem veszi számításba például az üzem felépítésének, majd amortizációjának költségeit, de fontos kiemelni, hogy ezek a tényezôk egyáltalán nem elhanyagolhatóak. A vizsgálat második része a bioetanol-elôállításra vonatkozott: egy konkrét magyarországi bioetanolgyár adatait felhasználva számítottuk ki az 1 tonna etanol elôállításához ipari mértékben szükséges anyagok teljes exergiáját (3. ábra). Ezek az értékek sok szempontból specifikus adatnak tekinthetôk hasonlóan az egy adott területen mi szükséges a kukoricatermesztéshez, más adalékanyagokat, más tisztaságú vegyszereket használhatnak a különbözô országokban. Az általunk vizsgált gyár nagy mennyiségû vizet, villamos energiát, földgázt, enzimeket, valamint különbözô vegyszereket (kénsav, ammónia, nátrium-hidroxid, szulfinamidsav) használ fel. Van, ami csak adalékanyagnak kell ennek mennyisége gyakorlatilag elhanyagolható, míg például a nátrium-hidroxid a kémiai reakció egyik alapanyagának tekinthetô, így exergiaértéke nem hagyható ki a számításokból. Az elôállítás folyamata során jelentôs mennyiségû melléktermék is keletkezik, amit elméletileg hasznosítani lehet. A nagy mennyiségû szerves maradékot, a szárított gabonatörkölyt (Distillers Dried Grains with Solubles DDGS) állati takarmányként el lehet adni. A DDGS exergiatartalma 18,8 MJ/kg. elektromosság földgáz 128 FIZIKAI SZEMLE 213 / 4
5 1 tonna etanol elôállításakor 27-ben a kukoricatermesztéshez 11 GJ (3 t kukoricából lesz 1 t etanol), míg a gyártáshoz 9 GJ exergiabemenetre volt szükség, azaz a 29,43 GJ bioetanolhoz 2 GJ exergiát használtunk fel. 25-ben a jobb termésátlag miatt az exergiabemenet csak 4,4 GJ +9GJ=13,4 GJ volt. Az adatok azonban még kevésbé pozitívak, ha figyelembe vesszük a bioetanol-gyártásnál is az emberimunka-igényt és az infrastruktúra (épület, gépek) exergiaigényét. Ekkor Patzek értékelése szerint a gyártási exergiafelhasználás 1 t etanol elôállításánál 18,9 GJ-ra növekszik [6]. Azaz a 27-es adatot használva 29,9 GJ fosszilis üzemanyag exergiával 29,4 GJ bioetanol-exergiát állítunk elô. Természetesen az exergiamérleg pozitívabb lesz, ha a DDGS exergiáját is figyelembe vesszük. Konklúzió A számításokat összefoglalva arra a következtetésre kell jutnunk, hogy fizikai szempontból a bioetanol elôállítása és felhasználása hosszú távon nem alkalmas a fosszilis üzemanyagok kiváltására. Pénzügyileg lehet, hogy megéri, ám a Föld egyensúlyát nem a pénz irányítja, hanem a természeti törvények, márpedig ez a folyamat a természet hosszú távú kizsákmányolását jelenti, ami éppen ellentétes az eredeti elképzelésekkel. Levonhatjuk azt a következtetést, hogy bioetanolt használni (hazánkban) nem célszerû, bármilyen is a pénzügyi támogatottsága. Kedvezôtlen idôjárás esetén elôfordulhat, hogy több exergiát kell befektetni a termesztésbe és az elôállításba, mint amennyit kinyerünk, ha csak a bioetanolt tekintjük, és nem nézzük azt, hogy a folyamat mellékterméke szerencsésen hasznosítható. Ez utóbbit azért is érdemes figyelmen kívül hagyni, mert egyrészt ennek is vannak járulékos terhei (tárolás, szállítás), másrészt jelenleg a kereslet messze alul marad a keletkezett mennyiséghez képest, így a DDGS, a szárított gabonatörköly feleslegként jelenik meg, tehát a veszteségoldalon kell számításba venni. Fontos, hogy jelen tanulmány csak tájékoztató jellegû, a módszer korlátai miatt inkább csak a nagyságrendet, a tendenciát mutatta meg. Azonban minél részletesebb egy vizsgálat, annál több tényezôt számol bele a folyamatba, amibe anyagot-exergiát-pénzt kell befektetni, vagyis összességében az elôállítás hatékonyságát tovább csökkenti. Irodalom 1. J. Szargut, D. R. Morris, F. R. Steward: Exergy Analysis of Thermal, Chemical, and Metallurgical Processes. Hemisphere, New York, R. U. Ayres, L. W. Ayres, K. Martinás: Eco-thermodynamics: Exergy and Life cycle analysis Energy 23 (1998) Emôd I., Füle M., Tánczos K., Zöldy M.: A bioetanol magyarországi bevezetésének mûszaki, gazdasági és környezetvédelmi feltételei. Magyar Tudomány (25/3) T. W. Patzek: The Real Biofuel Cycles. Online Supporting Material for Science Letter (26), letöltve: petroleum.berkeley.edu/ patzek/biofuelqa/material/realfuelcycles-web.pdf 5. D. Pimentel, M. Pimentel: Food, Energy and Society. Niwot, University Press of Colorado, T. W. Patzek: Thermodynamics of the Corn-Ethanol Biofuel Cycle. Critical Reviews in Plant Sciences 23/6 (24) A FIZIKA TANÍTÁSA FELHÔK HÁTÁN Néhány természeti jelenség lefolyásának idôtartama túlságosan hosszú, ezek vizsgálatához szükség van úgynevezett time lapse rendszerrel rendelkezô szoftverre, illetve megfelelô felbontású kamerára is. A felhôk vonulása, a Hold, a Nap látszólagos mozgásai, a növények növekedése, az esôcseppek párolgása, a jég olvadása stb. olyan lassan mennek végbe, hogy érdemesebb normál film valós idejû 3 kép/s rögzítése helyett olyan filmeket készíteni, amiben percenként, esetleg óránként exponálódik egy-egy képkocka. Ilyen film normál sebességû lejátszása esetén gyorsítva láthatjuk a vizsgált jelenségeket. Ezekkel a felvételekkel lényegesen könnyebben készíthetünk elemzéseket különbözô analizáló szoftverek segítségével. Felhôk sebességének mérése Stonawski Tamás Báthori István Református Gimnázium és Kollégium, Nagyecsed A légkör különbözô magasságaiban lebegô apró vízcseppek vagy jégkristályok halmazait nevezzük felhônek. A meteorológia 1 fô-felhôfajt különböztet meg. A felhôk osztályozásánál a következô szempontokat veszik figyelembe: a felhô magassága, mérete, alakja, textúrája, fényereje és színe. A felhôk tulajdonságait az ôket létrehozó különbözô fizikai folyamatok határozzák meg, amelyekkel a környezeti áramlások fizikája foglalkozik. Elhatároztuk tanítványaimmal, hogy szakköri munka keretén belül, webkamera segítségével megmérjük a felhôk sebességét. A FIZIKA TANÍTÁSA 129
Kárpát-medencei Magyar Energetikai Szakemberek XXII. Szimpóziuma (MESZ 2018) Magyarország energiafelhasználásának elemzése etanol ekvivalens alapján
Magyar Energetikai Társaság (MET) Kárpát-medencei Magyar Energetikai Szakemberek XXII. Szimpóziuma (MESZ 2018) Budapest (Pesthidegkút), 2018. szept. 20. Magyarország energiafelhasználásának elemzése etanol
Energia és körforgás. Bezegh András (Bezekon Kft.) Martinás Katalin (ELTE) Magyar Ipari Ökológiai Társaság
Bezegh András (Bezekon Kft.) Martinás Katalin (ELTE) Magyar Ipari Ökológiai Társaság Energia és körforgás XII. LCA Konferencia Budapest, 2017. november 21. sokan vagyunk sokat fogyasztunk sokat hajigálunk
A DDGS a takarmányozás aranytartaléka
A DDGS (Distillers Dried Grains with Solubles) magyarra fordítva szárított gabonatörköly, aminek az alapanyaga kukorica. Kevéssé ismert, hogy a kukorica feldolgozásával előállított bioetanol nem a folyamat
FOLYÉKONY BIOÜZEMANYAGOK
FOLYÉKONY BIOÜZEMANYAGOK Dr. DÉNES Ferenc BIOMASSZA HASZNOSÍTÁS BME Energetikai Gépek és Rendszerek Tanszék 2016/10/03 Biomassza hasznosítás, 2016/10/04 1 TARTALOM Bevezetés Bioetanol Biodízel Egyéb folyékony
A Fenntartható fejlődés fizikai korlátai. Késíztette: Rosta Zoltán Témavezető: Dr. Martinás Katalin Egyetemi Docens
A Fenntartható fejlődés fizikai korlátai Késíztette: Rosta Zoltán Témavezető: Dr. Martinás Katalin Egyetemi Docens Fenntartható fejlődés 1987-ben adja ki az ENSZ Környezet és Fejlődés Világbizottsága a
Permetezőgépek folyadékfogyasztásának mérése és beállítása A permetezés anyagszükséglete
Permetezőgépek folyadékfogyasztásának mérése és beállítása A permetezés anyagszükséglete Hatásos permetezés csak akkor végezhető, ha pontosan ismert a felületegységre kiszórt folyadékmennyiség. Ugyanis
KF-II-6.8. Mit nevezünk pirolízisnek és milyen éghető gázok keletkeznek?
Körny. Fiz. 201. november 28. Név: TTK BSc, AKORN16 1 K-II-2.9. Mik egy fűtőrendszer tagjai? Mi az energetikai hatásfoka? 2 KF-II-6.. Mit nevezünk égésnek és milyen gázok keletkezhetnek? 4 KF-II-6.8. Mit
Energetikai Szakkollégium 2012. április 5. Dr. Gács Iván BME Energetikai Gépek és Rendszerek Tanszék
Energetikai Szakkollégium 2012. április 5. Dr. Gács Iván BME Energetikai Gépek és Rendszerek Tanszék Múlt és jelen Bioüzemanyagtól a kőolaj termékeken keresztül a bioüzemanyagig (Nicolaus Otto, 1877, alkohol
Innovációs leírás. Hulladék-átalakító energiatermelő reaktor
Innovációs leírás Hulladék-átalakító energiatermelő reaktor 0 Hulladék-átalakító energiatermelő reaktor Innováció kategóriája Az innováció rövid leírása Elérhető megtakarítás %-ban Technológia költsége
Energianövények, biomassza energetikai felhasználásának lehetőségei
Környezetvédelmi Szolgáltatók és Gyártók Szövetsége Hulladékból Tüzelőanyag Előállítás Gyakorlata Budapest 2016 Energianövények, biomassza energetikai felhasználásának lehetőségei Dr. Lengyel Antal főiskolai
Biogáz és Biofinomító Klaszter szakmai tevékenysége. Kép!!!
Biogáz és Biofinomító Klaszter szakmai tevékenysége Kép!!! Decentralizált bioenergia központok energiaforrásai Nap Szél Növényzet Napelem Napkollektor Szélerőgépek Biomassza Szilárd Erjeszthető Fagáz Tüzelés
b) Írja fel a feladat duálisát és adja meg ennek optimális megoldását!
1. Három nemnegatív számot kell meghatározni úgy, hogy az elsőt héttel, a másodikat tizennéggyel, a harmadikat hattal szorozva és ezeket a szorzatokat összeadva az így keletkezett szám minél nagyobb legyen.
A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A
A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 7. előadás A vetésszerkezet kialakítása, tervezésének módszerei A vetésszerkezet Fogalma:
A mezőgazdaságra alapozott energiatermelés fejlesztési irányai és műszaki lehetőségei. Bácskai István
A mezőgazdaságra alapozott energiatermelés fejlesztési irányai és műszaki lehetőségei Bácskai István Kutatási osztályvezető Bioenergetikai osztály 1 Tartalom Témakör aktualitása Nemzetközi E-körkép Hazai
Ökológiai ipar ipari ökológia
ÖKOTECH 2006 Ökológiai ipar ipari ökológia Bezegh András Budapesti Corvinus Egyetem Környezetgazdaságtani és Technológiai Tanszék andras@bezegh.hu Az ember megváltozott: különvált saját lényegétől. Az
TAKARMÁNYOZÁSI CÉLÚ GMO MENTES SZÓJABAB TERMESZTÉSÉNEK LEHETŐSÉGEI HELYES AGROTECHNOLÓGIA ALKALMAZÁSA MELLETT A KÖZÉP-MAGYARORSZÁGI RÉGIÓBAN
TAKARMÁNYOZÁSI CÉLÚ GMO MENTES SZÓJABAB TERMESZTÉSÉNEK LEHETŐSÉGEI HELYES AGROTECHNOLÓGIA ALKALMAZÁSA MELLETT A KÖZÉP-MAGYARORSZÁGI RÉGIÓBAN A projekt címe: A GMO mentes minőségi takarmány szója termesztés
B I O M A S S Z A H A S Z N O S Í T Á S és RÉGIÓK KÖZÖTTI EGYÜTM KÖDÉS
B I O M A S S Z A H A S Z N O S Í T Á S és RÉGIÓK KÖZÖTTI EGYÜTM KÖDÉS Dr. Petis Mihály : MezDgazdasági melléktermékekre épüld biogáz termelés technológiai bemutatása Nyíregyházi FDiskola 2007. szeptember
A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A
A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 5. előadás A termelés környezeti feltételei A környezeti feltételek hatása Közvetlen Termék-előállítás
Tudományos és Művészeti Diákköri Konferencia 2010
Tudományos és Művészeti Diákköri Konferencia 1 Energiatakarékossági lehetőségeink a háztartási mérések tükrében Kecskeméti Református Gimnázium Szerző: Fejszés Andrea tanuló Vezető: Sikó Dezső tanár ~
A köles kül- és belpiaca
A köles kül- és belpiaca Györe Dániel tudományos segédmunkatárs Agrárgazdasági Kutató Intézet Köles Reneszánsza Konferencia 2013. október 25. Budapest Világ gabonatermelése - Az elmúlt 50 évben a főbb
EEA Grants Norway Grants
Élelmiszeripari zöld innovációs program megvalósítása EEA Grants Norway Grants Dr. Mézes Lili, University of Debrecen, Institute of Water and Environmental Management 28 October 2014 HU09-0015-A1-2013
ELSŐ SZALMATÜZELÉSŰ ERŐMŰ SZERENCS BHD
ELSŐ SZALMATÜZEL ZELÉSŰ ERŐMŰ SZERENCS BHD HőerH erőmű Zrt. http:// //www.bhd.hu info@bhd bhd.hu 1 ELŐZM ZMÉNYEK A fosszilis készletek kimerülése Globális felmelegedés: CO 2, CH 4,... kibocsátás Magyarország
Magyar László Környezettudomány MSc. Témavezető: Takács-Sánta András PhD
Magyar László Környezettudomány MSc Témavezető: Takács-Sánta András PhD Két kutatás: Güssing-modell tanulmányozása mélyinterjúk Mintaterület Bevált, működő, megújuló energiákra épülő rendszer Bicskei járás
TECHNOLÓGIAI RENDSZEREK 02.
TECHNOLÓGIAI RENDSZEREK 02. dr. Torma András 2011.09.13. Tartalom 1. Technológiák anyagáramai, ábrázolásuk 2. Folyamatábrák 3. Technológiai mérőszámok 4. Technológia telepítésének feltételei 5. Technológia
BIO-SZIL Természetvédelmi és Környezetgazdálkodási Kht. 4913 Panyola, Mezővég u. 31.
BIO-SZIL Természetvédelmi és Környezetgazdálkodási Kht. 4913 Panyola, Mezővég u. 31. VIZSGATESZT Klímabarát zöldáramok hete Című program Energiaoktatási anyag e-képzési program HU0013/NA/02 2009. május
fizikai szemle 2013/4
fizikai szemle 2013/4 A Y G DOMÁNYOS K A Az Eötvös Loránd Fizikai Társulat havonta megjelenô folyóirata. Támogatók: A Magyar Tudományos Akadémia Fizikai Tudományok Osztálya, az Emberi Erôforrások Minisztériuma,
Gazdálkodási modul. Gazdaságtudományi ismeretek I. Üzemtan
Gazdálkodási modul Gazdaságtudományi ismeretek I. Üzemtan KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Döntést megalapozó eljárások A döntéshozatal eszközei 29. lecke Döntéshozatal eszközei
KÖZPONTI STATISZTIKAI HIVATAL MISKOLCI IGAZGATÓSÁGA. Szántóföldön termelt főbb növények terméseredményei Észak-Magyarországon 2006
KÖZPONTI STATISZTIKAI HIVATAL MISKOLCI IGAZGATÓSÁGA Szántóföldön termelt főbb növények terméseredményei Észak-Magyarországon 2006 Miskolc, 2007. február Igazgató: Dr. Kapros Tiborné Tájékoztatási osztályvezető:
Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc
Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Fenntartható mezőgazdálkodás. 98.lecke Hosszú távon működőképes, fenntartható
Fenntartható biomassza termelés-biofinomításbiometán
CO 2 BIO-FER Biogáz és Fermentációs Termékklaszter Fenntartható biomassza termelés-biofinomításbiometán előállítás Pécsi Tudományegyetem Közgazdaságtudományi Kar Enyingi Tibor Mérnök biológus Klaszterigazgató
MEGÚJULÓ ENERGIA MÓDSZERTAN CSG STANDARD 1.1-VERZIÓ
MEGÚJULÓ ENERGIA MÓDSZERTAN CSG STANDARD 1.1-VERZIÓ 1 1. DEFINÍCIÓK Emissziós faktor: egységnyi elfogyasztott tüzelőanyag, megtermelt villamosenergia, stb. mekkora mennyiségű ÜHG (üvegházhatású gáz) kibocsátással
Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia
Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története
C- források: 1. közvetlenül erjeszthetők ( melasz, szulfitszennylúg, szörpők) 2. Közvetett úton erjeszthetők (gabonák, cellulóz tartalmú anyagok)
2. Szeszgyári melléktermékek keletkezése A szeszgyártás alapanyagai C- források: 1. közvetlenül erjeszthetők ( melasz, szulfitszennylúg, szörpők) 2. Közvetett úton erjeszthetők (gabonák, cellulóz tartalmú
MEZŐGAZDASÁGI ALAPISMERETEK
Mezőgazdasági alapismeretek középszint 0821 ÉRETTSÉGI VIZSGA 2008. október 20. MEZŐGAZDASÁGI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Intenzív rendszerek elfolyó vizének kezelése létesített vizes élőhelyen: Gyakorlati javaslatok, lehetőségek és korlátok
Integrált szemléletű program a fenntartható és egészséges édesvízi akvakultúráért Intenzív rendszerek elfolyó vizének kezelése létesített vizes élőhelyen: Gyakorlati javaslatok, lehetőségek és korlátok
kukorica 500-ak Klubja kísérleti eredmények
014-015 kukorica 500-ak Klubja kísérleti eredmények A kukorica számára a 015 a szélsőségek éve volt, nem csak az egyes régiókban, de még táblán belül is jelentős különbségeket láttak a gazdák. Különösen
Precíziós gazdálkodás, mint a versenyképesség és a környezetvédelem hatékony eszköze. Dr. Balla István Tudományos munkatárs NAIK-MGI
Precíziós gazdálkodás, mint a versenyképesség és a környezetvédelem hatékony eszköze Dr. Balla István Tudományos munkatárs NAIK-MGI Bevezetés Robbanásszerű népességnövekedés Föld lakossága 7,5 Mrd. fő
Környezetvédelem (KM002_1)
Környezetvédelem (KM002_1) 4(b): Az élelmiszertermelés kihívásai 2016/2017-es tanév I. félév Dr. habil. Zseni Anikó egyetemi docens SZE, AHJK, Környezetmérnöki Tanszék Az élelmiszertermelés kihívásai 1
GABONA VILÁGPIACOK ÉS KERESKEDELEM
GABONA VILÁGPIACOK ÉS KERESKEDELEM EGYESÜLT ÁLLAMOK KITERJESZTETTÉK A DDGS KIVITELÉT Az Egyesült Államok továbbra is jelentős mennyiségben exportálnak DDGS-t. (distiller s dried grains with solubles szárított
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
A BIOETANOL GYÁRTÁS MELLÉKTERMÉKEI MINT ALTERNATÍV FEHÉRJEFORRÁSOK. Mézes Miklós Szent István Egyetem Takarmányozástani Tanszék
A BIOETANOL GYÁRTÁS MELLÉKTERMÉKEI MINT ALTERNATÍV FEHÉRJEFORRÁSOK Mézes Miklós Szent István Egyetem Takarmányozástani Tanszék MELLÉKTERMÉKEK FELHASZNÁLÁSÁNAK CÉLJA - Nagy mennyiségben és folyamatosan
Több komponensű brikettek: a még hatékonyabb hulladékhasznosítás egy új lehetősége
Több komponensű brikettek: a még hatékonyabb hulladékhasznosítás egy új lehetősége Készítette: az EVEN-PUB Kft. 2014.04.30. Projekt azonosító: DAOP-1.3.1-12-2012-0012 A projekt motivációja: A hazai brikett
Megújuló energiák hasznosítása MTA tanulmány elvei
Megújuló energiák hasznosítása MTA tanulmány elvei Büki Gergely A MTA Földtudományi Osztálya és a Környezettudományi Elnöki Bizottság Energetika és Környezet Albizottsága tudományos ülése Budapest, 2011.
A telephely Szécsény központjában van. A gabonatárolás megoldott egy kb m 2 -es tározóban, ami a mi céljainkra elegendő.
Interjú Mosó Ottó 500-ak Klubja résztvevővel Genezis: Bemutatnád a gazdaságot röviden? A család 520 hektáron gazdálkodik, ebbe beletartozik két gyermekem gazdasága is, akik gépészként és növénytermesztőként
Bioüzemanyag-szabályozás változásának hatásai
Bioüzemanyag-szabályozás változásának hatásai Juhász Anikó - Potori Norbert Budapest, 2017. október 25. Bioüzemanyag-termelés uniós jogszabályi háttere Európai Parlament és Tanács 2009/28/EK irányelve
JAVASOLT RED REFORMOK 2012 DECEMBER 6
JAVASOLT RED REFORMOK 2012 DECEMBER 6 Pannonia Ethanol Zrt. Helyszín: Dunaföldvár, Tolna megye Alakult: 2009 Fő befektetése az Ethanol Europe Renewables Limited vállalatnak Termelés kezdete: 2012 március
TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6
TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6 II. HÓDMEZŐVÁSÁRHELY ÉS TÉRKÖRNYEZETE (NÖVÉNYI ÉS ÁLLATI BIOMASSZA)... 8 1. Jogszabályi háttér ismertetése... 8 1.1. Bevezetés... 8 1.2. Nemzetközi
A GEOSAN Kft. célkitűzése a fenntartható fejlődés alapjainak elősegítése
A GEOSAN Kft. célkitűzése a fenntartható fejlődés alapjainak elősegítése 1. A környezet védelemében: Hatékony oltóanyagok biztosítása a környezeti károk helyreállítása érdekében Szennyezett talajok mentesítési
I. évfolyam, 4. szám, Statisztikai Jelentések MEZŐGAZDASÁGI INPUTOK HAVI FORGALMA május
I. évfolyam, 4. szám, 2014 Statisztikai Jelentések MEZŐGAZDASÁGI INPUTOK HAVI FORGALMA 2014. május Mezőgazdasági inputok havi forgalma Mezőgazdasági inputok havi forgalma 2014. május I. évfolyam, 4. szám,
Új üzleti modell az Európai bioetanol piacon: a kereskedő (merchant) modell. III. Energy Summit Hungary 2012
Új üzleti modell az Európai bioetanol piacon: a kereskedő (merchant) modell III. Energy Summit Hungary 2012 Budapest, 2012. május 31. Szendrői Gábor Partner Oriens IM gabor.szendroi@oriensim.com Az új
Pelletgyártási, felhasználási adatok
Construma Építőipari Szakkiállítás Budapest 2011. április 08. Pelletgyártási, felhasználási adatok Pannon Pellet Kft Burján Zoltán vállalkozási vezető Pelletgyár létesítés I. A BERUHÁZÁSI CÉLOK, KÖRNYEZET
AZ ALKOHOLGYÁRTÁS MELLÉKTERMÉKEINEK GYAKORLATI ALKALMAZÁSA A TAKARMÁNYGYÁRTÁSBAN. Dr. Koppány György VITAFORT ZRT
AZ ALKOHOLGYÁRTÁS MELLÉKTERMÉKEINEK GYAKORLATI ALKALMAZÁSA A TAKARMÁNYGYÁRTÁSBAN Dr. Koppány György VITAFORT ZRT BEVEZETÉS A BIOÜZEMANYAG CÉLÚ ALKOHOLGYÁRTÁS ALAPANYAGAI A MAGAS SZÉNHIDRÁT TARTALMÚ NÖVÉNYI
Prof. Dr. Krómer István. Óbudai Egyetem
Környezetbarát energia technológiák fejlődési kilátásai Óbudai Egyetem 1 Bevezetés Az emberiség hosszú távú kihívásaira a környezetbarát technológiák fejlődése adhat megoldást: A CO 2 kibocsátás csökkentésével,
Mi a bioszén? Hogyan helyettesíthetjük a foszfor tartalmú műtrágyákat
Bioszén, a mezőgazdaság új csodafegyvere EU agrár jogszabály változások a bioszén és komposzt termékek vonatkozásában Mi a bioszén? Hogyan helyettesíthetjük a foszfor tartalmú műtrágyákat A REFERTIL projekt
Kukorica Ukrajnában: betakarítási jelentések rekord termelésről számolnak be
MEZŐGAZDASÁGI TERMELÉS A VILÁGON Kukorica Ukrajnában: betakarítási jelentések rekord termelésről számolnak be Kép. Ukrajna kukorica betakarítása: termelés USDA (United States Department of Agriculture
MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ KINYERÉSÉRE
MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ MASZESZ Ipari Szennyvíztisztítás Szakmai Nap 2017. November 30 Lakner Gábor Okleveles Környezetmérnök Témavezető: Bélafiné Dr. Bakó Katalin
A megújuló erőforrások használata által okozott kihívások, a villamos energia rendszerben
A megújuló erőforrások használata által okozott kihívások, a villamos energia rendszerben Kárpát-medencei Magyar Energetikusok XX. Szimpóziuma Készítette: Tóth Lajos Bálint Hallgató - BME Regionális- és
Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA
Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA 8. Előadás A növénytermesztés általános szervezési és ökonómiai kérdései Előadás témakörei
Az egyes ágazatok főbb döntési problémái
Az egyes ágazatok főbb döntési problémái Növénytermesztési ágazatok Egyéves növénytermesztési ágazatok (Kalászos gabonafélék, kukorica, napraforgó stb.) Többéves (évelő) növénytermesztési ágazatok (lucerna,
I. évfolyam, 3. szám, Statisztikai Jelentések MEZŐGAZDASÁGI INPUTOK HAVI FORGALMA április
I. évfolyam, 3. szám, 2014 Statisztikai Jelentések MEZŐGAZDASÁGI INPUTOK HAVI FORGALMA 2014. április Mezőgazdasági inputok havi forgalma Mezőgazdasági inputok havi forgalma 2014. április I. évfolyam, 3.
A BIOGÁZ KOMPLEX ENERGETIKAI HASZNA. Készítette: Szlavov Krisztián Geográfus, ELTE-TTK
A BIOGÁZ KOMPLEX ENERGETIKAI HASZNA Készítette: Szlavov Krisztián Geográfus, ELTE-TTK I. Bevezetés Ha a mai módon és ütemben folytatjuk az energiafelhasználást, 30-40 éven belül visszafordíthatatlanul
PROJEKTÉRTÉKELÉSI MÓDSZEREK
PROJEKTÉRTÉKELÉSI MÓDSZEREK A gyakorlat célja, hogy a hallgatók projektértékelési számításokat tudjanak végezni. DÖNTÉSI MÓDSZEREK ÁTTEKINTÉSE 1. Vizsgálja meg a következő projektek pénzáramlásainak gazdasági
Bio Energy System Technics Europe Ltd
Europe Ltd Kommunális szennyviziszap 1. Dr. F. J. Gergely 2006.02.07. Mi legyen a kommunális iszappal!??? A kommunális szennyvíziszap (Derítőiszap) a kommunális szennyvíz tisztításánál keletkezik. A szennyvíziszap
A napenergia hasznosítási lehetőségei a Váli völgy térségében. Simó Ágnes Biológia környezettan 2008
A napenergia hasznosítási lehetőségei a Váli völgy térségében Simó Ágnes Biológia környezettan 2008 A dolgozat szerkezete A megújuló energiák áttekintése A napenergia hasznosításának lehetőségei A Váli
HOGYAN MŰKÖDIK EGY GAZDASÁG? Oktatási segédanyag általános iskolás diákok részére
HOGYAN MŰKÖDIK EGY GAZDASÁG? Oktatási segédanyag általános iskolás diákok részére Készült az Európai Unió INTERREG IIIC ALICERA projekt támogatásával Nyugat-Magyarországi Egyetem Mezőgazdaság- és Élelmiszertudományi
Hulladékból energiát technológiák vizsgálata életciklus-elemzéssel kapcsolt energiatermelés esetén Bodnár István
Hulladékból energiát technológiák vizsgálata életciklus-elemzéssel kapcsolt energiatermelés esetén Bodnár István II. éves PhD hallgató,, Sályi István Gépészeti Tudományok Doktori Iskola VIII. Életciklus-elemzési
A biomassza képződés alapja: a fotoszintézis. Up hill csoda (egyszerűből bonyolult) Alacsony energia-hatékonyság (1 to 2%)
A biomassza képződés alapja: a fotoszintézis Up hill csoda (egyszerűből bonyolult) Alacsony energia-hatékonyság (1 to 2%) Megújulók-Biomassza Def.: A mezőgazdaságból, erdőgazdálkodásból és ezekhez a tevékenységekhez
Fiziko-kémiai módszerek a finomkémiai ipar hulladékvizeinek kezelésére
Fiziko-kémiai módszerek a finomkémiai ipar hulladékvizeinek kezelésére Környezettudományi Doktori Iskolák Konferenciája 2012. 08. 31. Tóth András József 1 Dr. Mizsey Péter 1, 2 andras86@kkft.bme.hu 1 Kémiai
ÉVES ENERGETIKAI JELENTÉS év
ÉVES ENERGETIKAI JELENTÉS év Cégnév: Időszak: Inno-Comp Kft. év A jelentést készítette: Technológiatranszfer és Gazdaságfejlesztő Mérnöki Iroda Kft. (T.G.M.I. Kft.) Tompa Ferenc energetikai auditor EA-1-83/216
Földesi László - Dr. Nagy Sándor Gödöllő,
Kicsiből nagyot Ahogy Franciaországban láttuk Földesi László - Dr. Nagy Sándor Gödöllő, 2017. 12. 14. ? Termesz kolónia (több millió egyed) Méhcsalád (40-80 000 egyed) Éves mérlegfőösszeg: 103,58 Mrd USD
LNG felhasználása a közlekedésben. 2015 április 15. Kirilly Tamás Prímagáz
LNG felhasználása a közlekedésben 2015 április 15. Kirilly Tamás Prímagáz Üzemanyagok Fosszilis Benzin Dízel Autógáz (LPG) CNG LNG (LCNG) Alternatív Hidrogén Bioetanol (Kukorica, cukornád) Biodízel (szója,
A GEOTERMIKUS ENERGIA
A GEOTERMIKUS ENERGIA Mi is a geotermikus energia? A Föld keletkezése óta létezik Forrása a Föld belsejében keletkező hő Nem szennyezi a környezetet A kéreg 10 km vastag rétegében 6 10 26 Joule mennyiségű
Létesített vizes élőhelyek szerepe a mezőgazdasági eredetű elfolyóvizek kezelésében
Létesített vizes élőhelyek szerepe a mezőgazdasági eredetű elfolyóvizek kezelésében Kerepeczki Éva és Tóth Flórián NAIK Halászati Kutatóintézet, Szarvas 2017. december 7. A rendszer bemutatása Létesítés:
A bioüzemanyagok környezeti hatása a kiválasztott rendszerhatárok függvényében
A bioüzemanyagok környezeti hatása a kiválasztott rendszerhatárok függvényében Dr. Kiss Ferenc Újvidéki Egyetem Technológiai Kar XIII. Életciklus-elemzési (LCA) szakmai konferencia Szentendre, 2018. A
A málna- és szedertermesztés gazdaságossága
A málna és a szeder ültetvénytelepítési költsége meglehetősen közel áll egymáshoz, még ha művelési rendszerük némileg eltérő is. A málna térállása jellemzően 2,5-3 0,3-0,4 méter, hektáronkénti tőszáma
A nád (Phragmites australis) vizsgálata enzimes bonthatóság és bioetanol termelés szempontjából. Dr. Kálmán Gergely
A nád (Phragmites australis) vizsgálata enzimes bonthatóság és bioetanol termelés szempontjából Dr. Kálmán Gergely Bevezetés Az úgynevezett második generációs (lignocellulózokból előállított) bioetanol
A biomassza, mint energiaforrás. Mit remélhetünk, és mit nem?
MTA Kémiai Kutatóközpont Anyag- és Környezetkémiai Intézet Budapest II. Pusztaszeri út 59-67 A biomassza, mint energiaforrás. Mit remélhetünk, és mit nem? Várhegyi Gábor Biomassza: Biológiai definíció:
Plazma a villám energiájának felhasználása. Bazaltszerü salak - vulkánikus üveg megfelelője.
Plazma a villám energiájának felhasználása. A plazmatrónon belüli elektromos kisülés energiája 1,5 elektronvolt, amely az elektromos vonalas kisülés hőmérsékletének, legaláb 15 000 С felel meg. Bazaltszerü
A TESZTÜZEMEK FŐBB ÁGAZATAINAK KÖLTSÉG- ÉS JÖVEDELEMHELYZETE 2002-BEN
Agrárgazdasági Kutató és Informatikai Intézet A TESZTÜZEMEK FŐBB ÁGAZATAINAK KÖLTSÉG- ÉS JÖVEDELEMHELYZETE 2002-BEN A K I I Budapest 2003 Agrárgazdasági Tanulmányok 2003. 6. szám Kiadja: az Agrárgazdasági
Radioaktív anyag felezési idejének mérése
A pályázótársam által ismertetett mérési módszer alkalmazásához Labview szoftverrel készítettem egy mérőműszert, ami lehetőséget nyújt radioaktív anyag felezési idejének meghatározására. 1. ábra: Felhasználói
NÖVÉNYSPECIFIKUS ajánlat őszi búzára
NÖVÉNYSPECIFIKUS ajánlat őszi búzára technológiával még eredményesebben termesztheti búzáját! Biztosítsa az őszi búza terméséhez szükséges összes tápanyagot! Fajlagos tápanyagigény (kg/t) 27 kg 11 kg 18
XIV. évfolyam, 1. szám, Statisztikai Jelentések NÖVÉNYVÉDŐ SZEREK ÉRTÉKESÍTÉSE év
XIV. évfolyam, 1. szám, 2015 Statisztikai Jelentések NÖVÉNYVÉDŐ SZEREK ÉRTÉKESÍTÉSE 2014. év Növényvédő szerek értékesítése Növényvédő szerek értékesítése XIV. évfolyam, 1. szám, 2015 Megjelenik évente
Megnyitó. Markó Csaba. KvVM Környezetgazdasági Főosztály
Megnyitó Markó Csaba KvVM Környezetgazdasági Főosztály Biogáz szerves trágyából és települési szilárd hulladékból IMSYS 2007. szeptember 5. Budapest Biogáz - megújuló energia Mi kell ahhoz, hogy a megújuló
A minőség gazdasági hatásai
5. A minőség gazdasági hatásai 5.1 A minőség költségei A minőség költségeit három nagy csoportra oszthatjuk: az első csoportot a minőség érdekében tett megelőző jellegű intézkedések költségei, a másodikat
Zöldenergia szerepe a gazdaságban
Zöldenergia szerepe a gazdaságban Zöldakadémia Nádudvar 2009 május 8 dr.tóth József Összefüggések Zöld energiák Alternatív Energia Alternatív energia - a természeti jelenségek kölcsönhatásából kinyerhető
Mérlegelv. Amennyi tápanyagot elviszek vagy el szándékozok vinni a területről terméssel, azt kell pótolnom
Trágyázás Mérlegelv Amennyi tápanyagot elviszek vagy el szándékozok vinni a területről terméssel, azt kell pótolnom Mivel Szerves trágya Műtrágya Növényi maradvány Előző évi maradvány Pillangosok N megkötése
Bioélelmiszerek. Készítette: Friedrichné Irmai Tünde
Bioélelmiszerek Készítette: Friedrichné Irmai Tünde Biotermék A valódi biotermék ellenőrzött körülmények között termelt, semmilyen műtrágyát és szintetikus, toxikus anyagot nem tartalmaz. A tápanyag-utánpótlás
Éves energetikai szakreferensi jelentés év
Éves energetikai szakreferensi jelentés 2017. év Tartalomjegyzék Tartalomjegyzék... 1 Vezetői összefoglaló... 2 Energiafelhasználás... 4 Villamosenergia-felhasználás... 4 Gázfelhasználás... 5 Távhőfelhasználás...
Kombinált intenzív-extenzív rendszer alkalmazása, tervezésének és működtetésének tudományos. háttere, gyakorlati tapasztalatai
Integrált szemléletű program a fenntartható és egészséges édesvízi akvakultúráért Kombinált intenzív-extenzív rendszer alkalmazása, tervezésének és működtetésének tudományos háttere, gyakorlati tapasztalatai
A differenciált tápanyag-gazdálkodás és növényvédelem alkalmazásának lehetőségei
Agrárinformatika 2009 Agrárinformatikai Nyári Egyetem A differenciált tápanyag-gazdálkodás és növényvédelem alkalmazásának lehetőségei Dr. Sulyok Dénes 2009.09.07. Debrecen, 2009. augusztus 26. PRECÍZIÓS
Az óraátállítás hatásai a villamosenergia -rendszerre. Székely Ádám rendszerirányító mérnök Országos Diszpécser Szolgálat
Az óraátállítás hatásai a villamosenergia -rendszerre Székely Ádám rendszerirányító mérnök Országos Diszpécser Szolgálat Tartalom - MAVIR szerepe és feladatai a villamosenergia-rendszer és piac működtetésében
A GAMMA-VALEROLAKTON ELŐÁLLÍTÁSA
A GAMMA-VALEROLAKTON ELŐÁLLÍTÁSA A LEVULINSAV KATALITIKUS HIDROGÉNEZÉSÉVEL Strádi Andrea ELTE TTK Környezettudomány MSc II. Témavezető: Mika László Tamás ELTE TTK Kémiai Intézet ELTE TTK, Környezettudományi
Ajkai Mechatronikai és Járműipari Klaszter Energetikai Stratégiája 2010. December 8.
Ajkai Mechatronikai és Járműipari Klaszter Energetikai Stratégiája 2010. December 8. Nagy István épületenergetikai szakértő T: +36-20-9519904 info@adaptiv.eu A projekt az Európai Unió támogatásával, az
Termék fogalma. Termék tulajdonságai - Termékkörök. A termék fogalma, a mezőgazdasági termék sajátosságai a forgalmazás szempontjából, csoportosításuk
A termék fogalma, a mezőgazdasági termék sajátosságai a forgalmazás szempontjából, csoportosításuk Készítette: Tóth Éva Tanársegéd Pannon Egyetem, Georgikon Kar 2 Termék fogalma Terméknek minősül mindaz,
Precíziós gazdálkodás a gyakorlatban
Precíziós gazdálkodás a gyakorlatban doing the right thing at the right place at the right time Kauser Jakab K-Prec Kft. jakab.kauser@k-prec.hu Amiről beszélni fogok Bemutatkozás Precíziós gazdálkodás
MEZŐGAZDASÁGI TERMELÉS A VILÁGON. Búza Ausztráliában: előrejelzett termelést csökkentették
MEZŐGAZDASÁGI TERMELÉS A VILÁGON Búza Ausztráliában: előrejelzett termelést csökkentették USDA a 2018/19 évre Ausztrália búza termelését 20,0 millió metrikus tonnára (mmt) becsülte, ami 2,0 mmt vagy 9%-os
Hagyományos és modern energiaforrások
Hagyományos és modern energiaforrások Életünket rendkívül kényelmessé teszi, hogy a környezetünkben kiépített, elektromos vezetékekből álló hálózatok segítségével nagyon könnyen és szinte mindenhol hozzáférhetünk
A biomassza energetikai hasznosítása és a DANUBIOM projektötlet. Kohlheb Norbert Szent István Egyetem Bioeuparks tréning 2015.December 8.
A biomassza energetikai hasznosítása és a DANUBIOM projektötlet Kohlheb Norbert Szent István Egyetem Bioeuparks tréning 2015.December 8. Budapest Potenciálok Elméleti potenciál Műszaki potenciálok Gazdaságitársadalmi
Életciklus-elemzés a gyakorlatban. Hegyesi József
Hegyesi József Gödöllő, 2012 Tartalom 1. Alapfogalmak 2. Az életciklus-elemzés felépítése 3. Életciklus-elemzés a gyakorlatban Alapfogalmak Életciklus-elemzés*: Egy termék hatásrendszeréhez tartózó bement,
Megelőzés központú környezetvédelem: energia és anyaghatékonyság, fenntarthatóság, tisztább termelés
Őri István GREENFLOW CORPORATION Zrt. Megelőzés központú környezetvédelem: energia és anyaghatékonyság, fenntarthatóság, tisztább termelés Fenntarthatóság-fenntartható fejlődés Megelőzés-prevenció Tisztább