I. Vektor fogalma, tulajdonságai
|
|
- Dániel Barna
- 9 évvel ezelőtt
- Látták:
Átírás
1 6 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató I. Vektor fogalma, tulajdonságai Módszertani megjegyzés: Az 1. és. fejezet az eddig tanultak rendszerezett és kibővített átismétlése. Bevezetőként kereshetünk olyan példákat, amelyeknél vektorokat használunk! Különösen fontosak a fizikában használt vektormennyiségek: térkép, sebesség, elmozdulás, gyorsulás, erő. Felmerülhet az eltolás, de itt elsősorban azt hangsúlyozzuk, hogy a vektorok mennyiségeket írnak le, vagyis a vektormennyiségek szerepét! A modulnak célja az is, hogy az irányított szakasz korábban tanult idealizált képét megváltoztatva élőbbé varázsolja a vektorokat. Vektornak nevezzük az irányított szakaszt. A vektorokat írásban aláhúzással (a), nyomtatásban megvastagítva (a) jelöljük. A vektor meghatározása után áttekintjük a vektorok tulajdonságait. Vektor abszolútértéke A vektorok kezdőpontjukkal és végpontjukkal kijelölnek egy irányt és egy távolságot. A távolságot a vektor hosszának vagy abszolútértékének nevezzük (jele a ), és mindig valamilyen hosszúságegységhez viszonyítjuk. Mintapélda 1 Számítsuk ki az ábrán szereplő vektorok abszolútértékét! Megoldás: A koordináta-rendszer derékszögű négyzetrácsa és a Pitagorasz-tétel segítségével végezzük a számítást: = 37, azaz a = 37 6, 1 egység. Hasonlóan számítva b = 50 7, 1 egység.
2 14. modul: VEKTOROK 7 Vektor állása, iránya Ha két vektor egyenese párhuzamos, akkor megegyező állásúnak mondjuk őket. Ezek az egyállású vektorok lehetnek azonos vagy ellentett irányúak, irányításúak. Vektorok egyenlősége Két vektor egyenlő, ha hosszuk és irányuk megegyezik. A vektorok egyenlősége és azonossága különböző fogalmak. Két vektor azonos, ha kezdőpontjaik és végpontjaik páronként megegyeznek, jelölés: a b. Egy adott vektorral azonos vektor a síkon vagy a térben ugyanott helyezkedik el. Ezzel szemben egy adott vektorral egyenlő vektort a sík vagy tér bármely pontjából felmérhetünk, így egy adott vektorral egyenlő vektorból végtelen sok van. Egységvektor (e): egységnyi hosszúságú vektor. Nullvektor (0): 0 hosszúságú vektor. Definíciója: olyan vektor, amelynek megegyezik a kezdőpontja és a végpontja. Irányát tetszőlegesnek tekintjük. Az a vektor ellentettjének nevezzük azt a vektort, amelyik vele egyenlő abszolútértékű, egyező állású, de vele ellentétes irányú. Jelölése: a. Feladatok 1. Keress egyenlő, ellentett és azonos vektorokat a kockán és a szabályos hatszögön!
3 8 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató. Keress egyenlő, egyenlő hosszúságú, illetve ellentett vektorokat az ábrán!
4 14. modul: VEKTOROK 9 II. Vektorműveletek Vektorok összeadása Toljuk el az ABC háromszöget előbb az a, majd a b vektorral! a b a+b A két eltolás egymásutánját helyettesíthetjük egyetlen eltolással is. Ennek vektorát a két vektor összegének nevezzük. Két vektor összegét kétféle módszer szerint szerkeszthetjük meg: a) háromszög-módszer: az a végpontjából mérjük fel a b vektort; ekkor az a + b vektor az a kezdőpontjából a b végpontjába mutat. b) paralelogramma-módszer: az a és b vektorokat közös kezdőpontból mérjük fel, kiegészítjük paralelogrammává; ekkor az a + b vektor a paralelogramma közös kezdőpontból kiinduló átló vektora.
5 10 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató Több vektor összeadásakor használható a láncszabály: Egy a vektor és a nullvektor összege az a vektorral a + 0 = a. egyenlő: Módszertani megjegyzés: A következő mintapélda megoldását csoportmunkában javasoljuk, természetesen a tanulók nem nézhetik a tanulók könyvét. Célszerű felidézni a számok összeadásának kommutatív és asszociatív tulajdonságát! A szerkesztések után megbeszéljük a műveleti tulajdonságokat. Ezekre elsősorban a feladatok miatt van szükség, bizonyításuk nem a középszintű érettségi anyaga. Mintapélda Másold át a füzetedbe az a, a b és a c vektort, és szerkeszd meg az alábbi vektorokat: a) a + b; b) b + a; c) a + b + c; d) a + (b + c); e) (a + b) + c! Megoldás: a) b) c) d)
6 14. modul: VEKTOROK 11 e) Tapasztalat: a vektorok összeadása kommutatív: a + b = b + a, és asszociatív: a + b + c = ( a + b ) + c = a + ( b + c ) művelet. A vektorok összeadását használjuk például vektor összetevőkre bontásakor a fizikában. A szánkót húzó személy a kötélen keresztül F erőt gyakorol a szánkóra. Ennek az erőnek a vízszintes komponense (F v ) a gyorsításra fordítódik, függőleges komponense (F F ) a test talajra ható nyomóerejét csökkenti. F felbontható erre a két komponensre! Vektorok kivonása Laci Párizsból Budapestre repül, Berlin érintésével. Útjának vektorait bejelöltük. Felírhatjuk, hogy a = b + c. Ha a c vektort akarjuk kifejezni a és b segítségével, vagyis az összeg és az
7 1 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató egyik összeadandó segítségével írjuk fel a másik összeadandót, akkor a két vektor különbségét képezzük: c = a b. Az a b vektort úgy is megszerkeszthetjük, hogy az a vektorhoz hozzáadjuk b ellentett vektorát ( b vektort). Az a és b vektorok különbségét úgy képezzük, hogy közös kezdőpontból mérjük fel őket. A végpontjaikat összekötő, a végpontja felé mutató vektor az a b vektor. A vektorok kivonására nem teljesül sem a kommutativitás, sem az asszociativitás. Vektor szorzása számmal Az ábrán az a, b és c vektorok között összefüggések állapíthatók meg. Az ellenetett vektor definíciójánál láttuk, hogy b = a. c és b vektorok között a számmal való szorzás teremt kapcsolatot: c vektor két b összeadásával keletkezett, így is írhatjuk: c = b. Az ellentett vektor helyett szorzással a b = 1 a összefüggést is felírhatjuk. Így tehát c = ( 1 a) = a További példák vektorok szorzására: Módszertani megjegyzés: Érdemes megbeszélni a tanulókkal, hogy milyen összefüggés van az a vektor és a fenti vektorok szorzótényezője, illetve hossza között?
8 14. modul: VEKTOROK 13 Az a vektor k-szorosa (k R, vagyis k egy valós szám) az a vektor, amelynek hossza k a, iránya pedig k > 0 esetén a irányával megegyező, k < 0 esetén a irányával ellentétes. k = 0 esetén nullvektort kapunk. Ha 0-val szorzunk egy vektort, nullvektort kapunk. 1-nél nagyobb abszolútértékű számmal megszorozva a vektor hossza növekszik (nyújtás), 0 és 1 közé eső abszolútértékű számmal megszorozva csökken (összenyomás). A csupán szorzótényezőjükben különböző vektorokat egyneműeknek tekintjük, így azok öszszevonhatók: a + a = 3a. Feladatok 3. Mi az összefüggés a b és b a között? Megoldás: Egymás ellentett vektorai: a b = (b a). 4. Adj meg három vektort, és rajzold fel a b c, (a b ) c és a (b c) vektorokat! Segítségükkel igazold, hogy a vektorok kivonására nem teljesül az asszociativitás (felcserélhetőség)! 5. Vegyél fel egy tetszőleges a vektort, és szerkeszd meg a következő vektorokat! 1 a) a + a; b) a a; c) a a 1 5 ; d) a a ; a e) + a ; f) a a ; g) a + a; h) a + a Adott az ábra szerint az a, b és c vektor. Szerkeszd meg a következő vektorokat! a) a + b; b) a b; c) b c 1 d) a ; e) ( a + b) b ; f) b + c ; 3 a b + c.
9 14 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató 7. Add meg a vektorműveletek eredményét (összevonás után): a + b a) a + b 3 a b ; b) a + b 3 ; 1 1 ; d) a + ( a b) b ; 3 3 c) a + b a + ( a b) e) b a 3b a b a 7b a 1 Megoldás: a) 5 5 ; b) ; c) a + b ; d) 5a 5b ; e) a + b Adott egy szabályos hatszög egy csúcsából kiinduló a és b vektor. Írd fel ezek segítségével a következő vektorokat: a) AG ; b) AD ; c) BE ; d) FB ; e) CE; f) BD ; g) DF. Megoldás: a) a + b; b) (a + b); c) a; d) b a; e) a b; f) a + b; g) b a. 9. A paralelogramma oldalvektorainak (a és b ) segítségével írd fel a következő vektorokat, ha a = AD, b = AB. a) AH b) AG c) EB d) BH Melyik vektort adja meg: e) a b; f) a 1 b; g) 1 a b? Megoldás: a) b a + ; b) a b + ; c) a b ; d) b a ; e) CA ; f) HA ; g) GA. 10. Adott egy két négyzetből álló téglalap, és egy csúcsából kiinduló a = AF és b = AB vektor. Írd fel az a és a b segítségével a következő vektorokat (G M: felezőpontok):
10 14. modul: VEKTOROK 15 a) AD ; b) AG ; c) AH ; d) JL ; e) IF ; f) HK ; g) CK ; h) HJ. a Megoldás: a) a + b; b) + b 3 a g) a b ; h) b 3. a ; c) + b ; d)a + b; e) b a 3 ; f) a 3b ; 11. Az a és a b vektorok 3 egység hosszúak, egymással 60 -os szöget zárnak be. Mekkora az a + b vektor hossza? Megoldás: Az a és a b vektorok 5 egység hosszúak, egymással 90 -os szöget zárnak be. Mekkora az a + b vektor hossza? Megoldás: Egy testre ható erők eredőjét úgy szerkesztjük meg, hogy a súlypontjába mérjük fel a testre ható összes erőt, majd ott összeadjuk az erővektorokat. Szerkeszd meg a testekre ható eredő erőt! a) b) c) Megoldás: Az erővektorokat vektoriálisan összegezni kell a testek súlypontjában (az a pont, ahonnan a súly erővektora kiindul).
11 16 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató Mintapélda 3 A testek mozgásának vizsgálatakor (dinamikai és kinematikai feladatokban) a következő modellt használjuk: a testet a tömegközéppontjával helyettesítjük, és vizsgáljuk az erre ható erők eredőjét. A tömegpontok nyugalomban vannak, vagyis a rá ható erők eredője zérus (Newton I. törvénye miatt; összegük nullvektor). Szerkeszd meg a következő testre ható hiányzó erőt! Megoldás: Megszerkesztjük a piros és a kék erő összegét (lila vektor), és a megoldást ennek az ellentett vektora adja (zöld). Feladatok 14. Szerkeszd meg a következő, nyugalomban levő testekre ható hiányzó erőt! 15. A méhecskék koordináta-rendszerében i és j vektorok segítségével állítsuk elő a következő vektorokat! Segítségképpen határozd meg a hatszög átlóinak és oldalainak vektorait! Például BD vektor BD = 3 (-j) + (- (i+j)) = -5j i. a) AC ; b) CE ; c) HI ; d) AG ; e) FC ; f) IE.
12 14. modul: VEKTOROK 17 Megoldás: a) AC = 5i j; b) CE = 7i + 4j ; c) HI = 3(i j); d) AG = 8i + 9j; e) FC = 5i 7j; f) IE = 6i 7j. 16. Az oszlopdiagramokon azokat a lépéseket látod, amelyeket egymás után meg kell tenned a koordináta-rendszerben i és j vektorokkal (piros: i, zöld: j; i az x irányú egységvektor, j az y irányú egységvektor). Indulj ki az origóból, és mérd fel a megfelelő lépéseket! A végén add meg annak a pontnak a koordinátáit, ahová érkeztél! Példa: lépések A diagram szerint i-vel 3 lépés jobbra (3i), j-vel lépés le (- j) stb. A végén megérkezünk a (6; 0) pontba. a) b) lépések Megoldás: - a) (3; ); b) (-; 0) lépések 17. Állítsd elő az i, j és k (az A csúcsból az élfelező pontokba mutató) vektorokkal az A csúcsból a kocka két lapátlójának negyedelő pontjaiba mutató vektorokat! i + 4j + 3k Megoldás: például. 18. O-ból az A pontba az a helyvektor, B pontba a b helyvektor mutat. Előállítjuk az O-ból az AB szakaszt : 3 arányban osztó C pontba mutató c helyvektort:
13 18 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató b a 5a + ( b a) 3a + b c = a + AC = a + = = Hasonló módon állítsd elő (írd fel) az a és b vektorok segítségével az AB-t a megadott arányban osztó pontokba mutató helyvektorokat (készíts ábrákat is): a) 1 : 1 (felezőpont); b) 1 : (A-hoz közelebbi harmadoló pont); c) : 1; d) 3 : ; e) 1 : 3; f) 4 : 5; g) : 7; h) 3 : 4. Megoldás: a) a + b a + b a + ; b) ; c) 3 3b 7a + b g) ; h) 9 4a + 3b 7. a + 3b ; d) ; e) 5 3 b 4 a + 5a + 4b ; f) ; Igazold, hogy tetszőleges négyszög középvonalának a + b vektorára felírható a k = összefüggés. Megoldás: Segédvektorokat veszünk fel, és segítségükkel kifejezzük k-t: k = d + a + c, valamint k = d + b c. Ezeket összeadva c és d kiesik, és marad k = a + b, ahonnan következik az álltás. Módszertani megjegyzés: Diagnosztikához javasolt feladattípusok: négyzetrácsos lapon adott a és b vektorral vektorműveletek ábrázolása; szabályos oktaéderben vagy szabályos síkidomban (nyolcszögben) egyenlő és ellentett vektorok keresése, két adott vektorral oldalvektorok felíratása;
14 14. modul: VEKTOROK 19 vektoralgebrai számítások (összevonások) után egyenlő vektorok keresése (pl. 6 kifejezésből melyik adja ugyanazt a végeredményt). Amennyiben marad idő, a modult zárhatjuk Activity játékkal, amelyben a tanult fogalmak valamelyikét körülírják, lerajzolják vagy elmutogatják a tanulók, és a csoporttársaiknek adott idő alatt kell a feladványt kitalálni. A tanár előkészíti a fogalmakat, valamint a körülír, elmutogat, rajzol felíratokat tartalmazó papírcédulákat, amelyből egyet-egyet húz, akit a csapat kijelöl. Egy másik csapatban válssznak egy diákot, aki méri az időt.
15 0 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató Kislexikon Vektor: irányított szakasz, vagy az azzal jellemezhető mennyiség. Vektor abszolútértéke ( a ): a vektor hossza. Két vektor egyenlő, ha hosszuk és irányuk megegyezik. Egységvektor (e): egységnyi hosszúságú vektor. Nullvektor (0): 0 hosszúságú vektor. Definíciója: olyan vektor, amelynek megegyezik a kezdőpontja és a végpontja. Iránya tetszőleges. Vektor ellentettje: az a vektor, amelyik az adott vektorral egyenlő abszolútértékű, egyező állású, de vele ellentétes irányú. Két vektor összegét kétféle módszer szerint szerkeszthetjük meg: a) háromszög-módszer: az a végpontjából mérjük fel a b vektort; ekkor a + b az a kezdőpontjából a b végpontjába mutat; b) paralelogramma-módszer: az a és a b vektorokat közös kezdőpontból mérjük fel, kiegészítjük paralelogrammává. a + b a paralelogramma közös kezdőpontból kiinduló átló vektora. A vektorok összeadása kommutatív és asszociatív művelet. a és b vektorok különbségét úgy képezzük, hogy közös kezdőpontból mérjük fel őket. A végpontjaikat összekötő, a végpontja felé mutató vektor az a b vektor. A vektorok kivonása nem kommutatív és nem asszociatív művelet. v vektor k-szorosa (k R, vagyis k egy valós szám) az a vektor, amelynek hossza k v, iránya pedig k > 0 esetén v irányával megegyező, k < 0 esetén v irányával ellentétes. k = 0 esetén nullvektort kapunk.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.
Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok I.
Vektorok I. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított (kezdő és végponttal rendelkező) szakaszoknak a halmazát vektornak nevezzük. Jele: v ; v; AB (ahol A a vektor kezdőpontja,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0
Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.
14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük:
14. Vektorok I. Elméleti összefoglaló Vektor Az irányított szakaszokat vektoroknak nevezzük: Jelölés: a kezdő és a végpont megadásával: AB ; egy kisbetűvel: v, írásban aláhúzás is szokásos: a; nyomtatásban
Exponenciális és logaritmusos kifejezések, egyenletek
Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.
O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 )
1. feladat Írjuk föl a következő vektorokat! AC, BF, BG, DF, BD, AG, GB Írjuk föl ezen vektorok egységvektorát is! a=3 m b= 4 m c= m Írjuk föl az egyes pontok koordinátáit: O ( 0, 0, 0 ) A ( 4, 0, 0 )
Koordináta - geometria I.
Koordináta - geometria I A koordináta geometria témaköre geometriai problémákat old meg algebrai módszerekkel úgy, hogy a geometriai fogalmaknak algebrai fogalmakat feleltet meg: a pontokat, vektorokat
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
MATEMATIKA A 11. évfolyam
MATEMATIKA A 11. évfolyam Vektorok 5. modul Készítette: Vidra Gábor Matematika A 11. évfolyam 5. modul: Vektorok Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.
1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való
Egész számok értelmezése, összehasonlítása
Egész számok értelmezése, összehasonlítása Mindennapi életünkben jelenlevő ellentétes mennyiségek kifejezésére a természetes számok halmazát (0; 1; 2; 3; 4; 5 ) ki kellett egészítenünk. 0 +1, +2, +3 +
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
Matematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály II. rész: Trigonometria Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék II. rész: Trigonometria...........................
Helyvektorok, műveletek, vektorok a koordináta-rendszerben
Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )
Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a
Vektoralgebra feladatlap 2018 január 20.
1. Adott az ABCD tetraéder, határozzuk meg: a) AB + BD + DC b) AD + CB + DC c) AB + BC + DA + CD Vektoralgebra feladatlap 018 január 0.. Adott az ABCD tetraéder. Igazoljuk, hogy AD + BC = BD + AC, majd
Vektorok összeadása, kivonása, szorzás számmal, koordináták
Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),
Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János
Budapesti Műszaki Főiskola, Neumann János Informatikai Kar Lineáris algebra 1. témakör Vektorok Fodor János Copyright c Fodor@bmf.hu Last Revision Date: 2006. szeptember 11. Version 1.1 Table of Contents
1. A komplex számok ábrázolása
1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor
Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC.
ANALITIKUS MÉRTAN INFORMATIKA CSOPORT I. VEKTORALGEBRA 1. Feladatlap Műveletek vektorokkal 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AB + BD + DC; b) AD + CB + DC; c) AB + BC
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q
Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N
Add meg az összeadásban szereplő számok elnevezéseit!
1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]
Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =
Az 1. forduló feladatainak megoldása
Az 1. forduló feladatainak megoldása 1. Bizonyítsa be, hogy a kocka éléből, lapátlójából és testátlójából háromszög szerkeszthető, és ennek a háromszögnek van két egymásra merőleges súlyvonala! Megoldás:
2018/2019. Matematika 10.K
Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
10. évfolyam, ötödikepochafüzet
10. évfolyam, ötödikepochafüzet (Hasonlóság, trigonometria) Tulajdonos: ÖTÖDIK EPOCHAFÜZET TARTALOM I. Geometriai transzformációk... 3 I.1. A geometriai transzformációk ismétlése... 3 I.2. A vektorok ismétlése...
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az
I. VEKTOROK, MÁTRIXOK
217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli
Fizika 1i, 2018 őszi félév, 1. gyakorlat
Fizika i, 08 őszi félév,. gyakorlat Szükséges előismeretek: vektorok, műveletek vektorokkal (összeadás, kivonás, skalárral való szorzás, skaláris szorzat és vektoriális szorzat, abszolút érték), vektorok
Minimum követelmények matematika tantárgyból 11. évfolyamon
Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két
Vektoralgebra. 1.) Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s 2?
Vektoralgebra Elmélet: http://digitus.itk.ppke.hu/~b_novak/dmat/vektorfolcop.pdf Mikor érdemes más, nem ortonormált bázist alkalmazni? Fizikában a ferde hajításoknál megéri úgynevezett ferdeszögű koordináta-rendszert
Egybevágósági transzformációk
Egybevágósági transzformációk Párhuzamos eltolás Geometriai transzformációk Egybevágósági transzformációk (9. osztály) Helybenhagyás Tengelyes tükrözés Középpontos tükrözés Pont körüli forgatás Párhuzamos
Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint
TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.
Koordinátageometria Megoldások
005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának
Témák: geometria, kombinatorika és valósuínűségszámítás
Matematika BSc Elemi matematika 3 Témák: geometria, kombinatorika és valósuínűségszámítás Kitűzött feladatok Geometria 1. Egy ABD háromszög szögei rendre α, β, γ. Mekkora szöget zár be egymással a) az
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Exponenciális és logaritmusos kifejezések, egyenletek
Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező
x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2
Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
Az M A vektor tehát a három vektori szorzat előjelhelyes összege:
1. feladat Határozza meg a T i támadáspontú F i erőrendszer nyomatékát az A pontra. T 1 ( 3, 0, 5 ) T 1 ( 0, 4, 5 ) T 1 ( 3, 4, 2 ) F 1 = 0 i + 300 j + 0 k F 2 = 0 i 100 j 400 k F 3 = 100 i 100 j + 500
Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)
MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) Tasnádi Tamás 1 2015. április 17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Vektorok és axiálvektorok Forgómozgás, pörgettyűk
Feladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
III. Vályi Gyula Emlékverseny december
III. Vályi Gyula Emlékverseny 1996. december 14 15. VI osztály A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül csak pontosan egy helyes. A helyes válasz betűjelét
Háromszögek, négyszögek, sokszögek 9. évfolyam
Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
15. Koordinátageometria
I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +
1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z
146/1 147/2 1. Középpontos tükrözés, középpontos szimmetria a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z b) 0; H; I; N; O; S; X; Z c) 0; O; H; I; X; Z a) kőr dáma b) pikk jumbo; kőr dáma.; káró
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Koordinátageometriai gyakorló feladatok I ( vektorok )
Koordinátageometriai gyakorló feladatok I ( vektorok./ Határozd meg az AB szakasznak azt a pontját, amely a szakaszt : ha A ( ; és a B ( ; 8!./ Adott az A ( 3 ; 5 és a ( ; 6 B pont. Számítsd ki az AB vektor
15. Koordinátageometria
I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két
1. A komplex számok definíciója
1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van
Koordináta-geometria feladatgyűjtemény
Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs
1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük:
. Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 11. évfolyam 2. félév ESZKÖZÖK Matematika A 11. évfolyam 6. modul 6.1 kártyakészlet 6.1 kártyakészlet leírása A kártyákon pontok koordinátáit találjuk. A tanulók
Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)
Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba
Keresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
Vektoralgebra. 4. fejezet. Vektorok összeadása, kivonása és számmal szorzása. Feladatok
4. fejezet Vektoralgebra Vektorok összeadása, kivonása és számmal szorzása T 4.1 (Háromszögegyenl tlenség) Minden a, b vektorpárra a + b a + b. T 4.2 (Paralelogrammaszabály) Ha az a és b vektor különböz
Egy irányított szakasz egyértelműen meghatároz egy vektort.
VEKTOROK VEKTOROK FOGALMA Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon, hogy az egyik pont a kezdőpont, a másik pont a végpont, akkor irányított szakaszt kapunk. Egy irányított szakasz
Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
Kisérettségi feladatgyűjtemény
Kisérettségi feladatgyűjtemény Halmazok 1. Egy fordítóiroda angol és német fordítást vállal. Az irodában 50 fordító dolgozik, akiknek 70%-a angol nyelven, 50%-a német nyelven fordít. Hány fordító dolgozik
A III. forduló megoldásai
A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak
Követelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.
I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:
I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2
10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A
egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.
Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,
4. Vektorok. I. Feladatok. vektor, ha a b, c vektorok által bezárt szög 60? 1. Milyen hosszú a v = a+
4 Vektorok I Feladatok Milyen hosszú a v a b c vektor, ha a b, c vektorok által bezárt szög 60? c b, a, b, c és az a és Mit állíthatunk az BCD konvex négyszögről, ha B D B BC CB CD DC D 0? Igaz-e, hogy
Összeállította: dr. Leitold Adrien egyetemi docens
Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,