A kiralitás felfedezése
|
|
- Henrik Boros
- 8 évvel ezelőtt
- Látták:
Átírás
1
2
3 A kiralitás felfedezése A borkősavat (Na + és NH 4+ ionokkal képzett sóját) kristályosítva kétféle kristályt kap: Louis Pasteur ( ) Megállapítja, hogy a kétféle kristály kialakulásáért a molekuláris aszimmetria a felelős.
4 A kiralitás Ha egy atom körül (kiralitás centrum) tetraéderesen helyezünk el négyféle atomot (vagy atomcsoportot), akkor ezt kétféleképpen tehetjük meg, pl.: királis vegyület enantiomer párok: tükörképi párok, melyek nem hozhatók egymással fedésbe Jelölés: S és R, vagy D és L, vagy d és l, vagy + és -, vagy. Nem királis (akirális) vegyületekkel szemben azonos kémiai viselkedés. Egyszerű fizikai tulajdonságaik (pl. olvadás-, forráspont, sűrűség) is azonosak.
5 Kiralitás kiralitáscentrum nélkül Csavarszerkezetek: Allének: Egyéb típusok: diklór-spiroheptán dibróm-bifenil trans-ciklooktén
6 Királis kristályok királis molekula nélkül A kvarckristály lokálisan (Si-atom körül) akirális a kristály azonban (a csavarszerkezetekhez hasonlóan) királis l d Az olvadt kvarc nem királis (optikailag nem aktív).
7 Kiralitás az élővilágban Dohánymozaik vírus Csigák
8 Kiralitás az élővilágban Futónövények
9
10 A síkban polarizált fény Egy fényrészecske (foton) haladása A fény: elektromágneses sugárzás Mágneses térerő vektora Elektromos térerő vektora Több részecske (fénynyaláb), csak az elektromos térerőt szemléltetve nem polarizált fény E előlnézet oldalnézet síkban polarizált fény
11 Optikai aktivitás I. A csak az egyik enantiomert tartalmazó királis anyagok (optikailag tiszta anyagok) a síkban polarizált fényt forgatják. A enantiomer párok eltérő irányba! Az optikai forgatóképesség (ORD: optikai rotációs diszperzió) mérése: 2. polárszűrő mintatartó optikailag aktív vegyület 1. polárszűrő fényforrás elforgatott síkban polarizált fény
12 Optikai aktivitás I. A folyadékkristályos kijelzők (LCD) működése külső elektromos tér nélkül: királis (koleszterikus) fázis polarizált fény síkját elforgatja zöld fény fehér fény polárszűrők (merőleges állasban) színszűrők (kék, zöld, piros) külső elektromos tér a molekulák elektromos dipólusuknak megfelelő irányba rendeződnek megszűnik a királis fázis nem forgat nincs fény
13 A cirkulárisan polarizált fény Síkban polarizált fény Cirkulárisan polarizált fény
14 A cirkulárisan polarizált fény A körbejárás irányától függően kétféle cirkulárisan polarizált fényt különböztethetünk meg:
15 Optikai aktivitás II. Az optikailag aktív anyagok (vagyis a csak az egyik enantiomert tartalmazó királis molekulák halmaza) eltérő mértékben nyelik el a kétféle cirkulárisan polarizált fényt. Az elnyelés a hullámhossztól is függ. Cirkuláris dikroizmus (CD) spektroszkópia. detektor cirkulárisan polarizált fény síkban polarizált fény optikailag aktív minta eltérő abszorpció!
16 Optikai aktivitás I-II. Forgatóképesség (ORD) Fényelnyelés különbség (CD) hullámhossz/nm Fényelnyelés (UV spektrum) Forgatóképesség (ORD) Fényelnyelés különbség (CD) hullámhossz/nm Fényelnyelés (UV spektrum) (1S)-(+)-Kámfor-10-szulfonsav (1R)-(-)-Kámfor-10-szulfonsav
17 Optikai aktivitás vizsgálatok az ELTE Kémiai Intézetében CD készülék (látható és UV tartomány) VCD készülék (infravörös tartomány) A kiroptikai kutatásokat az ELTÉ-n Kajtár Márton és Hollósi Miklós indította el.
18
19 Homokiralitás az élőszervezetben aminosavak L: Peptidekben, fehérjékben. D: az élőszervezetekben egzotikusak, pl. baktériumok, egyes tengeri csigákban fordul elő. L-aminosavak D-aminosavak szénhidrátok A tükörképi párok (L) nem fordulnak elő! 2-dezoxi-D-ribóz DNS-ben D-ribóz RNS-ben Homokiralitás (itt): csak az egyik enantiomer fordul elő.
20 Királis felismerés Mivel az enzimek azonban csak L-aminosavakból épülnek fel, ezért a királis gyógyszerek eltérően kötődhetnek ezekhez eltérő biológiai aktivitás biomolekula/gyógyszer (szubsztrát) királis szénatom enzim kötőhelyekkel csak az egyik enantiomer!
21 Az orrunk, mint királis receptor LIMONÉN KARVON
22 Királis gyógyszerek THALIDOMIDE R S 1957 Németország: terhességi rosszullét elleni gyógyszer egyik (R) enantiomer másik enantiomer és a kettő keveréke (az ún. racém) születési rendellenességek > áldozat, 46 országban Enantioszelektív szintézisek: 2001-es kémiai Nobel-díj: Knowles, Noyori, Sharpless Királis elválasztások (kromatográfia)
23
24 Az élet keletkezésének elméletei Teremtés Földönkívüli (evolúciós) eredet (pánsperma elmélet) Földi evolúció
25 A Miller-Urey kísérlet Alexander Oparin és J. B. S. Haldane elméletét, miszerint a biomolekulák a Föld őslégkörében jöhettek létre Stanley Miller és Harold Urey próbálta ki 1952-ben. kisülés elektródok gázok (őslégkör) Aminosavakat kaptak, de a D- és L aminosavak 1:1 arányban keletkeztek! (Azaz racém elegyet kaptak!) hűtővíz szerves vegyületek, pl. aminosavak hűtő RACÉM ELEGY! csapda víz (óceán) melegítés
26 A csillagközi felhőkben azonosított molekulák (2009) H 2 NCH 2 CN (2008) + 2H 2 O H 2 NCH 2 COOH (glicin) + NH 3 A glicin direkt azonosítására több próbálkozás történt, de még egyik eredmény sem egyértelműen elfogadott. Lásd: Alkímia ma, Kémia a csillagok között előadás, november 15.
27 Aminosav a Wild2 üstökösön NASA Stardust fellövés: : 800 millió km-re a Földtől üstököspor aerogél mintagyűjtő aerogél napelem 2006: a mintagyűjtő kapszula visszatér a Földre : glicin azonosítása az üstökös anyagában
28 A Murchison meteorit Természetes aminosavakat pl. glicin, alanin, glutaminsav, és egzotikus (földi élőlényekben meg nem található) a aminosavakat is találtak benne (első vizsgálatok): RACÉM 1982: L-aminosavak túlsúlyban! 1983: csak a földi elszennyeződés miatt? szeptember 28. Murchison, Ausztrália 1997: nem szennyezés, tényleg kis túlsúlyban vannak az L-(S-)aminosavak! (Engel és Macko, Nature)
29
30 Felületi katalízis Aszimmetrikus katalízis királis ásványok felületén Ha királis az ásvány, akkor az egyik enantiomer túlsúlyban képződik! Láttuk, hogy királis kristály felépülhet akirális molekulákból (részecskékből) is!?: 1) Túlsúlyban van-e a kvarc valamelyik enantiomerje (enantiomorf) a Földön? 2) Ha igen, akkor miért?
31 Aszimmetrikus katalízis királis ásványok felületén 1) Túlsúlyban van-e a kvarc valamelyik enantiomerje (enantiomorf) a Földön? Palache (1962, db minta): 50,5% l Lemmlein (1973, db minta): ugyanannyi Frondel (1978, db minta): 49,83 % l l d Preston (2009) : lokálisan nagy eltérések lehetnek!!! 2) Miért? A) eltérő energia :paritás- (szimmetria-) sértés (lásd később) C) eltérő irányú keverés (áramlás) (+ gravitáció, mágneses tér) B) egyéb, hasonló elméletek
32 A keverés irányának hatása Kondepudi, Kaufman, Singh (Science, 1990) NaClO 3 kristályosítása keverés nélkül: 50% L és 50% D NaClO 3 kristályosítása keveréssel vagy DE: Itt a keverés iránya nem határozza meg, hogy 99.7% L melyik enantiomer (enantimomorf) 99.7% D képződik! Ribó és munkatársai (Science, 2001): kísérlet, melyben a keverés iránya meghatározza, hogy melyik enantiomorf képződik!
33 A paritássértés C. S. Wu 1957 jobbmenetes b-sugárzás (elektronok) mágnes térben orientált 60 Co atomok Tükör Tükör 60 Co 60 Ni + b (e ) + 2γ + ν e Következmények: 1) Több olyan elektron van a β-sugárzásban, amelynek a haladási irányával párhuzamos tengely körül balkéz szabály szerint mutat a mágneses tér, azaz a b-sugárzás nem szimmetrikus! (Több a balmenetes spirál. ) balmenetes b-sugárzás (elektronok) Mi világunk antivilág 2) Az elemi részecskék miatti kölcsönhatások miatt ( egyesített elektrogyenge elmélet ) királis molekulák esetében kicsit eltér a két enantiomer energiája.
34 Akakoshi 1979 és Conte 1985 A β-sugárzás hatása az aminosavakra Racém (DL)-alanint Van de Graaff generátorból származó elektronokkal besugározva nem tapasztaltak dúsulást. β-sugárzással ( 90 Sr 90 Y forrásból származó elektronokkal) besugározva a D-alanin dúsulását mutatták ki.
35 Energiakülönbség a paritássértés miatt L D Képződéshő: 425 kj / mol Energiakülönbség (elméleti számítások szerint): ~ kj / mol = kj / mol Az L stabilabb! Túl kevés a homokiralitás kialakulásához?
36 Aszimmetrikus fotokémia Aszimmetrikus fotokémia Nem polarizált fény + külső mágneses tér Barron 1987, 1994 Rikken & Raupach 1998, 2000 Cirkulárisan polarizált fény Fotolízis (bomlás UV fény hatására) Kuhn & Braun 1929 Balavoine 1974 Nabon 2001 Inoue & Ramamurthy 2004 Meierhenrich 2005 Izomerizáció Inoue 1996 Fénnyel kiváltott szintézis Maradpour 1971 Bernstein 1972, 1973 Nuevo 2006
37 Aszimmetrikus fotokémia Példa: aszimmetrikus fotolízis Racém leucin (D,L-Leu) fotolízise cirkulárisan polarizált (182 nm-es) UV fénnyel Racém?: Van-e természetes cirkulárisan polarizált fényforrás? Hogy jöhet létre?
38 Aszimmetrikus fotokémia Cirkulárisan polarizált fény a Világegyetemben Orion OMC-1 Molekulafelhő (Buschermöhle, 2005) koordináta / arcsec cirkulárisan polarizált UV fény hányada %-ban koordináta / arcsec
39 Aszimmetrikus fotokémia Cirkulárisan polarizált fény a Világegyetemben Kétszeres fényvisszaverődés felületen (bolygó, üstökös, porszemcse) nem polarizált fény cirkulárisan polarizált fény síkban polarizált fény elsősorban az infravörös tartományban Egyéb források is (pl. Neutroncsillagoknál nagyobb energiájú sugárzás).
40 Királis erősítés autokatalízissel Pirimidinkarbaldehid alkilezése toluol, 20ºC, 40 óra HCl/H 2 O * * 50% S 50% R Soai autokatalízis (1996) toluol, 20ºC, 40 óra HCl/H 2 O * * 93% S 7% R 1 mol 0.2 mol optikailag tiszta S katalizátor + Kis mértékben feldúsult enantiomer katalizálhatja az azonos enantiomer (önmaga) szintézisét! Erősödés (pozitív visszacsatolás)!
41 Az emberi tudás minden irányban beláthatatlan és annak, ami egyáltalán tudásra méltó volna, egyetlen egy se tudhatja még ezredrészét sem. Arthur Schopenhauer További olvasmányok: Markó László: Miért "balkezesek" a fehérjéket felépítő aminosavak? A biomolekulák homokiralitásának eredete. Természet Világa, január-február U. Meierhenrich: Amino Acids and the Asymmetry of Life Springer, 2008
Szabó Dénes Molekulák és reakciók három dimenzióban
Szabó Dénes Molekulák és reakciók három dimenzióban Alkímia ma, 2012. április 19. Egy kis tudománytörténet -O azonos kémiai szerkezet -O Scheele (1769) -O különböző tulajdonságok -O Kestner (1822) borkősav
RészletesebbenA gyógyszerek és a kiralitás
Szent László TÖK A gyógyszerek és a kiralitás Dr. Zsigmond Ágnes SZTE Szerves Kémiai Tanszék Budapest, 2012.04.26. Vázlat Mi az a kiralitás? A kiralitás és a gyógyszerek. A királis katalizátorok alkalmazása.
RészletesebbenSztereokémia, királis molekulák: (királis univerzum, tükörképi világ?) memo: a földi élet királis elemek sokasága!
Sztereokémia, királis molekulák: (királis univerzum, tükörképi világ?) memo: a földi élet királis elemek sokasága! (pl. a földön az L-aminosavak vannak túlnyomó többségben. - Az enantiomer szelekció, módját
RészletesebbenAz elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
RészletesebbenSztereokémia, királis molekulák: (királis univerzum, tükörképi világ?) Izomerek felosztása
Sztereokémia, királis molekulák: (királis univerzum, tükörképi világ?) memo: a földi élet királis! Pl. a földön az L-aminosavak vannak túlnyomó többségben. - Az enantiomer szelekció, módját idejét és okát
RészletesebbenBevezetés a biokémiába fogorvostan hallgatóknak - Munkafüzet 2. hét
Bevezetés a biokémiába fogorvostan hallgatóknak - Munkafüzet 2. hét Sztereokémia (Bevezetés a biokémiába gyakorlatok, 4-6. o.) Írták: Agócs Attila, Berente Zoltán, Gulyás Gergely, Jakus Péter, Lóránd Tamás,
RészletesebbenAbszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
RészletesebbenKötések kialakítása - oktett elmélet
Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések
RészletesebbenAbszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
RészletesebbenOptikai spektroszkópia az anyagtudományban 8. Raman spektroszkópia Anizotrópia IR és Raman spektrumokban
Optikai spektroszkópia az anyagtudományban 8. Raman spektroszkópia Anizotrópia IR és Raman spektrumokban Kamarás Katalin MTA Wigner FK kamaras.katalin@wigner.mta.hu Optkai spektroszkópia az anyagtudományban
RészletesebbenA fény tulajdonságai
Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó
RészletesebbenFolyadékok és szilárd anyagok
Folyadékok és szilárd anyagok 7-1 Intermolekuláris erők, folyadékok tulajdonságai 7-2 Folyadékok gőztenziója 7-3 Szilárd anyagok néhány tulajdonsága 7-4 Fázisdiagram 7-5 Van der Waals kölcsönhatások 7-6
RészletesebbenAltalános Kémia BMEVESAA101 tavasz 2008
Folyadékok és szilárd anayagok 3-1 Intermolekuláris erők, folyadékok tulajdonságai 3-2 Folyadékok gőztenziója 3-3 Szilárd anyagok néhány tulajdonsága 3-4 Fázisdiagram 3-5 Van der Waals kölcsönhatások 3-6
RészletesebbenMézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
RészletesebbenKémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol
Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések
RészletesebbenOrvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
RészletesebbenA sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen
A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses
RészletesebbenEvolúcióelmélet és az evolúció mechanizmusai
Evolúcióelmélet és az evolúció mechanizmusai Az élet Darwini szemlélete Melyek az evolúció bizonyítékai a világban? EVOLÚCIÓ: VÁLTOZATOSSÁG Mutáció Horizontális géntranszfer Genetikai rekombináció Rekombináció
RészletesebbenSzalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?
Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Boronkay György Műszaki Középiskola és Gimnázium Budapest, 2011. október 27. www.meetthescientist.hu
RészletesebbenCD-spektroszkópia. Az ORD spektroskópia alapja
CD-spektroszkópia Az ORD spektroskópia alapja - A XIX. század elején Biot megfigyelte, hogy bizonyos, a természetben előforduló szerves anyagok a lineárisan polarizált fény síkját elforgatják. - 1817-ben
RészletesebbenSíkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált
Síkban polarizált hullámok Tekintsünk egy z-tengely irányában haladó fénysugarat. Ha a tér egy adott pontjában az idő függvényeként figyeljük az elektromos (ill. mágneses) térerősség vektorokat, akkor
RészletesebbenSzentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?
Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szalay Péter egyetemi tanár ELTE, Kémiai Intézet Elméleti Kémiai Laboratórium Van közös bennük? Egy kis történelem
RészletesebbenKun Ádám. Növényrendszertani, Ökológiai és Elméleti Biológiai Tanszék, ELTE MTA-ELTE-MTM Ökológiai Kutatócsoport. Tudomány Ünnepe,
Kun Ádám Növényrendszertani, Ökológiai és Elméleti Biológiai Tanszék, ELTE MTA-ELTE-MTM Ökológiai Kutatócsoport Tudomány Ünnepe, 2016.11.22. Miskolc Kun Ádám: A víz szerepe az élet keletkezésében. Tudomány
RészletesebbenE (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
RészletesebbenParitássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1
Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet
RészletesebbenHogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok
RészletesebbenSugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
RészletesebbenMűszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
RészletesebbenInfravörös, spektroszkópia
Infravörös, Raman és CD spektroszkópia Spektroszkópia Az EM sugárzás abszorbcióján alapszik: látható (leggyakrabban kvantitatív) UV IR (inkább kvalitatív) RAMAN ESR (mikrohullám) NMR (rádióhullám) Fény
Részletesebbenhttp://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
RészletesebbenAxion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék
Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature
RészletesebbenElektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
Részletesebben1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata A vegyi anyagok (atomok és molekulák) és az elektromágneses sugárzás kölcsönhatásának vizsgálata jelentős szerepet játszik ezen anyagok mind
Részletesebben3. A kémiai kötés. Kémiai kölcsönhatás
3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
RészletesebbenMűszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
RészletesebbenAbszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
RészletesebbenMagfizika szeminárium
Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos
RészletesebbenALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr ALKÍMIA MA Az előadásokról 17:00 17:15 Akadémiai negyed Hírek, aktualitások, programajánlat, kvíz kitöltése 17:15 18:00
Részletesebben2 TULAJDONSÁGOK ANYAGI HALMAZOK SZINTJÉN
1 Sztereoszelektív szintézisek 2 TULAJDONSÁGOK ANYAGI HALMAZOK SZINTJÉN 2.3 Abszolút konfiguráció Az 1.2.2 fejezetben már tárgyaltuk a sztereokémia alapvető fogalmait, amelyek összefüggésben állnak egy
RészletesebbenA csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD
A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
RészletesebbenKristályok optikai tulajdonságai. Debrecen, december 06.
Kristályok optikai tulajdonságai Debrecen, 2018. december 06. A kristályok fizikai tulajdonságai Anizotrópia - kristályos anyagokban az egyes irányokban az eltérő rácspontsűrűség miatt a fizikai tulajdonságaik
RészletesebbenAZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan
AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK Rausch Péter kémia-környezettan Hogy viselkedik az ember egyedül? A kémiában ritkán tudunk egyetlen részecskét vizsgálni! - az anyagi részecske tudja hogy kell
RészletesebbenSZÉNHIDRÁTOK. 3. Válogasd szét a képleteket aszerint, hogy aldóz, vagy ketózmolekulát ábrázolnak! Írd a fenti táblázat utolsó sorába a betűjeleket!
funkciós kimutatása molekulák csoport betűjele neve képlete helye 1. Írd a táblázatba a szénhidrátok összegképletét! általános képlet trióz tetróz 2. Mi a különbség az aldózok és a ketózok között? ALDÓZ
RészletesebbenALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok december 6. 18:00 Posztoczky Károly Csillagvizsgáló, Tata Posztoczky Károly
RészletesebbenFény kölcsönhatása az anyaggal:
Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh
RészletesebbenOPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
RészletesebbenSZERVES KÉMIA: BEVEZETÉS SZTEREOKÉMIA. Debreceni Egyetem ÁOK Orvosi Vegytani Intézet
SZERVES KÉMIA: BEVEZETÉS SZTEREOKÉMIA Debreceni Egyetem ÁOK Orvosi Vegytani Intézet www.medchem.unideb.hu A szén allotróp módusulatai a) gyémánt b) grafit c) amorf szén (nincs ábrázolva) A grafénő egyetlen
RészletesebbenOptika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
RészletesebbenA lézer alapjairól (az iskolában)
A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
RészletesebbenELTE Fizikai Intézet. FEI Quanta 3D FEG kétsugaras pásztázó elektronmikroszkóp
ELTE Fizikai Intézet FEI Quanta 3D FEG kétsugaras pásztázó elektronmikroszkóp mintatartó mikroszkóp nyitott ajtóval Fő egységek 1. Elektron forrás 10-7 Pa 2. Mágneses lencsék 10-5 Pa 3. Pásztázó mágnesek
RészletesebbenAbszorpciós fotometria
abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor
RészletesebbenModern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
RészletesebbenRöntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
RészletesebbenFöldrajzi burok. Levegőtisztaság védelem. Az élet kialakulása
Földrajzi burok Levegőtisztaság védelem előadás 1. előadás A Föld három külső szervetlen szférájának a szilárd kéregnek (litoszféra) a vízburoknak (hidroszféra) és a légkörnek (atmoszféra) valamint az
RészletesebbenALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok október 18. 16:00 ELTE Kémiai Intézet 065-ös terem Észbontogató (www.chem.elte.hu/pr)
RészletesebbenSzerves Kémiai Problémamegoldó Verseny
Szerves Kémiai Problémamegoldó Verseny 2015. április 24. Név: E-mail cím: Egyetem: Szak: Képzési szint: Évfolyam: Pontszám: Név: Pontszám: / 3 pont 1. feladat Egy C 4 H 10 O 3 összegképletű vegyület 0,1776
RészletesebbenAbszorpciós fotometria
abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok
RészletesebbenAz atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )
Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív
RészletesebbenAz elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
RészletesebbenA fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
RészletesebbenElemi cellák. Kristály: atomok olyan rendeződése, amelyben a mintázat a tér három irányában periódikusan ismétlődik.
Kristály: atomok olyan rendeződése, amelyben a mintázat a tér három irányában periódikusan ismétlődik. Elemi cellák amorf vs. mikrokristályos, kristályos anyagok rácspontok lineáris rács síkrács térács
RészletesebbenAz anyagi rendszer fogalma, csoportosítása
Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik
RészletesebbenMEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak
Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Egy átlagos emberben 10-12 kg fehérje van, mely elsősorban a vázizomban található.
RészletesebbenDr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria
RészletesebbenKémiai Intézet Kémiai Laboratórium. F o t o n o k k e r e s z tt ü z é b e n a D N S
Szalay SzalayPéter Péter egyetemi egyetemi tanár tanár ELTE, ELTE,Kémiai Kémiai Intézet Intézet Elméleti ElméletiKémiai Kémiai Laboratórium Laboratórium F o t o n o k k e r e s z tt ü z é b e n a D N S
RészletesebbenEnergia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás
RészletesebbenA világűr nem üres! A csillagközi anyag ezerarcú. Pompás képek sokasága bizonyítja ezt.
A világűr nem üres! A kozmoszban (görög eredetű szó) a csillagok közötti teret is anyag tölti ki. Tehát a fejezet címében olvasható megállapítás helyes. Egy példa arra, hogy a világegyetem mennyire üres
RészletesebbenATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
RészletesebbenAbszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
RészletesebbenJegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
RészletesebbenAz elemek szintézise. Környezeti kémia. Elemgyakoriságok az univerzumban Elemgyakoriságok az univerzumban: lineáris ábrázolás
Az elemek szintézise Környezeti kémia 2. Előadás A természeti környezet evolúciója Univerzum kialakulása: 13-15 milliárd évvel ezelőtt Ősrobbanás : neutrongáz robbanása neutronok és protonok deutérium-
RészletesebbenTarczay György, Góbi Sándor, Magyarfalvi Gábor, Vass Elemér. ELTE Kémiai Intézet
Tarczay György, Góbi Sándor, Magyarfalvi Gábor, Vass Elemér ELTE Kémiai Intézet KMOP-4.2.1/B-10-2011-0002 Rezgési optikai aktivitás Abszolút konfiguráció meghatározása és konformációanalízis A gyógyszerkutatás
RészletesebbenAtomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok
Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai
Részletesebben1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont
1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó
RészletesebbenEnzim-katalizált (biokatalitikus) reakcióutak tervezése. Schönstein László Enzimtechnológiai Fejlesztő Csoport Debrecen, November 11.
Enzim-katalizált (biokatalitikus) reakcióutak tervezése Schönstein László Enzimtechnológiai Fejlesztő Csoport Debrecen, 2016. November 11. ENANTIOMEREK JELENTŐSÉGE A GYÓGYSZERKUTATÁSBAN Mik az enantiomerek?
RészletesebbenReakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot
Reakiókinetika aktiválási energia kiindulási állapot energia nyereség felszabaduló energia végállapot Reakiókinetika kinetika: mozgástan reakiókinetika (kémiai kinetika): - reakiók időbeli leírása - reakiómehanizmusok
RészletesebbenFizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés
Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai
RészletesebbenOsztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév
Kémia - 9. évfolyam - I. félév 1. Atom felépítése (elemi részecskék), alaptörvények (elektronszerkezet kiépülésének szabályai). 2. A periódusos rendszer felépítése, periódusok és csoportok jellemzése.
RészletesebbenFEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest,
FEHÉRJÉK A MÁGNESEKBEN Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium Alkímia Ma, Budapest, 2013.02.28. I. FEHÉRJÉK: L-α aminosavakból felépülő lineáris polimerek α H 2 N CH COOH amino
RészletesebbenRöntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november
Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció
RészletesebbenOPT TIKA. Hullámoptika. Dr. Seres István
OPT TIKA Dr. Seres István : A fény elektromágneses hullám r S S = r E r H Seres István 2 http://fft.szie.hu Elektromágneses spektrum c = λf Elnevezés Hullámhossz Frekvencia Váltóáram > 3000 km < 100 Hz
RészletesebbenÁltalános és szervetlen kémia 3. hét Kémiai kötések. Kötések kialakítása - oktett elmélet. Lewis-képlet és Lewis szerkezet
Általános és szervetlen kémia 3. hét Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek
RészletesebbenA nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.
Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak
RészletesebbenTöbb oxigéntartalmú funkciós csoportot tartalmazó vegyületek
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Hidroxikarbonsavak α-hidroxi karbonsavak -Glikolsav (kézkrémek) - Tejsav (tejtermékek, izomláz, fogszuvasodás) - Citromsav (citrusfélékben,
RészletesebbenAz atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
RészletesebbenKémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
RészletesebbenAbszorpciós fotometria
2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,
RészletesebbenRagyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól
Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól Kele Péter egyetemi adjunktus Lumineszcencia jelenségek Biolumineszcencia (biológiai folyamat, pl. luciferin-luciferáz) Kemilumineszcencia
RészletesebbenKémia az abszolút nullától több ezer fokig. Magyarfalvi Gábor Alkímia ma február 23.
Kémia az abszolút nullától több ezer fokig Magyarfalvi Gábor Alkímia ma 2012. február 23. A kémikusokat az összekapcsolódó atomok viselkedése érdekli, amit a hőmérséklet nagyban befolyásol Mit befolyásol
RészletesebbenFázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium
Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált
RészletesebbenÁltalános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
RészletesebbenI. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését!
I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! Az atom az anyagok legkisebb, kémiai módszerekkel tovább már nem bontható része. Az atomok atommagból és
RészletesebbenPrebiotikus szintézisek Könnyű Balázs
Prebiotikus szintézisek Könnyű Balázs ELTE, Biológiai Intézet, Növényrendszertani, Ökológiai és Elméleti Biológiai Tanszék Tartalom Az élet minimál modellje Szerves anyag szintézis a világűrben Szerves
Részletesebben8. AZ ATOMMAG FIZIKÁJA
8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának
RészletesebbenRadioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
RészletesebbenÁltalános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
Részletesebben