33. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló február 11. (kedd), óra Gimnázium 9. évfolyam
|
|
- Emília Veresné
- 9 évvel ezelőtt
- Látták:
Átírás
1 33. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló február 11. (kedd), óra Gimnázium 9. évfolyam Figyelem! A feladatok megoldása során adatok elektronikus továbbítására alkalmas eszközök (pl. mobiltelefon) kivételével minden segédeszköz (írásos segéd-anyagok, könyvek, füzetek, táblázatok és számológép) használható. A feladatok azonos pontértékűek. A nehézségi gyorsulás értékét, ha a feladat szövegéből más nem következik, 10 m/s 2 nagyságúnak vehetjük! 1. Egy vízszintesen, 10 km magasan haladó repülőgép éppen a fejünk felett repül. A gép hangját 30 -kal lemaradva halljuk. a) Mekkora a repülőgép sebessége? b) Mekkora lenne a sebessége, ha a fejünk fölött hallanánk, és 30 -kal előre látnánk a gépet? c) Mennyi idő telik el a két helyzet között és mennyit halad a repülő eközben? Gyorsított, vagy lassított a repülő? Tegyük fel, hogy a gép a sebességét éppen felettünk változtatta meg igen rövid idő alatt! A hang sebessége 340 m/s. Kiss Miklós, Gyöngyös 2. Egy 72 km/h sebességgel egyenletesen haladó autó egy nyugvóhoz érkezik, amely ebben a pillanatban 5 m/s 2 gyorsulással elindul. a) Mikor és hol találkoznak legközelebb? b) Mekkora volt a járművek legnagyobb távolsága a két találkozás között, és ez mikor következett be? c) A találkozás pillanatában az addig gyorsuló autó 5 m/s 2 nagyságú lassulásba kezd. Ezek után mikor találkoznak legközelebb? Koncz Károly, Pécs 3. Az ábrán egy álló Trabant sebességmérője látható. a) Mennyi idő alatt mozdul el a mutató 50 km/h értékről 60 km/h-ra, ha a jármű gyorsulása 1 m/s 2? b) Mekkora szögsebességgel mozgott a mutató eközben? c) Mekkora a mutató szögsebessége, ha az autó kikapcsolt motorral vízszintes úton halad, és pillanatnyi sebessége 50 km/h? Tételezzük fel, hogy az autót kizárólag a sebesség négyzetével arányos közegellenállási erő fékezi, melynek értéke 80 km/h sebességnél 400 N! A Trabant tömege vezetővel együtt 700 kg. Pálfalvi László, Pécs Fordíts!
2 4. Álló helyzetből induló, 2 másodpercig egyenletesen gyorsuló liftben egy diák áll, aki mérlegen méri a saját súlyát. Egy műszaki hiba miatt a lift gyorsulása hirtelen ellentétes irányúvá válik, de nagysága nem változik. Eközben a tanuló súlya az eredeti érték 80%-ára csökken és 5 másodpercen keresztül állandó marad. a) Mekkora és milyen irányú a lift eredeti gyorsulása? b) Mekkora és milyen irányú a diák elmozdulása a teljes 7 másodperc alatt? Mező Tamás, Szeged 5. Egy 80 cm magas asztal szélén egy 50 g tömegű, kisméretű test nyugszik. A testet egy 5 g tömegű lövedékkel vízszintesen átlőjük. A lövedék sebessége a testhez érkezéskor 40 m/s. Az átlőtt (változatlan tömegű) test az asztal alsó szélétől 1,4 méterre érkezik a padlóra. Hol érkezik a lövedék a padlóra? Zsigri Ferenc, Budapest
3 33. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló február 11. (kedd), óra Gimnázium 10. évfolyam Figyelem! A feladatok megoldása során adatok elektronikus továbbítására alkalmas eszközök (pl. mobiltelefon) kivételével minden segédeszköz (írásos segéd-anyagok, könyvek, füzetek, táblázatok és számológép) használható. A feladatok azonos pontértékűek. A nehézségi gyorsulás értékét, ha a feladat szövegéből más nem következik, 10 m/s 2 nagyságúnak vehetjük! 1. Egy bizonyos magasságból vízszintesen elhajított kisméretű test úgy csapódik a talajba, hogy sebességvektora 60 -os szöget zár be a vízszintes iránnyal. A közegellenállás elhanyagolható. a) Hányszor nagyobb a test sebessége a kezdősebességnél a becsapódás pillanatában? b) Határozzuk meg a becsapódás pillanatában a vízszintes és a függőleges irányú elmozdulások arányát! Kotek László, Pécs 2. Cirkuszi egykerekű biciklis mutatványos 30 -os emelkedésű pallón szeretne minél magasabbra jutni. A palló aljától 8 m-re lévő helyről, álló helyzetből indulva a vízszintes szakaszon nekilendül, miközben állandó nagyságú erőt fejt ki. A mutatványos a biciklivel együtt 75 kg tömegű. A vízszintes szakasz törésmentesen csatlakozik a palló aljához. A gördülési ellenállástól, a közegellenállástól és más hasonló veszteségektől tekintsünk el! a) Mekkora a bicikli kerekére ható tapadási súrlódási erő, ha a vízszintes szakaszt 4 másodperc alatt teszi meg? b) Milyen magasra jut, ha a biciklis folyamatos erőfeszítésének következtében állandó tapadási súrlódási erő alakul ki a kerék és a talaj között? c) Mennyi munkát végzett összesen a mutatványos? Szkladányi András, Baja 3. Egy 2 kg tömegű testhez erősítek két egyenlő hosszúságú és azonos minőségű fonalat. A fonalak szabad végeit azonos magasságban tartom, majd vízszintes irányban, nagyon lassan, egyenletesen távolítom őket egymástól. A fonalak közül az egyik akkor szakad el, amikor 30 -os szöget zár be a vízszintessel. (A véletlen dönti el, hogy melyik fonál szakad el.) a) Legfeljebb mekkora a fonálban ébredő erő? b) A fonalak szabad végeit egybe fogva, legfeljebb mekkora gyorsulással mozgathatom a testet felfelé? c) A fonalak szabad végének széthúzásával szabályozni tudom a test gyorsulását. Mekkora gyorsulással mozog felfelé a test, ha a szakadás akkor következik be, amikor a fonalak 40 -os szöget zárnak be a vízszintessel. Simon Péter, Pécs Fordíts!
4 4. Az 50 cm hosszú, vékony belső keresztmetszetű Melde-csövünket középen derékszögben meghajlítottuk. Ha a csövet függőleges síkban az ábra szerinti A helyzetben tartjuk, akkor a bezárt légoszlop együttes hossza 30 cm. A levegőt elzáró higanydugó hossza 5 cm. A légnyomás 76 cm magas higanyoszlop nyomásával egyenlő. a) Mekkora lesz a bezárt légoszlop hossza a B, C és D jelű helyzetekben, melyeket egymásból derékszögű elforgatásokkal kaptunk? A csövek függőleges síkban maradnak a kísérlet befejezéséig. b) Ezután az asztalra fektetjük a berendezést. Mekkora a bezárt légoszlop hossza ebben a helyzetben? Csányi Sándor, Szeged 5. Egy lombik 800 ml-es öblös alsó részéhez egy henger alakúnak tekinthető nyakrész csatlakozik, melynek hossza 10 cm, átmérője 4 cm. Ebbe egy rosszul sikerült kísérlet eredményeképpen egy elhanyagolható tömegű gumidugó szorult. A dugó 5 cm magas hengerként torlaszolja el a nyílást úgy, hogy legalsó, üvegnyakkal érintkező része 9 cm-re van a lombik nyílásától és 200 N erővel feszül az edény falának. A súrlódási együttható értéke 0,4. a) Mekkora hőmérsékletre kell a bezárt 20 C-os, a külsővel megegyező 100 kpa nyomású levegőt felmelegítenünk, ha ki szeretnénk venni a dugót? Tudjuk, hogy elegendő, ha a dugó felső pereme eléri a lombik nyakának tetejét. b) Ábrázoljuk a folyamatot p V diagramon, feltüntetve az állapotjelzők konkrét értékeit a folyamat nevezetes állapotaiban! Kirsch Éva, Debrecen
5 33. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló február 11. (kedd), óra Szakközépiskola 9. évfolyam Figyelem! A feladatok megoldása során adatok elektronikus továbbítására alkalmas eszközök (pl. mobiltelefon) kivételével minden segédeszköz (írásos segéd-anyagok, könyvek, füzetek, táblázatok és számológép) használható. A feladatok azonos pontértékűek. A nehézségi gyorsulás értékét, ha a feladat szövegéből más nem következik, 10 m/s 2 nagyságúnak vehetjük! 1. Eriknek reggelente egyenes úton 1200 métert kell gyalogolni az iskoláig. Egyik nap becsengetés előtt 15 perccel vette észre, hogy a tolltartója otthon maradt. Akkora sebességgel indult hazafelé, hogy végig egyenletesen haladva a becsöngetés előtt 5 perccel érjen vissza. Az iskolából való indulása után 2 perccel édesanyja is észrevette a tolltartót és 2 m/s sebességgel elindult az iskola felé. Miután találkoztak és Erik átvette a tolltartót, még egy percig beszélgettek, majd mindketten visszafordultak. Az édesanya sebességének nagysága a mozgása során mindvégig állandó volt. a) Mekkora volt Erik útja az iskolától a találkozási pontig? b) Mekkora volt Erik sebessége az iskola felé, ha csöngetés előtt 2 perccel ért vissza? c) Ábrázoljuk az édesanya és Erik mozgását közös hely-idő diagramon! Legyen Erik otthona az origóban, az iskola pedig pozitív irányban! Láng Róbert, Balatonfüred 2. Egy 160 cm hosszú fonál mindkét végére egy-egy pici vasgolyót rögzítünk. Hová helyezzünk még három vasgolyót, ha Galilei-féle ejtőzsinórt akarunk készíteni? Az ejtőzsinórt függőlegesen tartjuk úgy, hogy az alsó golyó éppen a talajon nyugszik. Ekkor elengedjük, és a golyók talajra érkezését jelző koppanások azonos időközönként követik egymást. Simon Péter, Pécs 3. Vízszintes síkú asztallap egyik pontjából kiálló szegre, mint tengelyre 0,2 m hosszú fonalat rögzítünk, a fonál másik végére egy pontszerű testet erősítünk. Ezt a testet a fonál vízszintesen kifeszített helyzetében, a fonálra merőlegesen, az asztal síkjában 5 m/s kezdősebességgel meglökjük. Három teljes fordulat után a fonalat feszítő erő az indításnál észlelt erőnek a negyede. A test tömege 10 dkg. a) Mekkora a test sebessége ebben a pillanatban? b) Mekkora a test érintő irányú lassulása? c) Még hány kört tesz meg a test a teljes megállásig? Dudics Pál, Debrecen Fordíts!
6 4. Álló helyzetből induló, 2 másodpercig egyenletesen gyorsuló liftben egy diák áll, aki mérlegen méri a saját súlyát. Egy műszaki hiba miatt a lift gyorsulása hirtelen ellentétes irányúvá válik, de nagysága nem változik. Eközben a tanuló súlya az eredeti érték 80%-ára csökken és 5 másodpercen keresztül állandó marad. a) Mekkora és milyen irányú a lift eredeti gyorsulása? b) Mekkora és milyen irányú a diák elmozdulása a teljes 7 másodperc alatt? Mező Tamás, Szeged 5. Vékony falú, kör alakú műanyag tányér közegellenállási alaktényezőjét szeretnénk meghatározni. A tányér felülete elegendően nagy ahhoz, hogy szabadon ejtve rövid idő után egyenletes mozgással érjen talajt. A tányérokat egymásba illesztve, számukat mindig eggyel növelve, sorra megmérjük az esés időtartamát. Mérési eredményeink az alábbi táblázatban találhatók. Tányérok száma Esés időtartama (s) 4,5 3,2 2,7 2,3 2,1 1,9 a) A táblázat alapján számítsuk ki a tányérok közel állandó sebességét az egyes esetekben! b) Ábrázoljuk grafikusan a tányérok tömegét a sebesség négyzetének függvényében! c) A grafikon alapján határozzuk meg a műanyag tányér alaktényezőjét! Egy tányér tömege 7,2 g, átmérője 20,5 cm, a levegő sűrűsége 1,29 kg/m 3, a tányérokat 8,2 m magasról ejtettük, ezen a távon mozgásuk egyenletesnek tekinthető. Ebben a feladatban g = 9,81 m/s 2 -tel számoljunk! Ábrám László, Budapest
7 33. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló február 11. (kedd), óra Szakközépiskola 10. évfolyam Figyelem! A feladatok megoldása során adatok elektronikus továbbítására alkalmas eszközök (pl. mobiltelefon) kivételével minden segédeszköz (írásos segéd-anyagok, könyvek, füzetek, táblázatok és számológép) használható. A feladatok azonos pontértékűek. A nehézségi gyorsulás értékét, ha a feladat szövegéből más nem következik, 10 m/s 2 nagyságúnak vehetjük! 1. Az autópályán haladó gépkocsi sebessége v0. Egy adott pillanatban a sebességét egyenletesen változtatni kezdi, és az egymás után következő azonos, s = 84 m hosszúságú utakat t1 = 3 s, illetve t2 = 4 s idő alatt teszi meg. Határozzuk meg a gépkocsi v0 sebességét, és állandó a gyorsulását! Kotek László, Pécs 2. Vízszintes síkú asztallap egyik pontjából kiálló szegre, mint tengelyre 0,2 m hosszú fonalat rögzítünk, a fonál másik végére egy pontszerű testet erősítünk. Ezt a testet a fonál vízszintesen kifeszített helyzetében, a fonálra merőlegesen, az asztal síkjában 5 m/s kezdősebességgel meglökjük. Három teljes fordulat után a fonalat feszítő erő az indításnál észlelt erőnek a negyede. A test tömege 10 dkg. a) Még hány fordulatot tesz meg a test a teljes megállásig? b) Mekkora az asztallap és a test közötti csúszási súrlódási tényező? Dudics Pál, Debrecen 3. A Kisherceg gömb alakú bolygójának tömege kg, sugara 500 km. Mekkora a 30 kg tömegű Kisherceg súlya a bolygó pólusán és egyenlítőjén, ha a bolygó 2 óra periódusidővel forog saját tengelye körül? Csányi Sándor, Szeged 4. Két, feszítetlen állapotban 1 méter hosszú gumiszál egy-egy végét egy pontban rögzítem. A gumiszálak másik végére egy 1 kg tömegű testet erősítünk. Így mindkét gumi megnyúlása 0,2 méter. A gumiszálak felső végét egy vízszintes egyenes mentén nagyon lassan addig távolítom egymástól, amíg a szálak 60 -os szöget zárnak be egymással. Mennyi munkát végzünk eközben? Simon Péter, Pécs Fordíts!
8 5. Vízszintes helyzetű, egyik végén nyitott, másik végén zárt, 75 cm hosszú vékony cső (Melde-cső) zárt végétől 58 cm-re 8 cm hosszú higanyoszlop helyezkedik el. A hőmérséklet 27 C, a légnyomás 76 cm magas higanyoszlop nyomásának felel meg. a) Legfeljebb mekkora hőmérsékletre melegíthetjük fel a bezárt levegőt, hogy miközben a csövet nyitott végével felfelé függőleges helyzetbe állítjuk a higany ne csorduljon ki? b) Mekkora hőmérsékletre kell innen visszahűteni, hogy a higany akkor is benne maradjon a csőben, ha azt nyitott végével lefelé hozzuk függőleges helyzetbe? A higany és az üvegcső hőtágulásától, valamint a higanygőz nyomásától tekintsünk el! Dudics Pál, Debrecen
37. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló február óra. A verseny hivatalos támogatói
37. Mikola Sándor Országos Tehetségkutató Fizikaverseny 2017. február 13. 14-17 óra A verseny hivatalos támogatói 37. Mikola Sándor Országos Tehetségkutató Fizikaverseny 2018. február 13. 14-17 óra I.
33. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása. Gimnázium 9. évfolyam
33. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása A feladatok helyes megoldása maximálisan 10 pontot ér. A javító tanár belátása szerint a 10 pont az itt megadottól
38. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló március óra A verseny hivatalos támogatói
38. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2019. március 19. 14-17 óra A verseny hivatalos támogatói Oktatási Hivatal, Pedagógiai Oktatási Központok I. kategória, Gimnázium 9.
Hatvani István fizikaverseny Döntő. 1. kategória
1. kategória 1.D.1. A villamosiparban a repülő drónok nagyon hasznosak, például üzemzavar esetén gyorsan és hatékonyan tudják felderíteni, hogy hol van probléma. Egy ilyen hibakereső drón felszállás után,
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
Gyakorló feladatok Egyenletes mozgások
Gyakorló feladatok Egyenletes mozgások 1. Egy hajó 18 km-t halad északra 36 km/h állandó sebességgel, majd 24 km-t nyugatra 54 km/h állandó sebességgel. Mekkora az elmozdulás, a megtett út, és az egész
34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra. A verseny hivatalos támogatói
34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra A verseny hivatalos támogatói Gimnázium 9. évfolyam 1.) Egy test vízszintes talajon csúszik. A test és a
37. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló március óra A verseny hivatalos támogatói
37. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2018. március 20. 14-17 óra A verseny hivatalos támogatói Oktatási Hivatal, Pedagógiai Oktatási Központok I. kategória, Gimnázium 9.
DÖNTŐ 2013. április 20. 7. évfolyam
Bor Pál Fizikaverseny 2012/2013-as tanév DÖNTŐ 2013. április 20. 7. évfolyam Versenyző neve:.. Figyelj arra, hogy ezen kívül még két helyen (a belső lapokon erre kijelölt téglalapokban) fel kell írnod
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:
1. A mellékelt táblázat a Naphoz legközelebbi 4 bolygó keringési időit és pályagörbéik félnagytengelyeinek hosszát (a) mutatja. (A félnagytengelyek Nap- Föld távolságegységben vannak megadva.) a) Ábrázolja
DÖNTİ április évfolyam
Bor Pál Fizikaverseny 20010/2011-es tanév DÖNTİ 2011. április 9. 7. évfolyam Versenyzı neve:.. Figyelj arra, hogy ezen kívül még két helyen (a bels ı lapokon erre kijelölt téglalapokban) fel kell írnod
36. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló március óra A verseny hivatalos támogatói
36. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2017. március 21. 14-17 óra A verseny hivatalos támogatói Oktatási Hivatal, Pedagógiai Oktatási Központok I. kategória, Gimnázium 9.
A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória
Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó
34. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló 2015. február 10. 14-17 óra. A verseny hivatalos támogatói
34. Mikola Sándor Országos Tehetségkutató Fizikaverseny A verseny hivatalos támogatói 34. Mikola Sándor Országos Tehetségkutató Fizikaverseny Gimnázium 9. évfolyam Figyelem! A feladatok megoldása során
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Fizika feladatok - 2. gyakorlat
Fizika feladatok - 2. gyakorlat 2014. szeptember 18. 0.1. Feladat: Órai kidolgozásra: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel s 1 utat, második szakaszában
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa
1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)
Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre
Munka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku 3. feladat megoldásához 5-ös formátumú milliméterpapír alkalmas. Megjegyzés a feladatok
Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ 2014. április 26. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár
Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
32. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló 2013. február 12. (kedd), 14-17 óra Gimnázium 9. évfolyam
2013. február 12. Gimnázium 9. évfolyam Gimnázium 9. évfolyam 1. Encsi nyáron minden nap 8:40-kor indul otthonról a 2 km távol lévı strandra, ahol pontosan 3 órát tölt el, és fél 1-kor már haza is ér.
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora
2.3 Newton törvények, mozgás lejtőn, pontrendszerek
Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat
Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013
Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)
Szakács Jenő Megyei Fizikaverseny
Szakács Jenő Megyei Fizikaverseny 014/015. tanév I. forduló 014. december 1. Minden versenyzőnek a számára (az alábbi táblázatban) kijelölt négy feladatot kell megoldania. A szakközépiskolásoknak az A
5. Körmozgás. Alapfeladatok
5. Körmozgás Alapfeladatok Kinematika, elemi dinamika 1. Egy 810 km/h sebességu repülogép 10 km sugarú körön halad. a) Mennyi a repülogép gyorsulása? b) Mennyi ido alatt tesz meg egy félkört? 2. Egy centrifugában
31. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló 2012. február 14. (kedd), 14-17 óra Gimnázium 9. évfolyam
Gimnázium 9. évfolyam 1. Szabadon elejtett test mozgásának kezdetén egy bizonyos hosszúságú utat t 1 = 2 s idő alatt tesz meg. A mozgásának végén, a talajba ütközés előtt, az ugyanilyen hosszúságú utat
Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ 2017. április 22. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár neve:...
Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás
Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés
Szakács Jenő Megyei Fizikaverseny
Szakács Jenő Megyei Fizikaverseny 2017/2018. tanév I. forduló 2017. december 4. Minden versenyzőnek a számára (az alábbi táblázatban) kijelölt négy feladatot kell megoldania. A szakgimnázium/szakközépiskolásoknak
Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3
U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :...
Jedlik Ányos Fizikaverseny regionális forduló Öveges korcsoport 08. A feladatok megoldása során végig századpontossággal kerekített értékekkel számolj! Jó munkát! :). A kapcsolási rajz adatai felhasználásával
36. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló február óra. A verseny hivatalos támogatói
36. Mikola Sándor Országos Tehetségkutató Fizikaverseny A verseny hivatalos támogatói I. kategória: gimnázium 9. évfolyam táblázatok és számológép) használható. A feladatok azonos pontértékűek. A nehézségi
A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata.
A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata. Eszközszükséglet: Mechanika I. készletből: kiskocsi, erőmérő, súlyok A/4-es írólap, smirgli papír gyurma
38. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló február óra. A verseny hivatalos támogatói
38. Mikola Sándor Országos Tehetségkutató Fizikaverseny A verseny hivatalos támogatói 0 20 38. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. kategória: gimnázium 9. évfolyam Figyelem! A feladatok
Öveges korcsoport Jedlik Ányos Fizikaverseny 2. (regionális) forduló 8. o március 01.
Öveges korcsoport Jedlik Ányos Fizikaverseny. (regionális) forduló 8. o. 07. március 0.. Egy expander 50 cm-rel való megnyújtására 30 J munkát kell fordítani. Mekkora munkával nyújtható meg ez az expander
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
FIZIKA ZÁRÓVIZSGA 2015
FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni
Newton törvények, erők
Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső
A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p
Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,
Mechanika - Versenyfeladatok
Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
XVIII. TORNYAI SÁNDOR ORSZÁGOS FIZIKAI FELADATMEGOLDÓ VERSENY
Hódmezővásárhely, 014. március 8-30. évfolyamon 5 feladatot kell megoldani. Egy-egy feladat hibátlan megoldása 0 pontot ér, a tesztfeladat esetén a 9. évfolyam 9/1. feladat. Egy kerékpáros m/s gyorsulással
Bevezető fizika (VBK) zh1 tesztkérdések Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2
Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2 Mi a csúszási súrlódási együttható mértékegysége? NY) kg TY) N GY) N/kg LY) Egyik sem. Mi a csúszási súrlódási együttható mértékegysége?
TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály
TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, 2002 március 13 9-12 óra 11 osztály 1 Egyatomos ideális gáz az ábrán látható folyamatot végzi A folyamat elsõ szakasza izobár folyamat, a második szakasz
Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika Megoldandó feladatok: I.
Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika 1.5. Mennyi ideig esik le egy tárgy 10 cm magasról, és mekkora lesz a végsebessége?
Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint
TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.
Mérés: Millikan olajcsepp-kísérlete
Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat
28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály
1. feladat a) A négyzet alakú vetítővászon egy oldalának hossza 1,2 m. Ahhoz, hogy a legnagyobb nagyításban is ráférjen a diafilm-kocka képe a vászonra, és teljes egészében látható legyen, ahhoz a 36 milliméteres
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
A nyomás. IV. fejezet Összefoglalás
A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.
EGYSZERŰ GÉPEK Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. Az egyszerű gépekkel munkát nem takaríthatunk meg, de ugyanazt a munkát kisebb
Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
A statika és dinamika alapjai 11,0
FA Házi feladatok (A. gakorlat) Adottak az alábbi vektorok: a=[ 2,0 6,0,2] [ 5,2,b= 8,5 3,9] [ 4,2,c= 0,9 4,8] [,0 ],d= 3,0 5,2 Számítsa ki az alábbi vektorokat! e=a+b+d, f =b+c d Számítsa ki az e f vektort
Szakmai fizika Gázos feladatok
Szakmai fizika Gázos feladatok 1. *Gázpalack kivezető csövére gumicsövet erősítünk, és a gumicső szabad végét víz alá nyomjuk. Mennyi a palackban a nyomás, ha a buborékolás 0,5 m mélyen szűnik meg és a
Hely, idő, haladó mozgások (sebesség, gyorsulás)
Hely, idő, haladó mozgások (sebesség, gyorsulás) Térben és időben élünk. A tér és idő végtelen, nincs kezdete és vége. Minden tárgy, esemény, vagy jelenség helyét és idejét a térben és időben valamihez
Fizika példák a döntőben
Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
Felvételi, 2017 július -Alapképzés, fizika vizsga-
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott
Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő:
Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót erőmérőnek
Bor Pál Fizikaverseny 2017/18. tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor Pál Fizikaverseny 2017/18. tanév DÖNTŐ 2018. április 14. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár neve:...
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. február 27. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. február 27. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
BEMUTATÓ FELADATOK (2) ÁLTALÁNOS GÉPTAN tárgyból
BEMUTATÓ FELADATOK () 1/() Egy mozdony vízszintes 600 m-es pályaszakaszon 150 kn állandó húzóer t fejt ki. A vonat sebessége 36 km/h-ról 54 km/h-ra növekszik. A vonat tömege 1000 Mg. a.) Mekkora a mozgási
Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 8. osztály
Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 8. osztály 1. Igaz-hamis Döntsd el az állításokról, hogy igazak, vagy hamisak! Válaszodat az állítás melletti cellába írhatod! (10 pont) Két különböző
Newton törvények, lendület, sűrűség
Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja
Mozgástan feladatgyűjtemény. 9. osztály POKG 2015.
Mozgástan feladatgyűjtemény 9. osztály POKG 2015. Dinamika bevezető feladatok 61. Egy 4 kg tömegű test 0,7 m/s 2 gyorsulással halad. Mekkora eredő erő gyorsítja? 61.H a.) Egy 7 dkg tömegű krumpli gyorsulása
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából FIZIKA I.
Oktatási Hivatal A 014/015. tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából FIZIKA I. KATEGÓRIA Javítási-értékelési útmutató 1.) Egy szabályos háromszög
Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 7. osztály
Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 7. osztály 1. Döntsd el az alábbi állításokról, hogy igazak, vagy hamisak! Válaszodat az állítás melletti cellába írhatod! Az A és B kérdéssor közül
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18
Beküldési határidő: 2015. március 27. Hatvani István Fizikaverseny 2014-15. 3. forduló
1. kategória (Azok részére, akik ebben a tanévben kezdték a fizikát tanulni) 1.3.1. Ki Ő? Kik követték pozíciójában? 1. Nemzetközi részecskefizikai kutatóintézet. Háromdimenziós képalkotásra alkalmas berendezés
Hatvani István fizikaverseny forduló megoldások. 1. kategória
. kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
Mérések állítható hajlásszögű lejtőn
A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra
Komplex természettudomány 3.
Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop
Név:...EHA kód:... 2007. tavasz
VIZSGA_FIZIKA II (VHNB062/210/V/4) A MŰSZAKI INFORMATIKA SZAK Név:...EHA kód:... 2007. tavasz 1. Egy 20 g tömegű testet 8 m/s sebességgel függőlegesen felfelé dobunk. Határozza meg, milyen magasra repül,
Bor Pál Fizikaverseny, középdöntő 2012/2013. tanév, 8. osztály
Bor Pál Fizikaverseny, középdöntő 2012/201. tanév, 8. osztály I. Igaz vagy hamis? (8 pont) Döntsd el a következő állítások mindegyikéről, hogy mindig igaz (I) vagy hamis (H)! Írd a sor utolsó cellájába
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap
ÖVEGES korcsoport Azonosító kód: Jedlik Ányos Fizikaverseny. (országos) forduló 8. o. 0. A feladatlap. feladat Egy 0, kg tömegű kiskocsi két végét egy-egy azonos osszúságú és erősségű, nyújtatlan rugóoz
Mozgással kapcsolatos feladatok
Mozgással kapcsolatos feladatok Olyan feladatok, amelyekben az út, id és a sebesség szerepel. Az egyenes vonalú egyenletes mozgás esetén jelölje s= a megtett utat, v= a sebességet, t= az id t. Ekkor érvényesek
1. ábra. Egy tárgy (végtelen rúd) a tükörhöz támaszkodik
XVI. FELADATLAP-2012 XVI/ 1. Az 1. ábrán egy 10 cm fókusztávolságú homorú gömbtükröt látunk, megrajzoltuk az optikai tengelyt, a fókuszpontot egy csúcsán álló rombusz jelöli. Az optikai értelemben tárgy
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
Szakács Jenő Megyei Fizika Verseny, I. forduló november 14.
Minden versenyzőnek a számára kijelölt négy feladatot kell megoldania. A szakközépiskolásoknak az A vagy a B feladatsort kell megoldani a következők szerint: A: 9-10. osztályosok és azok a 11-12. osztályosok,
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok
TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor
légnyomás függ... 1. 1:40 Normál egyiktől sem a tengerszint feletti magasságtól a levegő páratartalmától öntsd el melyik igaz vagy hamis. 2. 3:34 Normál E minden sorban pontosan egy helyes válasz van Hamis
TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor
Melyik állítás az igaz? (1 helyes válasz) 1. 2:09 Normál Zárt térben a gázok nyomása annál nagyobb, minél kevesebb részecske ütközik másodpercenként az edény falához. Zárt térben a gázok nyomása annál
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK
Oktatási Hivatal A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA I. KATEGÓRIA FELADATOK Bimetal motor tulajdonságainak vizsgálata A mérőberendezés leírása: A vizsgálandó
Szakács Jenő Megyei Fizikaverseny
Szakács Jenő Megyei Fizikaverseny 2013/2014. tanév II. forduló 2014. február 3. Minden versenyzőnek a számára (az alábbi táblázatban) kijelölt négy feladatot kell megoldania. A szakközépiskolásoknak az
37. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása I. kategória: gimnázium 9. évfolyam
37. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása I. kategória: gimnázium 9. évfolyam A feladatok helyes megoldása maximálisan 0 ot ér. A javító tanár belátása szerint