MECHANIKAI REZGÉSEK ÉS HULLÁMOK

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MECHANIKAI REZGÉSEK ÉS HULLÁMOK"

Átírás

1 - - FIZIKA - SEGÉDANYAG -. osztály I. MECHANIKAI REZGÉSEK ÉS HULLÁMOK Rezgés Minden olyan változást, amely időben valamilyen ismétlődést mutat rezgésnek nevezünk. Mechanikai rezgés (rezgőmozgás) Akkor jön létre, ha egy test pályája olyan egyenes vagy zárt görbe, amelyen a test többször is végighalad. Pl.: inga lengése, dugattyú mozgása, rugóra erősített test mozgása, húr rezgése. A (harmonikus) rezgőmozgás jellemzői kitérés (y) - az egyensúlyi helyzettől mért pillanatnyi (előjeles) távolság, amplitudó (A) - a legnagyobb kitérés nagysága ( ymax = A), rezgésidő (T) - egy teljes rezgés megtételének időtartama (ez alatt a test 4 amplitudónyi utat tesz meg, s = 4 A), frekvencia (f) - a másodpercenként kialakuló teljes rezgések száma, Egy test akkor végez harmonikus rezgőmozgást, ha a kitérés az idő függvényében színuszosan változik. sebesség (v) - A rezgő test (pillanatnyi) sebessége nem egyenletesen változik. gyorsulás (a) - A rezgő test gyorsulása nem állandó, a sebességhez hasonlóan (nem lineárisan) változik. Összefüggések: T = ; = f f T yt = A sin ( t) ymax = A vt = A cos ( t) vmax = A at = A sin ( t) amax = A vt = 0 at = amax yt = A vt = vmax at = 0 yt = 0 vt = 0 at = amax A D rugóállandójú rugóra akasztott m tömegű test rezgésideje és frekvenciája: T = m D f = D m A rezgésidő és a frekvencia sem függ a rezgés amplitudójától (ezt mi adjuk meg azzal, hogy kezdetben mennyire nyújtjuk meg a rugót), csak a rendszer belső (tőlünk független) sajátosságaitól (a test tömegétől és a rugó erősségétől). A fonálinga Egy teljes lengés egy rezgésnek feleltethető meg (bal oldali ábra). Az inga lengésideje (a rezgéshez hasonlóan) nem függ a lengés amplitudójától, sőt még a lengő test tömegétől sem. Csak az inga hossza számít (jobb oldali ábra), és az, hogy milyen erős gravitációs mezőben leng a test, amit a nehézségi gyorsulással adunk meg (g). T = l g yt = A f = π π g l Mivel a fonálinga lengésideje nem függ az amplitudótól, időmérésre használható.

2 - - FIZIKA - SEGÉDANYAG -. osztály Mechanikai hullámok Minden olyan változást, amely valamilyen közegben tovaterjed, hullámnak nevezünk. A mechanikai (haladó) hullám esetében a közeg rugalmas, és a hullám a közeget alkotó részecskék rezgésállapotának továbbterjedésével jön létre. A hullámok csoportosítása. A terjedés/rezgés iránya szerint - Transzverzális a hullám, ha a terjedés és a részecskék rezgésének iránya merőleges egymásra (felső kép). - Longitudinális a hullám, ha a terjedés és a részecskék rezgésének iránya párhuzamos (alsó kép). Transzverzális hullám a kötélhullám, longitudinális hullámként terjed a hang.. A kiterjedés szerint - Egydimenziós vagy vonal menti hullám. Pl.: gumikötélen terjedő hullám. - Kétdimenziós vagy felületi hullám. Pl.: vízfelületen kialakuló hullám. - Háromdimenziós vagy térbeli hullám. Pl.: hanghullám. A hullámot jellemző mennyiségek - Az amplitúdó (jele: A), a legnagyobb kitérés nagysága. - A hullámhossz (jele: λ, lambda görög betű) megmutatja, hogy ugyanabban az időpillanatban a közeg két legközelebbi, azonos fázisban levő pontja, milyen távol van egymástól. Azonos fázisban az a két pontja van a hullámnak, amelynek mind a kitérése, mind a sebessége irány és nagyság szerint is megegyezik. A hullámhossz a hullám térbeli ismétlődésének jellemzője. - A periódusidő (jele: T) az az időtartam, amely alatt a közegben terjedő változás egy hullámhossznyi utat tesz meg. A periódusidő a hullám időbeli ismétlődését jellemző mennyiség. Miközben a hullám egy hullámhossznyi utat tesz meg, a közegnek az a pontja, amelytől a hullámhosszat mérjük, egy teljes rezgést végez. Ez azt jelenti, hogy a hullám periódusideje egyenlő, a változatlan hely körül rezgő részecskéinek rezgésidejével. - A rezgésszám (frekvencia: jele f, mértékegysége Hz = /s). A hullám rezgésszáma megegyezik a hullámforrás rezgésszámával, ezért a rezgéseknél megismert szabály alkalmazható. - A hullám terjedési sebessége (jele: v vagy c). Minél távolabb van egy részecske a hullámkeltés helyétől, annál később jön rezgésbe, fázisban annál nagyobb az elmaradása. A hullám terjedéséhez idő kell, vagyis a hullámnak van terjedési sebessége. A terjedési sebesség állandó, a változás a hullámhossznyi utat egy periódusidő alatt teszi meg: Δs = λ, Δt = T. A terjedési sebesség függ a közeg jellemzőitől, közegenként eltérő lehet. s v t λ T λ f Mivel a rezgésszám független a közegtől a terjedési sebesség viszont függ tőle, ezért ha a hullám egy közegből egy más tulajdonságú közegbe lép (pl.: levegőből vízbe), a hullámhossza ( ) megváltozik. f T T f

3 Hullámok viselkedése új közeg határán Vonal menti hullámok visszaverődése Rögzített végről ellentétes fázisban, szabad végről azonos fázisban verődik vissza a hullám FIZIKA - SEGÉDANYAG -. osztály Felületi hullámok visszaverődése - a beeső hullám, a beesési merőleges és a visszavert hullám egy síkban van, - a visszaverődési szög egyenlő a beesési szöggel ( = ). Hullámok törése Két közeget hullámtani szempontból akkor tekintünk különbözőnek, ha bennük ugyanannak a hullámnak különböző a terjedési sebessége. Az egyik közegből másikba átlépés során, megváltozik a hullám terjedésének sebessége, iránya és a hullámhossza is. - a beeső hullám, a beesési merőleges és a megtört hullám egy síkban van, - a törési szög egyenlő a beesési szöggel ( = ). Érvényes még: - ha c > c akkor >, > (ill. c < c akkor <, < ), sin c - = n = állandó (ezt az állandót a. közeg. közegre vonatkozó törésmutatójának nevezzük). sin c Megjegyzés: A határfelületre merőlegesen érkező hullám irányváltoztatás nélkül lép be a másik közegbe, = = 0º. Ha egy hullám a hullámtanilag sűrűbb közegből lép a hullámtanilag ritkább közegbe, akkor a törési szög nagyobb lesz, mint a beesési szög ( < ). A beesési szög növelésével eljutunk egy olyan (beesési) határszöghöz, amikor a hullám nem lép át a másik közegbe, hanem teljes visszaverődést szenved el ( h = 90º, a törési szög 90º lesz). A határszög ( h) mérésével a törésmutató könnyen meghatározható. Hullámok találkozása - interferencia Egyező irányú vonal menti hullámok Egyirányú, azonos fázisban találkozó hullámok erősítik (A=A+A), ellentétes fázisban találkozók gyengítik (A= A - A ), (kioltják) egymást. Itt a maximális erősítés és teljes kioltás látható. Ellentétes irányú vonal menti hullámok Ha egymással szembe haladó, egyenlő rezgésszámú és amplitudójú hullámok találkoznak, akkor nem haladó hullám, hanem állóhullám alakul ki. A csomópontok rögzítettek, a közöttük levő rész hullámzik.

4 - 4 - FIZIKA - SEGÉDANYAG -. osztály Felületi hullámok interferenciája Felületi hullámok találkozása esetén nagyon sokféle végeredmény kialakulhat, de az alapvető szabály itt is érvényes, hogy az azonos fázisban érkező hullámok - pl. mindkét hullám duzzadó - erősítik egymást (összeadódnak), az ellentétes fázisban érkezők gyengítik (vagy akár ki is oltják) egymást. Tartósan szabályos hullámkép (állóhullám) is kialakulhat, melynek szigorú feltételei vannak. Ezek közül legfontosabb az az arány, amely a hullámtér pontjainak a hullámforrásoktól való távolsága (útkülönbség) és a hullámhossz között áll fenn. Hullámok elhajlása Keskeny résen áthaladó hullám attól függően hatol be az árnyéktérbe, hogy a rés mérete és a hullámhossz milyen viszonyban van egymással. Minél kisebb a rés, annál nagyobb mértékű az elhajlás. III. ELEKTROMÁGNESES HULLÁMOK, OPTIKA A nyugalmi indukció során a változó mágneses mező (örvényes) elektromos mezőt hoz létre, de létezik a természetben ennek a folyamatnak a fordítottja is, amikor változó elektromos mező (örvényes) mágneses mezőt hoz létre. Így a folyamat a térben egy önfenntartó, elektromágneses mezőként (sugárzás, hullám) jelenik meg. Ez a hullám a transzverzális hullámok tulajdonságaival rendelkezik, vákuumbeli terjedési sebessége megegyezik a fény sebességével (c = km/s). A fény is elektromágneses hullám. Az elektromágneses színkép A látható fény a teljes színkép keskeny szeletét alkotja. SZÍN HULLÁMHOSSZ FREKVENCIA ibolya ~ nm ~ THz kék ~ nm ~ THz zöld ~ nm ~ THz sárga ~ nm ~ THz narancs ~ nm ~ THz vörös ~ nm ~ THz ( ) nm = 0-9 m, (f) THz = 0 Hz = 0 /s

5 - 5 - FIZIKA - SEGÉDANYAG -. osztály Optikai eszközök képalkotása Mivel a fény transzverzális hullám és ugyanazok a törvények érvényesek rá, mint a mechanikai hullámokra (visszaverődés, törés, interferencia, elhajlás), a tárgyakról megfelelő eszközökkel optikai képet lehet létrehozni. A tükrök a visszaverődés, a lencsék a törés jelensége alapján működnek. Nevezetes sugármenetek domború tükör (látszólagos fókusz) homorú (szóró) lencse (látszólagos fókusz) homorú tükör (valódi fókusz) domború (gyűjtő) lencse (valódi fókusz) G = geometriai (gömbi) középpont, F = fókuszpont, O = optikai középpont, Optikai eszközök képalkotása Jelölések: T = tárgy (mérete), K = kép (mérete), t = tárgytávolság, k = képtávolság, f = fókusztávolság Megjegyzés: domború tükör és szórólencse esetén f < 0 (negatív), így látszólagos képnél k < 0 (negatív). domború tükör (látszólagos fókusz) A tárgyat akárhova helyezzük, mindig: - egyező állású, - kicsinyített, - látszólagos kép keletkezik. Alkalmazás: útkereszteződésekben. homorú tükör (valódi fókusz) homorú (szóró) lencse (látszólagos fókusz) A tárgyat akárhova helyezzük, mindig: - egyező állású, - kicsinyített, - látszólagos kép keletkezik. Alkalmazás: rövidlátás korrigálására. domború (gyűjtő) lencse (valódi fókusz) Homorú tökörben a tárgytávolságtól függően sokféle kép kialakulhat, ezek közül a legfontosabb a gyakorlat szempontjából az, amikor a tárgyat a fókusznál közelebb helyezzük a tükörhöz (t < f). Ilyenkor: - egyező állású, - nagyított, - látszólagos kép keletkezik. Alkalmazás: borotválkozó tükörként. Képalkotási szabályok Távolságtörvény: f t Domború (gyűjtő) lencse esetén a tárgytávolságtól függően sokféle kép kialakulhat, ezek közül a legfontosabb a gyakorlat szempontjából az, amikor a tárgyat a fókusznál közelebb helyezzük a tükörhöz (t < f). Ilyenkor: - egyező állású, - nagyított, - látszólagos kép keletkezik. Alkalmazás: egyszerű nagyító. K k N T t Nagyítás: k

6 - 6 - FIZIKA - SEGÉDANYAG -. osztály II. MODERN FIZIKA A XIX. század végére a klasszikus fizika (mechanika, hőtan, elektromosságtan) óriási sikereket ért el, alig volt néhány jelenség, ami még megmagyarázásra várt, ezért a fizikusok többsége úgy látta, hogy a fizika tudománynak már nincs nagy jövője. Azonban kiderült, hogy a néhány megmagyarázatlan jelenség között van olyan, amelyik a klasszikus fizika fogalmaival, eszközeivel nem magyarázható meg teljesen. Az energia, a tér, az idő klasszikus felfogásán változtatni kellett, ezt tették meg Max Planck és Albert Einstein. Max Planck az atomi méretekben zajló események magyarázatát lehetővé tevő kvantumelmélet, Albert Einstein pedig a nagy sebességű (fénysebesség közeli) folyamatok, és a Világegyetem (gravitáció) leírását lehetővé tevő relativitáselmélet alapjainak lerakásában és kidolgozásában tett szert elévülhetetlen érdemekre. A kvantumelmélet (900) Alapvetés: A testek hőmérsékletüktől függően energiát (elektromágneses hullámokat) sugároznak ki. Ez az energia nem lehet bármekkora, hanem csak egy valamilyen nagyságú energiadagnak (kvantumnak) az egész számú többszöröse. (Nobel-díj - 98) Egy ilyen energiakvantum nagysága: E = h f ahol h = 6, Js (Planck-állandó), f az energiát szállító elektromágneses hullám frekvenciája. Ez az állítás szakított a klasszikus fizika folytonos energia elképzelésével, és tökéletesen megmagyarázhatóvá tette a hőmérsékleti sugárzást. A speciális relativitáselmélet (905) Alapvetés: - Nincs kitüntetett inerciarendszer, a fizikai jelenségek leírása szempontjából minden ilyen vonatkoztatási rendszer egyenértékű. - A fény sebessége vákuumban minden irányban állandó ( km/s), és nem függ sem a megfigyelőtől, sem a vonatkoztatási rendszertől. Megjegyzés: Az inerciarendszer olyan vonatkoztatási rendszer, amelyben érvényes a tehetetlenség törvénye. Ilyenek a nyugvó vagy egyenes vonalú egyenletes mozgást végző vonatkoztatási rendszerek. A fénysebesség határsebesség, semmilyen hatás nem terjedhet ennél gyorsabban. Einstein eredményei - A hibás abszolút (mindentől független) tér és idő elképzelés korrigálása. Az anyag jelenléte (és a mozgás sebessége) befolyásolja a teret és az idő múlását. Pl.: Két olyan jelenség, amit az egyik megfigyelő egyidejűnek lát, egy másik megfigyelő szempontjából nem szükségszerűen egyszerre történik meg. - A tömeg-energia egyenértékűsége: E = m c Eszerint, ha változik egy test energiája, akkor megváltozik a tömege is. Itt E a test összes (mozgási, helyzeti, termikus, kémiai, stb.) energiáját jelenti. - A fényelektromos jelenség (fotoeffektus) magyarázata (Nobel-díj - 9) h f = Wki + m v max A problémát annak a kísérletnek a megmagyarázása okozta, melynek során különböző hullámhosszúságú fénynyel világították meg egy fém felületét. A kilépő elektronok száma és energiája nem felelt meg a várakozásoknak. Az egyenlet szerint a fénysebességgel haladó fotonok (energiakvantumok) teljes energiájukat (h f) átadják a fémben levő elektronoknak. Az energia egy része a kilépési munkát (Wki), a maradék a tovarepülő elektron mozgási energiáját (½ m v ) fedezi. Ha a foton(ok) energiája kisebb a kilépési munkánál, bármeddig várhatunk, egyetlen elektron sem fog kilépni a fénnyel megvilágított fém felületéből. A klasszikus (folytonos energia) elmélet szerint még a kis energiák is összegződnek, és előbb-utóbb kilöknek egy elektront a fémből, de ez a valóságban nem így történik. Így a klasszikus elmélet állítása nem állja ki a valóság próbáját..

7 Az anyag kettős (részecske-hullám) természete FIZIKA - SEGÉDANYAG -. osztály Egy sor kísérlet, jelenség, megfigyelés azt támasztja alá, hogy a fény foton-részecskékből áll. A fénytani tanulmányaink azonban azt mutatták, hogy a fény interferenciára, elhajlásra, polarizációra képes, amelyek mind hullámokra jellemző tulajdonságok. Az elektromosságtan és mágnességtan alapján arra a következtetésre jutottunk, hogy a fény elektromágneses hullám. Hogyan lehet a fény egyaránt hullám és részecske? Elemezzük a Young-féle kettős réssel végzett interferencia kísérletet! Ha monokromatikus (egyszínű = azonos frekvenciájú) fény segítségével két közeli rést megvilágítunk, akkor a rések után elhelyezett ernyőn világos és sötét csíkok sorozatát láthatjuk, amelynek intenzitás-eloszlását vizsgálhatjuk. Ha a rések közül az egyiket, illetve a másikat letakarjuk, akkor az ernyőn látható intenzitás eloszlások összege (. ábra) nem egyezik meg a két nyitott rés esetén tapasztalható intenzitáseloszlással (. ábra). Különösen szembetűnő az eredeti (direkt) sugár irányában lévő, úgynevezett nulladrendű maximum hiánya az egyszerű összegzés esetén. A fizikai optikában az intenzitáseloszlást az interferencia segítségével magyaráztuk: ha a két résből, mint két pontszerű hullámforrásból érkező hullámok azonos fázisban találkoznak (mert útkülönbségük a hullámhossz egész számú többszöröse), akkor erősítik egymást, ha ellentétes fázissal találkoznak (mert útkülönbségük a félhullámhossz páratlan számú többszöröse), akkor kioltják egymást.. ábra Fényinterferencia kettős résen (Young-kísérlet). ábra Fényinterferencia egy-egy résen Ha nagyon erősen lecsökkentjük a kettős résre érkező fény intenzitását, akkor az ernyőt nem használhatjuk, mert olyan gyenge az interferenciakép, hogy nem látunk semmit. Ehelyett az ernyő helyén helyezzünk el nagyon sűrűn fényérzékelő műszereket (detektorokat), melyek azt érzékelik, hogy arra a helyre hány foton érkezik. Kezdetben csak azt vehetjük észre, hogy a detektorok hol itt, hol ott szólalnak meg, azaz fotonok véletlenszerű becsapódását észlelik. Hosszú ideig tartó méréssel végül is a fotonszámláló detektorok adataiból eloszlásfüggvényt készíthetünk. Azt mondhatjuk, hogy a becsapódó fotonok valószínűségi eloszlása ugyanaz, mint amit az interferencia alapján számítottunk ki (. ábra)). Nem tudjuk megmondani, hogy a következő foton hova csapódik be, csak annyit mondhatunk előre, hogy egy adott helyen mekkora valószínűséggel várható foton érkezése. A kvantumfizikai leírásra éppen ez a jellemző. Az adott kezdőfeltételekből (bármennyire is jól ismerjük azokat) nem tudunk biztos előrejelzéseket tenni a bekövetkező eseményre, mint ahogy azt a klasszikus mechanikában megszoktuk. Csak valószínűségi kijelentéseket tehetünk. Furcsa következménye ez a részecskehullám kettősségnek. A kettős réssel végzett kísérlet során, csökkentsük a résekre eső fény intenzitását tovább, hogy már csak átlagosan egy foton érkezzen rájuk másodpercenként. Hosszú idő után a fotonszámlálók adataiból mégis kirajzolódik az interferenciát mutató eloszlás (. ábra). Jogosnak látszik azt feltételezni, hogy minden egyes foton vagy az egyik, vagy a másik résen haladt át (átlagosan a fotonok fele az egyiken, másik fele a másikon). Ezt az álláspontot ellenőrizhetjük, ha kétszer annyi ideig mérünk, de fele időben az egyik, fele időben a másik rést lezárjuk. Ezzel a trükkel azonban nem cselezhetjük ki a fotonokat, mert így csak a különálló rések hatásának az egyszerű összegzését kaphatjuk (. ábra), interferenciát nem (. ábra). Forrás: Sulinet

8 - 8 - FIZIKA - SEGÉDANYAG -. osztály Az optikában azt mondtuk, hogy megfigyelhető interferencia létrehozásához koherens (azonos frekvenciűjú és fáziskülönbségű) hullámokkal kell dolgoznunk. Eredményünket a fotonképpel úgy egyeztethetjük össze, ha feltételezzük, hogy minden egyes foton mindkét résen átmegy, és mindegyik foton csak önmagával interferál. A fotonok térben nem lokalizáltak egy adott pontba. Meghatározott mennyiségű energiát hordoznak, de hullámtulajdonságaik is vannak, ami megköveteli a térbeli kiterjedésüket. A megfigyelésekkel csak az egyeztethető össze, hogy mindegyik foton mindkét résen áthalad. Mi tehát akkor a foton, részecske vagy hullám? A válasz az, hogy mindkettő, de a körülményeknek megfelelően hol az egyik, hol a másik tulajdonsága nyilvánul meg. Amikor a fény terjed, akkor hullámként viselkedik, de amikor műszereinkkel (fotódetektor, fényérzékeny film) elfogjuk, érzékeljük, akkor mindig részecskének mutatja magát. Ezt a kettősséget felismerve a fizikusok célja az lett, hogy olyan elméletet találjanak, amely magában foglalja mindkét viselkedést. A kvantumfizika (szűkebb értelemben a kvantumelektrodinamika) éppen ilyen elmélet, amit 50 évvel a kvantumfogalom megszületése, vagyis Planck 900-as hatáskvantumának megjelenése után dolgoztak ki, és azóta igen sikeresen alkalmaznak. Az elektron de Broglie-féle hullámhossza Az atomfizikában újabb előrehaladást jelentett, amikor 94-ben egy francia fizikus, Louis de Broglie (89-987), egy teljesen újszerű elképzeléssel állt elő. Érvelésének a lényege nagyjából a következő volt: a természetben nagyon sok a szimmetria. A fény kettős természetű, bizonyos helyzetekben hullámként, máskor részecskeként viselkedik. Ha a természet szimmetrikus, ez a kettősség érvényes kell legyen a korpuszkuláris (részecskékből álló) anyagra is. Vagyis az elektronok és protonok, melyeket részecskéknek tekintünk, bizonyos helyzetekben hullámként is viselkedhetnek. Ha egy elektron hullám tulajdonságú, akkor kell lennie hullámhosszának és frekvenciájának. Szimmetriamegfontolások alapján de Broglie úgy gondolta, hogy egy szabadon mozgó elektron hullámhosszát és frekvenciáját ugyanolyan összefüggések határozzák meg, mint amelyek a fotonokra érvényesek. A fotonok E energiáját a következő kifejezés adja meg: E = m c = h f. Ebből kifejezhetjük a foton m tömegét és p impulzusát (ez utóbbi az atomfizikában szokásos jelölés): m = E / c = h f / c és p = m c = h f / c = h / λ h f c m h c λ h f p c melyek a h Planck-állandó mellett tartalmazzák a foton f frekvenciáját és λ hullámhosszát. De Broglie érvelése szerint ugyanezeknek az összefüggéseknek érvényeseknek kell lenniük az elektronra is. Ha az m tömegű elektron v sebességgel mozog, akkor p lendületét (impulzusát) a szokásos módon p = m v alakban írhatjuk fel. Ezt a fenti impulzuskifejezésbe behelyettesítve egyszerű átrendezéssel kaphatjuk meg az elektron hullámhosszát, amit de Broglie-hullámhossznak nevezünk: λ = h / p = h / (m v). Az elektron hullámtermészetének (elméleti alapú) feltételezését de Broglie 94-ben tette közzé. Ennek bizonyítását adja, ha elhajlási képet tudunk elektronokkal létrehozni. Megfelelő nagyságú gyorsítófeszültséggel olyan lendületű elektronokat hozhatunk létre, melyek de Broglie-hullámhossza megegyezik a röntgensugarak hullámhosszával. A kristályokon az ilyen elektronnyalábok pontosan ugyanolyan elhajlást mutatnak, vagyis interferálnak, mint a röntgensugarak. Az elektronelhajlási kísérletekkel igazolt hullámfeltevésért de Broglie 99-ben fizikai Nobel-díjat kapott. Nemcsak az elektronról, hanem az atomokról és (más) atomi részecskékről is bebizonyosodott, hogy részecsketulajdonságaik mellett hullámtermészetűek is. Az atomok jellemzői Az atomok atommagból és az azt körülvevő elektronfelhőből állnak. Az atom magjában proton(ok) és neutron(ok) helyezkednek el. Semleges atomnál az elektronok és protonok száma megegyezik. Az atomban levő protonok számát nevezzük az elem periódusos rendszerbeli rendszámának (jele: Z). Pl. Az oxigén atommagjában 8 db proton található, ezért ZO = 8. A tömegszám az atommagban levő protonok és neutronok számának összege (jele: A). Pl. AO = 6 (az oxigénatomban 8 proton és 8 neutron van). Egy elem izotópjait az eltérő tömegszám alapján lehet megkülönböztetni. Az atomok nagysága (átmérője) a 0-0 m-es, tömegük pedig a 0-7 kg-os nagyságrendbe esik. h λ

9 Klasszikus atommodellek FIZIKA - SEGÉDANYAG -. osztály A Thomson-modell (puding modell) szerint az atomok rugalmas, pozitív töltésű gömbök, amelyek anyagába vannak beágyazódva a negatív töltésű elektronok. A Rutherford-modell (Naprendszer-modell) szerint a Z e (pozitív) töltésű mag körül Z db, egyenként -e töltésű elektron kering körpályákon. Az elektronokat az elektromos vonzóerő tartja körpályán. Probléma: az elektronoknak sugározniuk kellene, és spirális pályán a magba kellene zuhanniuk. A Thomson és Rutherford-modell nem tudta értelmezni az atomok fénykibocsátását és stabilitását. A Bohr-modell a Rutherford-modellt az alábbi kiegészítésekkel látta el: - az atommag körül az elektronok csak meghatározott sugarú pályákon keringhetnek, amelyeken nem sugároznak, - az elektronok egyik pályáról (m) másikra (n) történő ugrása közben, az energiaváltozás megegyezik a két pálya energiája (Em > En) közötti különbséggel (fotonkibocsátás vagy fotonelnyelés). ΔE = h f = Em - En A modell által bevezetett kvantált energiájú elektronpályák alapján értelmezhetővé vált bizonyos egyszerű atomok vonalas színképe, de nem adott magyarázatot az atomok gömbszimmetriájára és stabilitására. Az atomok hullámmodellje szerint az elektron olyan állóhullámként tartózkodik a pályályán, ahol a pálya kerülete a félhullámhossz egész számú többszöröse. Ez a modell kiküszöbölte a többi modell hiányosságait, és lehetővé tette további kvantumszámok bevezetésével az atomi jelenségek méréseknek megfelelő, valósághű leírását. Az atomban levő elektronok energiája a leírás szerint negatív. Ahhoz, hogy ki tudjon szabadulni egy elektron az atomból (a potenciálgödörből), legalább annyi energiát kell közölni vele, hogy energiája nulla legyen. Forrás: MOZAIK TK.. osztály - 6. oldal

10 V. MAGFIZIKA, CSILLAGÁSZAT Az atommagot alkotó (Z db proton, A-Z db neutron) részecskéket (közös néven) nukleonoknak nevezzük. Tömegük közel azonos, az elektron tömegéhez viszonyítva: mp = 836 me, mn = 838 me. A magon belül elhelyezkedő protonok közötti taszítóerőt a magerő ellensúlyozza, amely: - néhny százszor erősebb, mint az elektromos taszítóerő, - rövid hatótávolságú ( 0-5 m), - töltésfüggetlen, a magerő szempontjából a nukleonok egyformák. Kötési energia, tömeghiány FIZIKA - SEGÉDANYAG -. osztály A kötési energia (Ek) alatt azt a munkát értjük, amely az atommag alkotórészeire bontásához szükséges. Ez pontosan megegyezik azzal az energiával, ami akkor szabadul fel, ha a mag szabad alkotórészei atommaggá egyesülnek. Az atommagok tömege mindig kisebb, mint az alkotórészeik tömegeinek összege. Ezt a Δm tömeghiányt kiszámolhatjuk a következőképpen: Δm = Z p + (A-Z) n - mmag ahol Z a rendszám, A a tömegszám, p a proton, n a neutron, mmag pedig az atommag tömege. Einstein egyenlete alapján: Ek = Δm c Így a tömeghiány mérésével a kötési energia kiszámítható. Magfúzió, maghasadás A periódusos rendszer első felében (a vasig terjedő részben) levő könnyű elemek egyesítésekor nehezebb elemek jönnek létre (fúzió), a vasnál nehezebb elemek hasításakor (fisszió) könnyebb elemek keletkeznek. Mindkét esetben energia szabadul fel. A jelenség megmagyarázható az egy nukleonra jutó kötési energia (Ek/A) értékével, amely a vasig csökken, onnantól pedig növekszik. Az energiafelszabadulás másik lehetséges módja, ha a nehéz atommagok radioaktív bomlás útján, több lépésben alakulnak át kisebb tömegszámú atomokká. A radioaktivitás A radioaktív sugárzások az atommagból indulnak ki, közben az atommag (valamilyen részecske kibocsátásával) átalakul. A kibocsátott részecske alapján 3 fajtáját különböztetjük meg: - sugárzás, a kibocsátott részecske a hélium atommagja ( részecske = p + n), - sugárzás, a kibocsátott részecske az elektron, - sugárzás, a kibocsátott részecske a foton (nagy energiájú elektromágneses hullám kvantuma). Az anyaggal való kölcsönhatásuk közben az sugarak ionizálják leginkább az anyagot, ezért ezek áthatolóképessége a legkisebb, a sugarak a legkevésbé ionizálnak, de a legnagyobb az áthatolóképességük.

11 - - FIZIKA - SEGÉDANYAG -. osztály Mi történik az anyaggal, amelyik radioaktív bomláson megy keresztül? - bomláskor a kibocsátott részecske miatt a visszamaradó mag Z rendszáma -vel csökken (mert proton töltése fog hiányozni), tömegszáma (A) 4-gyel csökken ( p + n tömege fog hiányozni), - bomláskor a magban neutron protonná alakul át, elektron lép ki, így a Z rendszám -gyel nőni fog, a tömegszám nem változik, - bomláskor a mag nem alakul át (Z és A nem változik), csak egy nagy energiájú foton hagyja el a gerjesztett magot. Felezési idő (T) A radioaktív bomlások során, a radioaktív elem (el nem bomlott) atommagjainak száma mindig ugyannyi idő alatt feleződik meg. Ha a felezési idő T = hét, akkor 000 atommagból hét múlva csak 500 marad meg, a többi elbomlik, újabb hét múlva már csak 50 lesz, majd 5 és így tovább. Az el nem bomlott atommagok száma nem lineárisan, hanem exponenciálisan változik, így a radioaktív elem aktivitása (sugárzóképessége) is exponenciálisan csökken. 0,69 Mindenféle atommagra kiszámítható az ún. bomlási állandó: T Az atommag energiájának szabályozott felszabadítása A maghasadás mesterséges létrehozásához pl. 35-ös tömegszámú uránt besugárzunk (megfelelő) neutronnal, akkor az uránmag felhasad és a két hasadási termék mellett újabb neutronok is keletkeznek. Ezek felhasználásával újabb uránmagok hasadását érhetjük el, és a folyamatot önfenntartóvá tehetjük. Így szabályozatlan láncreakció jön létre (szuperkritikus állapot). Ezen az elven működik az atombomba. Ha a keletkező neutronokat megfelelő környezetben hozzuk létre, akkor a folyamatot egyenletessé tehetjük, és az energia felszabadulását kontrollálni tudjuk (kritikus állapot). Így működik az atomreaktor. Az atomreaktorban a hűtöközeg és a neutronokat elnyelő szabályozórudak kulcsfontosságú tényezők. A szabályozórudak teszik lehetővé a láncreakció leállítását. Ehhez a hasadó magok és a keletkező neutronok számának egyre csökkenie kell (szubkritkus állapot). A magfúzió a természetben a csillagok belsejében jön létre, igen magas (több millió fokos) hőmérsékleten. Földi viszonyok között még nem sikerült pozitív energiamérlegű fúziót megvalósítani. A Világegyetem és a Naprendszer Mintegy 3,7 milliárd évvel ezelőtt történt meg az az esemény (Ösrobbanás - BigBang), amelynek során létrejött az univerzum, amelyben élünk. Az elméletek mellett több mérési eredmény is alátámasztja az ezzel kapcsolatos elképzeléseinket (pl. a kozmikus háttésugárzás). A ma ismert elemek közül az első 3 percben keletkezett a hidrogén, a hélium és a lítium. Az első csillagok a hidrogénfelhőkből jöttek létre, majd megtermelték - szupernóvarobbanások közben - a többi elemet is. A csillagok galaxisokba tömörültek - a mienket Tejútrendszernek hívjuk -, amelyeken belül a csillagok körül bolygók jöttek létre. Ez a folyamat napjainkban is zajlik. A Világegyetem jelenleg gyorsulva tágul. A Naprendszer bolygói: Merkur, Vénusz, Föld, Mars, Jupiter, Szaturnusz, Uránusz, Neprunusz.

12 - - FIZIKA - SEGÉDANYAG -. osztály A FIZIKAI MENNYISÉGEK ÖSSZEFOGLALÓ TÁBLÁZATA NEVE JELE MÉRTÉKEGYSÉGE KISZÁMÍTÁSA TÖLTÉS Q C ERŐ F J V C N = = m m Q q F k TÉRERŐSSÉG E N V F Q E k C m q r FELSZÍN A cm ; dm ; m FLUXUS Ψ (Pszí) N m V m C Ψ = E A FESZÜLTSÉG U J V = C W U = = E d Q r ÁRAMERŐSSÉG I A = s C I = t Q ELLENÁLLÁS R Ω = A V (Ohm) R = I U INDUKCIÓ B N V s = A m m IDŐ t s; min.; h TÁVOLSÁG d, r m SEBESSÉG v m km λ ; v λ f = A cos( t) s h T GYORSULÁS a m s a = A sin( t) KITÉRÉS y cm; m y = A sin( t) REZGÉSIDŐ T s T = ; T = m f D D FREKVENCIA f Hz = f = ; f = s T π m ENERGIA E, W J = V C = V A s = W s E = m c = h f J E W TELJESÍTMÉNY P W = (Watt) P = = s t t Megjegyzés: d a töltés - elektromos mező két pontja közötti - elmozdulását jelenti. Figyelj arra, hogy a betűk mikor jelölnek fizikai mennyiséget, és mikor mértékegységet! Pl.: W = a munka jele, de a teljesítmény mértékegysége is. Ha előtte van szám, akkor biztosan mértékegység. 6 J W = 6 J, de P = 6 W = Ilyenkor az első W a fizikai mennyiséget (munka), a 6-os utáni W pedig a s mértékegységet (Watt) jelöli. Az E jelölhet térerősséget és energiát is, mindkettő fizikai mennyiség. A mellékelt próba feladatsort megoldva hozd el a vizsgára!

13 PRÓBA FELADATSOR FIZIKA - SEGÉDANYAG -. osztály Rezgések, hullámok. Egy hullámot 6 Hz rezgésszámú forrás kelt. Hány másodperc alatt jön létre 48 egész hullám?. Egy 0 cm hosszúságú hullám terjedési sebessége 50 m/s. Mekkora a hullám frekvenciája, periódusideje? 3. Egy rugóra függesztett test egy periódus alatt 0 cm utat tesz meg. Periódusideje 6 s. Válaszaidat rajzzal indokold! a. Mennyi idő alatt tesz meg 0 cm-t? b. Hány másodpercenként lesz maximális a gyorsulása? 4. Egy rugóra függesztett test 8 cm-es amplitudóval rezeg. Periódusideje 6 s. Válaszaidat rajzzal indokold! a. Mekkora utat tesz meg a test s alatt? b. Hány másodpercenként lesz maximális a sebessége? 5. A grafikon alapján és/vagy számolással válaszold meg az alábbi kérdéseket! a. Mekkora a rezgés amplitudója?... b. Mennyi a periódusidő?... c. Mekkora a kitérés T/4-nél?... d. Mennyi a rezgés frekvenciája?... d. Mekkora a rezgő test sebessége T/4-nél?... d. Mekkora a rezgő test gyorsulása T/-nél?... π T Segédlet: Ha t = T/, akkor t = = = 80º sin( t) = sin 80º = 0. T 6. Egy hullám hullámhossza cm. másodperc alatt 48 hullám jön létre. Jelöld be a megfelelő választ! a. a hullám frekvenciája b. a hullám sebessége c. a hullám periódusideje 48 Hz 48 cm/s s Hz 4 cm/s 48 s Hz cm/s /48 s 4 Hz 96 cm/s 96 s 96 Hz /4 s 4 s 7. Jelöld be, melyik igaz a transzverzális hullámra! vízben nem tud létrejönni a rezgés iránya merőleges a változás irányára a levegőben terjedő hang transzverzális hullám a hullámhossza megváltozik új közegbe lépés esetén az amplitudója függ a terjedési sebességétől 8. Hogyan változik meg a kötélinga lengésideje, ha nagyobb tömegű testet akasztunk a kötél végére? Válaszodat indokold! csökken nem változik növekszik 9. Határozd vagy becsüld meg a hiányzó ( ) értékeket, fejezd be a megkezdett ábrákat! a. VISSZAVERŐDÉS b. TÖRÉS = = 6. közeg v = 400 m/s 6. közeg v = 800 m/s

14 Elektromágneses hullámok - Optika FIZIKA - SEGÉDANYAG -. osztály. Párosítsd össze az elektromágneses spektrum egyes szakaszainak nevét a betűjelekkel! Röntgen sugárzás UV sugárzás Rádióhullámok Gamma sugárzás Infravörös hullámok Kozmikus sugárzás. Kapcsold össze a leírást a fogalommal! A - Elhajlás B - Interferencia C - Törés Akkor lép fel, amikor két vagy több fényhullám kölcsönhatásba lép. Akkor lép fel, ha a fény a hullámhosszával egy nagyságrendbe eső résen halad át. Akkor lép fel, ha a fény egyik közegből egy másikba lép át. 3. Hova kell helyezni a tárgyat a 30 cm fókusztávolságú homorú tükör elé, ha nagyított, egyező állású képet akarunk kapni? 4. Egy domború lencse fókusztávolsága 4 cm. Hol keletkezik a kép, ha a tárgyat a lencsétől cm-re helyeztük el? Milyen tulajdonságai lesznek a képnek? Mekkora a nagyítás? 5. Rajzold meg a domború tükör nevezetes sugármeneteit! 6. Hol használjuk a hétköznapi életben a domború tükröt? Indokold meg, a domború tükör képalkotása segítségével a felhasználás okát (célját)! Modern fizika. Mekkora egy 5 kg tömegű tégla összes energiája?. Egy fényhullám frekvenciája 0 4 Hz. Mekkora a fény egyetlen fotonjának energiája, ha a Planck állandó értéke 6, J s? Mekkora a fényhullám hullámhossza? 3. Egy alumíniumlemezt 50 nm hullámhosszúságú UV fénnyel világítunk meg. Mekkora egyetlen fénykvantum energiája? Kilépnek-e elektronok az allumíniumlemezből, ha annak kilépési munkája 0,68 aj? Ha kilépnek, mekkora lesz a kilépő elektronok mozgási energiája? 4. Röviden foglald össze a modern fizika kialakulásának körülményeit, Planck és Einstein munkásságát! 5. Sorold fel és jellemezd az egyes atommodelleket! 6. Hány darab neutron van a 35-ös tömegszámú, 9-es rendszámú urán atommagjában? 7. Egy atommag létrejöttekor 0-9 kg-os tömeghiány keletkezett. Mekkora az atommag kötési energiája? 8. Sorold fel és jellemezd a radioaktivitás fajtáit! 9. Egy radioaktív elem felezési ideje év. Mennyi lesz az el nem bomlott atommagok száma 8 év után, ha kezdetben 48 milliárd volt az atommagok száma? 0. Hogyan jön létre a szabályozatlan láncreakció?

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki. Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben

Részletesebben

Rezgések és hullámok

Rezgések és hullámok Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő

Részletesebben

Optika fejezet felosztása

Optika fejezet felosztása Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében? Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes

Részletesebben

FIZIKA ZÁRÓVIZSGA 2015

FIZIKA ZÁRÓVIZSGA 2015 FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

KVANTUMMECHANIKA. a11.b-nek

KVANTUMMECHANIKA. a11.b-nek KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Fény, mint elektromágneses hullám, geometriai optika

Fény, mint elektromágneses hullám, geometriai optika Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

A modern fizika születése

A modern fizika születése MODERN FIZIKA A modern fizika születése Eddig: Olyan törvényekkel ismerkedtünk meg melyekhez tapasztalatokat a mindennapi életből is szerezhettünk. Klasszikus fizika: mechanika, hőtan, elektromosságtan,

Részletesebben

. T É M A K Ö R Ö K É S K Í S É R L E T E K

. T É M A K Ö R Ö K É S K Í S É R L E T E K T É M A K Ö R Ö K ÉS K Í S É R L E T E K Fizika 2018. Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25. A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati

Részletesebben

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával Elektromágneses spektrum Az elektromágneses hullámokat a keltés módja,

Részletesebben

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő

2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő 1. Milyen képet látunk a karácsonyfán lévı üveggömbökben? a. Egyenes állású, kicsinyített képet. mert c. Egyenes állású, nagyított képet. domborótükör d. Fordított állású, nagyított képet. b. Fordított

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Hullámok, hanghullámok

Hullámok, hanghullámok Hullámok, hanghullámok Hullámokra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési

Részletesebben

1. A gyorsulás Kísérlet: Eszközök Számítsa ki

1. A gyorsulás Kísérlet: Eszközök Számítsa ki 1. A gyorsulás Gyakorlati példákra alapozva ismertesse a változó és az egyenletesen változó mozgást! Általánosítsa a sebesség fogalmát úgy, hogy azzal a változó mozgásokat is jellemezni lehessen! Ismertesse

Részletesebben

Rezgőmozgás, lengőmozgás

Rezgőmozgás, lengőmozgás Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK

A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK - 1 - A FIZIKA KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI VIZSGA TÉTELEINEK TÉMAKÖREI 2015. MÁJUSI VIZSGAIDŐSZAK 1. Newton törvényei Newton I. törvénye Kölcsönhatás, mozgásállapot, mozgásállapot-változás, tehetetlenség,

Részletesebben

Speciális relativitás

Speciális relativitás Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. február 27. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. február 27. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM

Részletesebben

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb

Részletesebben

Az elektron hullámtermészete. Készítette Kiss László

Az elektron hullámtermészete. Készítette Kiss László Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

ELEKTROMOSSÁG ÉS MÁGNESESSÉG

ELEKTROMOSSÁG ÉS MÁGNESESSÉG ELEKTROMOSSÁG ÉS MÁGNESESSÉG A) változat Név:... osztály:... 1. Milyen töltésű a proton? 2. Egészítsd ki a következő mondatot! Az azonos elektromos töltések... egymást. 3. A PVC-rudat megdörzsöltük egy

Részletesebben

Fizika vizsgakövetelmény

Fizika vizsgakövetelmény Fizika vizsgakövetelmény A tanuló tudja, hogy a fizika alapvető megismerési módszere a megfigyelés, kísérletezés, mérés, és ezeket mindig valamilyen szempont szerint végezzük. Legyen képes fizikai jelenségek

Részletesebben

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható!

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható! FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI a 2015/2016. tanév május-júniusi vizsgaidőszakában Vizsgabizottság: 12.a Vizsgáztató tanár: Bartalosné Agócs Irén 1. Egyenes vonalú mozgások dinamikai

Részletesebben

Fizika tételek. 11. osztály

Fizika tételek. 11. osztály Fizika tételek 11. osztály 1. Mágneses mező és annak jellemzése.szemléltetése Hogyan hozható létre mágneses mező? Milyen mennyiségekkel jellemezhetjük a mágneses mezőt? Hogyan szemléltethetjük a szerkezetét?

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához A lencsék fogalma, fajtái Az optikai lencsék a legegyszerűbb fénytörésen alapuló leképezési eszközök. Fajtái: a domború és a homorú lencse. optikai középpont optikai

Részletesebben

Történeti áttekintés

Történeti áttekintés A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először

Részletesebben

FIZIKA 11. osztály. Írásban, 45 perc

FIZIKA 11. osztály. Írásban, 45 perc FIZIKA 11. osztály Írásban, 45 perc I. RÉSZLETES VIZSGAKÖVETELMÉNYEK 3.3. Az időben állandó mágneses mező 3.3.1. Mágneses alapjelenségek A dipólus fogalma Mágnesezhetőség A Föld mágneses mezeje Iránytű

Részletesebben

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Geometriai és hullámoptika. Utolsó módosítás: május 10.. Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)

Részletesebben

d) A gömbtükör csak domború tükröző felület lehet.

d) A gömbtükör csak domború tükröző felület lehet. Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsődleges fényforrás. d) A szentjánosbogár megfelelő potrohszelvénye

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Thomson-modell (puding-modell)

Thomson-modell (puding-modell) Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja

Részletesebben

ELEMI RÉSZECSKÉK ATOMMODELLEK

ELEMI RÉSZECSKÉK ATOMMODELLEK ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

Fizika összefoglaló kérdések (11. évfolyam)

Fizika összefoglaló kérdések (11. évfolyam) I. Mechanika Fizika összefoglaló kérdések (11. évfolyam) 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István

OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra

Részletesebben

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) A vizsga értékelése: Elégtelen: ha az írásbeli és a szóbeli rész összesen nem éri el a

Részletesebben

Az atom felépítése Alapfogalmak

Az atom felépítése Alapfogalmak Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI

FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI 1. Egyenes vonalú mozgások 2012 Mérje meg Mikola-csőben a buborék sebességét! Mutassa meg az út, és az idő közötti kapcsolatot! Három mérést végezzen, adatait

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

Fizika tantárgy 12. évfolyam

Fizika tantárgy 12. évfolyam KISKUNHALASI REFORMÁTUS KOLLÉGIUM SZILÁDY ÁRON GIMNÁZIUMA FELNŐTTOKTATÁSI TAGOZAT Fizika tantárgy 12. évfolyam 1.1 Fontos tudnivalók A tankönyv anyagát önálló tanulással kell feldolgozni, melyhez segítséget

Részletesebben

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

TestLine - Csefi tesztje-01 Minta feladatsor

TestLine - Csefi tesztje-01 Minta feladatsor TestLine - sefi tesztje-01 FIZIK KÖZÉPSZINTŰ ÍRÁSELI VIZSG TESZTKÉRDÉSEI 2010. május 18. 1. Melyik mértékegység lehet a gyorsulás mértékegysége? (1 helyes válasz) W/J. J/kg. N/kg. 2. Hogyan változik egy

Részletesebben

Értékelési útmutató az emelt szint írásbeli feladatsorhoz

Értékelési útmutató az emelt szint írásbeli feladatsorhoz Értékelési útmutató az emelt szint írásbeli feladatsorhoz 1. C 1 pont 2. B 1 pont 3. D 1 pont 4. B 1 pont 5. C 1 pont 6. A 1 pont 7. B 1 pont 8. D 1 pont 9. A 1 pont 10. B 1 pont 11. B 1 pont 12. B 1 pont

Részletesebben

ATOMFIZIKA. óravázlatok

ATOMFIZIKA. óravázlatok ATOMFIZIKA óravázlatok A fizika felosztása 1. Klasszikus fizika Olyan jelenségekkel és törvényekkel foglalkozik, amelyekről a mindennapi életben is szerezhetünk tapasztalatokat. 2. Modern fizika A fizikának

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

FIZIKA VIZSGATEMATIKA

FIZIKA VIZSGATEMATIKA FIZIKA VIZSGATEMATIKA osztályozó vizsga írásbeli szóbeli időtartam 60p 10p arány az értékelésnél 60% 40% A vizsga értékelése jeles (5) 80%-tól jó (4) 65%-tól közepes (3) 50%-tól elégséges (2) 35%-tól Ha

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

Newton törvények és a gravitációs kölcsönhatás (Vázlat) Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások

Részletesebben

11 osztály. Osztályozó vizsga témakörei

11 osztály. Osztályozó vizsga témakörei 11 osztály Osztályozó vizsga témakörei (Keret tanterv) I. Félév I. Rezgések és hullámok Egyenletes körmozgás (Ismétlés) Frekvencia, periódusidő, szögsebesség 2. Harmonikus rezgőmozgás leírása Kitérés,

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus

Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Melyik egyenlet nem hullámot ír le? a) y = A sin 2π(ft x/λ) b) y = A

Részletesebben

A Föld helye a Világegyetemben. A Naprendszer

A Föld helye a Világegyetemben. A Naprendszer A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000

Részletesebben

A fény korpuszkuláris jellegét tükröző fizikai jelenségek

A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József

TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT Szakirodalomból szerkesztette: Varga József 1 2. A FÉNY A külvilágról elsősorban úgy veszünk tudomást, hogy látjuk a környező tárgyakat, azok mozgását, a természet

Részletesebben

AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE

AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE A Planck-féle sugárzási törvény Hipotézis 1.: A hősugárzást (elektromágneses hullámokat) kis, apró rezgő oszcillátorok hozzák létre. Egy ilyen oszcillátor

Részletesebben