6. rész. A különféle energiatárolási módok áttekintése és összehasonlítása (különös tekintettel a szélenergia hasznosításra)
|
|
- Emil Veres
- 9 évvel ezelőtt
- Látták:
Átírás
1 6. rész A különféle energiatárolási módok áttekintése és összehasonlítása (különös tekintettel a szélenergia hasznosításra) 1
2 Motiváció Az energiatárolás legnagyobb előnye, hogy lehetővé teszi az energiatermelés és az energia fogyasztás szétcsatolását. Az energiarendszer irányítása megköveteli a teljesítmény egyensúlyt. Így az energiatárolás nagyléptékű alkalmazása jelentős támogatást és lökést adhat a megújuló energiafajták alkalmazásának. Az energiatárolás alkalmazásának számos egyéb kedvező hatása van. 2
3 ábra. Az energiatárolás műszaki járulékos előnyei
4 ábra. Az energiatárolás alkalmazásának területeit
5 ábra. A terheléskiegyenlítés hatása
6 ábra. A piaci hatás: csúcs ár érhető el
7 ábra. A rendelkezésre állás biztonsága fontos
8 Az energiatárolással szembeni elvárások Alacsony költség: beruházás, működés, karbantartás Magas eredő hatásfok. Felügyelet-nélküliség. Üzembiztonság. Alacsony vagy nulla környezeti hatás. Illeszkedjen az energia változás spektrumához. 8
9 6.6. ábra. A szélenergia spektruma A két részletesen vizsgált energiatárolási mód a spektrum alapján lett kiválasztva: A pár napos változások kiegyenlítésére a hidrogén tárolási technológia adhat megoldást. A turbulencia okozta gyors változások kiegyenlítése lendkerékkel oldható meg. 9
10 Az energiatárolás Achilles sarkai (hátrányai) Amíg az egyes energiatárolási módoknak vannak egyéni korlátai hiányosságai és előnyei, ugyanakkor mindnek van két támadható Achilles sarka, különösen megújuló energetikai alkalmazásuk esetén: Az energiatároló rendszer jelentős beruházási költsége. A rendszer három jól elkülöníthető alrendszerre osztató: Töltési, tárolási és kisütési alrendszerek (ez tartalmazza a váltakozóáramú hálózathoz való illesztést is). Mindhárom alrendszernek jelentős beruházási költsége van. Az energiatároló rendszer hatásfoka mindig kisebb 100%-nál. 10
11 Összehasonlítási szempontok Az árat fajlagosan érdemes vizsgálni. A hatásfok szempontjából az eredő hatásfok a legérdekesebb. A tárolási időtartamot a technológia megköti, az átfogandó spektrum pedig igényli. Az alkalmazhatósági teljesítménytartomány függ a tárolási technológiától. A rendszer méretének jellemzésére a fajlagos értéket kifejező energiasűrűség alkalmas. A megtérülés szempontjából a rendszer élettartama alapvető adat. 11
12 Energia tárolási módok ismertetése 6.1. Kinetikai energia tárolás: Lendkerék Működési elv, mechanizmus: A forgó tömegben tárolt energia a inerciával és az szögsebesség négyzetével arányos: 2 /2 Előnyök: Elterjedt, főként a kisebb teljesítmény tartományban (1kW, 3h vagy 100kW, 30s). Nagy ciklusélettartam. Kis méret. Környezetkímélő. Kis karbantartási igény Alacsony megsemmisítési költség élettartam végén. 12
13 Hátrányok: Nagyobb teljesítményeken még fejlesztés alatt (250kW, 10-15min) A nagy energiájú forgó tömeget sokan veszélyesnek tartják Tőkeigénye: Fejlesztési irányok: $/kW. Mivel a tárolt energia a szögsebesség négyzetével arányos, annak növelésével jelentős többlet érhető el. A légsúrlódás csökkentése vákuum alkalmazásával. A csapágysúrlódás csökkentése lebegtetett mágneses csapágy alkalmazásával (szupravezetős is lehet). Integrált lendkerék, ahol a villamos gép forgórésze képezi az energiatárolót. Különféle tárolási technológiák integrálása (levegő sűrítés, hőtárolás, lendkerék). Hatásfok: Az eredő AC-AC hatásfok 80-85% körül van (függ a csapágyveszteségtől, légsúrlódástól). 13
14 Installálási példák: USA, 1-MW vasúti hálózaton. Sorozat gyártmány: Beacon Energy, Többet összekombinálva MW-os tartomány érhető el. 14
15 6.2. Potenciális energia tárolása Szivattyús tározók (Pumped Hydro) Működési elv, mechanizmus: Csúcsidőn kívüli fölösleges energiát vagy megújuló energiafajtából előállított villamos energiát felhasználva ez a tárolási technológia vizet szivattyúz egy magasabban (hegytetőn) lévő tárolóba. 15
16 16 Okinava, tengerrel kombinálva
17 Előnyök: Széles körben használt (pl. 38 létező alkalmazás az USA-ban, akár MW teljesítménnyel), kiforrott és teljes egészében kidolgozott energiatárolási technológia. Széles teljesítmény és energia spektrum. A tárolási idő nem korlátozott (tipikusan maximum pár nap). Hátrányok: Környezeti hatások jelentősek. Tőkeigénye: Az MW-os nagy teljesítmény tartományban szorítható le 1000$/kW-os érték alá. Hatásfok: Az eredő (teljes ciklusra vonatkozó) hatásfok 70-80%. 17
18 Fejlesztési irányok: Földalatti kialakítás, akár mesterséges csövekben, tartályokban is. (RiverBankPower) 18 Változtatható sebességű hajtások alkalmazása (ciklokonverter, kétoldalról táplált aszinkrongép).
19 Levegő sűrítés Compressed Air Energy Storage: CAES Működési elv, mechanizmus: Csúcsidőn kívüli fölös energiát vagy megújuló energiafajtából előállított villamos energiát felhasználva ez a tárolási technológia levegőt sűrít össze földalatti tárolóba vagy csőrrendszerbe. Az energia az összesűrített levegő potenciális energiájában tárolódik. Amikor az energiát használni akarjuk, a levegőt felmelegítve (bármilyen üzemanyaggal) és átvezetve expanziós turbinán elektromos generátort hajtunk vele. 19
20 20
21 Előnyök: Használt Széles teljesítmény és energia spektrum. A tárolási idő nem korlátozott (tipikusan maximum pár nap). 21
22 Hátrányok: Nagy tőkeigény. Pl. USA-ban 1991-ben épült rendszer 110MW 26 órás tároló 400$/kW-os áron készült addig is gáztárolásra használt kimerült olajmezőt felhasználva. Viszonylag hosszú kialakítási idő. A fent említett rendszer 2,5 év alatt készült el. Tőkeigénye: Ld. fent. Fejlesztési irányok: A technológia fejlesztése minél kevesebb elsődleges energiahordozó felhasználására (pl. veszteségi hő felhasználása). Csőrendszer használata földalatti tárolók helyett. Pneumatikus motor-generátor használata sűrítésre és energia visszanyerésre. Maximális hatásfokra szabályozás. Hatásfok: Az eredő (teljes ciklusra vonatkozó AC-AC) hatásfok körülbelül 85%. 22
23 6.3. Mágneses energia tárolás: Szupravezetős mágneses energia tárolás (SMES) Működési elv, mechanizmus: A csúcsidőn kívüli megtermelt energiát egyenárammá alakítják, majd beinjektálják egy elektromágnes szupravezetős tekercsbe, a tárolás a mágneses mezőben történik. Előnyök: Nagyon gyors, hálózati cikluson belüli átkapcsolás (17ms) lehetséges az energia betáplálás és az energia kivét között. Rövid idő alatt nagy energia szabadítható fel. Kiforrott technológia. 23
24 Hátrányok: Főként rövid idejű tárolásra-kisütésre alkalmas (pár másodperc). Hosszabb időre tervezésnél jelentős a méretnövekedés: 1MW, 1s 1m átmérő; 1000MW, 5 óra 1000m átmérő. Tőkeigénye: 300$/kW Fejlesztési irányok: Magashőmérsékletű szupravezető anyagok használata. AC-DC-AC átalakítók új topológiái. Hatásfok: A fentemlített magas hatásfokot jelentősen csökkenti a hűtésre fordított energia: 21%. 24
25 6.4. Akkumulátoros energiatárolás (Battery Energy Storage) Működési elv, mechanizmus: Az energia tárolás legrégebben ismert módja, amely elektrokémia elven működik. Az elektródák folyékony, zselés vagy szilárd elektrolitban vannak és azzal elektrokémia reakcióba lépnek töltés és kisütés közben. A hagyományosnak mondható akkumulátor fajták a következők: Savas ólomakkumulátor (Lead Acid) (legrégebbi), Nickel-cadmium akkumulátor, Lithium Ion akkumulátor, Natrium-kén (Sodium Sulfur NaS) akkumulátor, Natrium-Nickel-Klorid (Sodium Nickel Clorid) akkumulátor. 25
26 26 Főbb adatok az alábbi táblázatban láthatók:
27 Előnyök: A hagyományos elemek használata kiforrott és széles körben alkalmazott technológia, tartalmazva a környezetkímélő karbantartást, selejtezést, újrahasznosítást is. Gyors reagálási képesség a töltésre (kevésbé a kisütésre). Moduláris, csendes, nem környezetszennyező, így közvetlenül a terhelés közelébe helyezhető. Hátrányok: Érzékeny a hőmérsékletre. Érzékeny a mélykisütésre. Korlátozott töltési kisütési ciklusszám Tőkeigénye: Savas ólom akkumulátor: $/kW A többi újabb technológia drágább. 27
28 Fejlesztési irányok: Az akkumulátor cellák, töltés-kisütés optimalizálása a karbantartási igény csökkentése, az élettartam növelése érdekében. Integrálása egyéb energiatárolási módokkal. Új technológiák alkalmazása: Flow Batteries. Az alkalmazott technológiák a következők: Natrium-Bromid (Sodium Bromid), Natrium- Polisulfid (Sodium Polisulfid: Regenesys), Vanadium Redox, Zink Bromid. Tulajdonságaik a következő táblázatban láthatók: 28
29 6.7. ábra. A Redox Flow Cell akkumulátor sematikus felépítése. Az elektródák tisztán csak az átáramló elektrolitok közti ion átvitelt szolgálják. Így alapvetően nincs mélykisütési jelenség. Az energiatárolás az elektrolitban történik. Így a teljesítmény és az energia egymástól függetlenül befolyásolható. 29
30 Hatásfok: Az AC-AC eredő hatásfok 60-80% között van a típustól és a töltésikisütési ciklus gyakoriságától függően. A Flow Battery-nél a hatásfok inkább 70% felett van: Vanadium Redox: 75% Zink bromide: 70% Installálási példák: Zinc Bromide 400kWh Battery, Advanced BESS - Host Detroit Edison (Sandia-Satcom-ZBB) VRB (Redox) 250 kw/520 kw/hr Battery (installed in 2000) VESS- Stellenbosch University, RSA. ESKOM Partner. Pacificorp - 250kW/2000kW/hr (8 hr) Mobile Unit (July 2002) Ni Cad-40 MW BESS - Largest Battery for Alaska. (GVEA) 30
31 Hidrogén alapú energiatárolás (kémiai energia tárolás) Működési elv, mechanizmus: Villamos energiából elektrolízis útján hidrogén állítható elő. Tartályban tárolható. Előnyök: Nagyon tiszta üzemanyag, az energiatermelés mellékterméke a víz. Környezetbarát. Nagy energiasűrűség. A teljes teljesítményskála átfogható vele. A teljes energiaskála átfogható vele. A tárolási idő több hónap is lehet. A rendszer töltési sebessége, kisütési sebessége és tárolási kapacitása egymástól függetlenül megválaszthatók. Moduláris konstrukcióra alkalmas, lehetővé téve további modulok hozzáadását, a rendszer újrakonfigurálását. A hidrogén egyéb célokra is használható (pl. járművekben). Flexibilisen használható akár helyhez kötött, akár hordozható kivitelben.
32 Hátrányok: A hidrogén technológia egyes elemei még kidolgozásra várnak. Költséges. Alacsony nyomás alatti elektrolízissel az eredő hatásfok alacsony, 30-40% körüli. Tőkeigénye: Nagy tőkeigény elsősorban a még kidolgozatlan technológiák miatt. Fejlesztési irányok: Magas nyomású elektrolízis technológiájának kidolgozása. Az üzamanyagcellák fejlesztése, elsősorban a reverzibilis működés irányában. Megbízható, biztonságos (bár ezt néhányan megkérdőjelezik), olcsó tároló rendszer. Hatásfok: Alacsony nyomású elektrolízissel az eredő hatásfok alacsony, 30-40% körüli. Magas nyomású elektrolízissel ezt 60-85% körül várják. 32
33 6.6. Termikus energiatárolás Ebben az esetben az energiát hő formájában tároljuk, pl. ellenállásos melegítéssel hővé alakítva a villamos energiát. Ennek viszonylag alacsony a hatásfoka. A levegősűrítéssel szokták kombinálni, tárolva a sűrítéskor keletkező hőt. 33
34 6.7. Elektromos energiatárolás: Szuper kapacitás (ultrakapacitás, Electric Double Layer Capacitor: EDLC) Működési elv, mechanizmus: Ez az egyetlen módszer, amely közvetlenül villamos energiát tárol, kondenzátorban. A tárolt CU 2 /2 energia arányos a kondenzátor kapacitásával, az pedig a geometriai méretektől függ, a felület nagyságával nő. Előnyök: Kis méret. Jelentősen gyorsabban tölthetők, mint a hagyományos akkumulátorok. Az újratöltések száma csaknem végtelen, élettartama hosszú. Alacsony hőfokon is működőképes (akár -25C fokig). 34
35 35
36 Hátrányok: Egy cella feszültsége 2V környékén van. Soros kapcsolással növelhető az eredő feszültség, de a modulfeszültség biztonsági okokból most még V környékén van. Tárolási képesség viszonylag kicsi: kisebb mint 100kW. Rövid idejű energiaszolgáltatásra képes: 10s körül. Tőkeigénye: Nincs adat. Fejlesztési irányok: Más energiatárolási módokkal való integrálás. Nagy feszültségű kialakítás fejlesztése. Hatásfok: A közvetlen elektromos energiatárolás miatt magas az eredő hatásfok: 86%. 36
37 6.8. Az ismertetett energiatárolási módszerek összehasonlítása Típus Altípus Jellemző: Ár (energiára vetített) $/kwh Ár (teljesítményre vetítve) $/kw Kisütési hatásfok Kis sebességű Lendkerék Nagy sebességű Szivattyús tározó Levegő sűrítés SMES Akkumulátor Ultrakapacitás Hagyományos Flow cell 300 [4] [4] 10 [4] 3 [4] 500 [4] 200 [4] [4] 280 [4] 350 [4] [5] 1000 [1] 600 [4] 400 [1] 425 [4] 300 [4] >300 [5] 250 [4] [5] 300 [4] 90% [4] 93% [4] 87% [4] 79% [4] 95% [4] 85% [4] 95% [4] Eredő hatásfok 80-85% [1] 89 [3] 70-80% [1] 75 [2] Tárolási idő 20s-20min [3] 3min-3nap [3] Teljesítmény tartomány MW Energia sűsűség 0,001-0,25 [1] [2] [4] 85 [1] 21% [5] 20min-3nap [3] [1] [2] >100 [4] kwh/kg [10] Ciklus élettartam (db) >10000 [10] >10000 [10] >10000 [10] Élettartam (év) 60-80% [3] [4] 60-80% [3] 86 [3] Hirogén +üzemanyagcella** 30-50* [3] 65-85%** [3] 20s [3] 20s-8h [3] 20s-3nap [3] 20s [3] 3h-4hó [3] 1-3 [1] 1-2 [2] több 10 [1,4] 75 [3] -0,1 [1,2] 10 ~28 ~25 ~ pár1000 [4] >20 [5] 20-ig [5] 3-5 [5] Pár 1000 [10] >10000 [10] 60-85** [1] 75 **[3] több 10** [4] 37
38 Ár összehasonlítás 6.8. ábra. Egyenértékű éves költségek összehasonlítása. 38 Az egyenértékű költségek alapján történő összehasonlítás szerint a legolcsóbbak a levegősűrítés és a vízszivattyúzás technológiái, míg a legdrágábbaknak a NiCd és a ZnBr akkumulátorok adódnak.
39 ábra. Beruházási költségek a fajlagos teljesítmény-energia síkon.
40 6.10. ábra. Az energiatárolás költségeinek összehasonlítása. 40 Megkönnyíti az összehasonlítást, ha az energiatárolás költségét fejezzük ki a különféle tárolási módokra a visszanyert energiára vonatkoztatva. Csak a legolcsóbb technológiákat ábrázolták.
41 6.11. ábra. A különféle energiatárolási technológiák összehasonlítása a ciklusonkénti költségek alapján. 41 Az összehasonlítás egyik legjobb szempontja lehet a ciklusonkénti költség gyakori ciklusok esetén. A vízszivattyúzás és a CAES itt is az alacsonyabb költségek tartományában van, a NiCd pedig ilyen szempontból is drága.
42 Műszaki paraméterek összehasonlítása ábra. A különféle energiatárolási technológiák alkalmazási területére vetített spektruma a teljesítmény és kisütési idő dimenziókban. 42
43 6.13. ábra. A különféle energiatárolási technológiák teljesítmény spektruma. 43
44 ábra. A különféle energiatárolási technológiák összehasonlítása a fajlagos súly és méret alapján.
45 6.15. ábra. A különféle energiatárolási technológiák összehasonlítása a ciklus élettartam (80% kisütési mélység ciklusokra) és a hatásfok alapján. 45
46 Irodalomjegyzék 46 [6.1] Robert B. Schainker: Executive Overview: Energy Storage Options For A Sustainable Energy Future, IEEE, Electric Power Research Institute (EPRI) [6.2] Juan Manuel Carrasco, Leopoldo Garcia Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso: Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 53, NO. 4, AUGUST pp [6.3] John P. Barton and David G. Infield: Energy Storage and Its Use With Intermittent Renewable Energy, IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 19, NO. 2, JUNE pp [6.4] Advanced Electricity Storage Technologies Programme. Energy Storage Technologies: A Review Paper, Dec. 2005, Dept. Environ. Heritage, Australian Greenhouse Office. [Online]. Available: [6.5] Robert Hebner and Joseph Beno: Flywheel Batteries Come Around Again, IEEE Spectrum, April pp [6.6] James A. McDowall: Opportunities for Electricity Storage in Distributed Generation and Renewables, IEEE, Saft America Inc. [6.7] The wind resource. [6.8] Energy Storage. Why so few pay attention (and what we can do about it) Presented at EESAT 2005, San Francisco by Jason Makansi, President, Pearl Street Inc. [6.9] [6.10]
Hálózati akkumulátoros energiatárolás merre tart a világ?
Hálózati akkumulátoros energiatárolás merre tart a világ? Az akkumulátoros hálózati energiatárolás jelene és jövője 2013. április 11., Óbudai Egyetem Hartmann Bálint Budapesti Műszaki és Gazdaságtudományi
Megújuló energiaforrások
Megújuló energiaforrások Energiatárolási módok Marcsa Dániel Széchenyi István Egyetem Automatizálási Tanszék 2015 tavaszi szemeszter Energiatárolók 1) Akkumulátorok: ólom-savas 2) Akkumulátorok: lítium-ion
Szuper kondenzátorok és egyéb tároló elemek alkalmazása az intelligens villamos energia hálózaton
Szuper kondenzátorok és egyéb tároló elemek alkalmazása az intelligens villamos energia hálózaton MAGYARREGULA - MEE Herbert Ferenc 2012. Március 21. Egy régi álom a palackba zárt villámok energiája ENERGIA
NAPJAINK VILLAMOSENERGIA TÁROLÁSA -
NAPJAINK VILLAMOSENERGIA TÁROLÁSA - MEGÚJULÓK HÁLÓZATRA CSATLAKOZTATÁSA Herbert Ferenc 2007. augusztus 24. Egy régi álom a palackba zárt villámok energiája ENERGIA TÁROLÁS Egy ciklusban eltárolt-kivett
Energiatárolási lehetőségek és megvalósítás
Energiatárolási lehetőségek és megvalósítás Béres Lili tanácsadó Bükk-Térségi LEADER Egyesület 2013. május 16. Energiatárolási lehetőségek Energiatárolási lehetőségek mérettartomány szerint Nagy teljesítmény
OKOS HÁLÓZATOK ENERGIA TÁROLÁSI NEHÉZSÉGEI
OKOS HÁLÓZATOK ENERGIA TÁROLÁSI NEHÉZSÉGEI TÁMOP-4.2.2/B-10/1-2010-0020 Tudományos képzési műhelyek támogatása és a tehetséggondozás rendszerének kialakítása az Óbudai Egyetemen Magyar rendszerterhelés
Az energiatárolás mindennapok technológiája a jövőből Dr. Pálfi Géza. Okos Jövő Innovációs Klaszter 2014. November 11.
Az energiatárolás mindennapok technológiája a jövőből Dr. Pálfi Géza Okos Jövő Innovációs Klaszter 2014. November 11. Tartalomjegyzék 1.A villamos-energia tárolásának okai 2.Energiatárolási módszerek osztályozása
- HTTE - Hidrogéntermelı tároló egység (járművek meghajtásához) Szerzı:
- HTTE - Hidrogéntermelı tároló egység (járművek meghajtásához) Szerzı: Dr. Kulcsár Sándor Accusealed Kft. Az energiatermelés problémája a tárolás. A hidrogén alkalmazásánál két feladatot kell megoldani:
Energiatárolás szerepe a jövő hálózatán
Energiatárolás szerepe a jövő hálózatán Horváth Dániel 60. MEE Vándorgyűlés, Mátraháza 1. OLDAL Tartalom 1 2 3 Európai körkép Energiatárolás fontossága Decentralizált energiatárolás az elosztóhálózat oldaláról
Az energiatározók hazai perpektívái
Az energiatározók hazai perpektívái Dr. Kádár Péter kadar.peter@kvk.uni-obuda.hu Energiatározás - 2014.11.26. - ÓE KVK 1 Vázlat Technológiák paraméterei Technológiák áttekintése Módszertan Költség összehasonlítás
Napenergia rendszerek létesítése a hazai és nemzetközi gyakorlatban
Napenergia rendszerek létesítése a hazai és nemzetközi gyakorlatban Tóth Boldizsár elnök, Megújuló Energia Szervezetek Szövetsége I. MMK Energetikai Fórum NAPERŐMŰVEK TERVEZŐINEK FÓRUMA 2018. május 25-27.
Energia-tároló rendszerek egyedi alkalmazása XIX. Főenergetikusi és Innovációs Szeminárium 2012. május 9-10-11. Roóz Csaba, Metalcom Zrt. 1 Agenda A prezentáció témái VRB Technológia Egyedi alkalmazások
ENERGIATÁROLÁSI LEHETŐSÉGEK VIZSGÁLATA A VONTATÁSI VILLAMOSENERGIA- ELLÁTÁSBAN
ENERGIATÁROLÁSI LEHETŐSÉGEK VIZSGÁLATA A VONTATÁSI VILLAMOSENERGIA- ELLÁTÁSBAN Előadó: Novák Mátyás műszaki szakértő, okl.villamosmérnök, doktorandusz MÁV Zrt. PVÜF Technológiai Központ BME-AAIT ÖSSZEFOGLALÁS
E-mobilitás konferencia és mérnöki kamarai szakmai továbbképzés AUTOMOTIVE Hungary október 18., Budapest. Tompos András
E-mobilitás konferencia és mérnöki kamarai szakmai továbbképzés AUTOMOTIVE Hungary 2107. október 18., Budapest Energiatárolás problémái és lehetőségei Tompos András MTA TTK Anyag- és Környezetkémiai Intézet
Megújuló energiák szerepe a villamos hálózatok energia összetételének tisztítása érdekében Dr. Tóth László DSc - SZIE professor emeritus
Megújuló energiák szerepe a villamos hálózatok energia összetételének tisztítása érdekében Dr. Tóth László DSc - SZIE professor emeritus 2017. Október 19. 1 NAPJAINK GLOBÁLIS KIHÍVÁSAI: (közel sem a teljeség
A villamos energiát termelő erőművekről. EED ÁHO Mérnökiroda 2014.11.13
A villamos energiát termelő erőművekről EED ÁHO Mérnökiroda 2014.11.13 A villamos energia előállítása Az ember fejlődésével nőtt az energia felhasználás Egyes energiafajták megtestesítői az energiahordozók:
Aktuális kutatási trendek a villamos energetikában
Aktuális kutatási trendek a villamos energetikában Prof. Dr. Krómer István 1 Tartalom - Bevezető megjegyzések - Általános tendenciák - Fő fejlesztési területek villamos energia termelés megújuló energiaforrások
SZÉL A KIMERÍTHETETLEN ENERGIAFORRÁS
SZÉL A KIMERÍTHETETLEN ENERGIAFORRÁS MEGÚJULÓ ENERGIAFORRÁSOK Napenergia Vízenergia Szélenergia Biomassza SZÉL TERMÉSZETI ELEM Levegő vízszintes irányú mozgása, áramlása Okai: eltérő mértékű felmelegedés
Energiatárolás sűrített levegővel
AZ ENERGIAGAZDÁLKODÁS ALAPJAI 1.4 2.5 Energiatárolás sűrített levegővel Tárgyszavak: sűrített levegő; energiatárolás; turbina; rekuperátor; elektromos hálózat; optimális üzemeltetés. Nagy mennyiségű elektromos
AIRPOL PRM frekvenciaváltós csavarkompresszorok. Airpol PRM frekvenciaváltós csavarkompresszorok
Airpol PRM frekvenciaváltós csavarkompresszorok Az Airpol PRM frekvenciaváltós csavarkompresszorok változtatható sebességű meghajtással rendelkeznek 50-100%-ig. Ha a sűrített levegő fogyasztás kevesebb,
Az energiatárolás mindennapok technológiája a jövőből Dr. Pálfi Géza. MVM Energia Akadémia 2015. Október 15.
Az energiatárolás mindennapok technológiája a jövőből Dr. Pálfi Géza MVM Energia Akadémia 201 Október 1 Tartalomjegyzék 1 2 A villamos-energia tárolásának okai Energiatárolási módszerek osztályozása 3
Megtermelni és megtartani Energiatárolás felsőfokon
Megtermelni és megtartani Energiatárolás felsőfokon Energia interdiszciplináris workshop ATOMKI Dr Vajda István egyetemi tanár Óbudai Egyetem Automatika Intézet vajda@uni-obuda.hu Tartalom Mozgatóerők
Hidrogén alapú villamosenergia-tárolás szigetüzemű rendszerekben. Milánkovich Attila, E.ON Hungária
Hidrogén alapú villamosenergia-tárolás szigetüzemű rendszerekben Milánkovich Attila, E.ON Hungária 2018.09.27 Mire keresünk megoldást? A részben, vagy egészben autonóm működésű, fogyasztó/termelő/tároló
Feszültségletörés és emelkedés Definíciók, keletkezés, szabványok. MMK tanfolyam 2005. őszi félév Villamos hálózatok Dr.
Feszültségletörés és emelkedés Definíciók, keletkezés, szabványok MMK tanfolyam 2005. őszi félév Villamos hálózatok Dr. Dán András Feszültségletörés Definició Mérési eljárás Kiértékelés Okozott problémák
TARTALOMJEGYZÉK. Előszó 9
TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha
Szivattyús tározós erőmű modell a BMF KVK Villamosenergetikai Intézetében
Szivattyús tározós erőmű modell a BMF KVK Villamosenergetikai Intézetében Dr. Kádár Péter BMF KVK Villamosenergetikai Intézet kadar.peter@kvk.bmf.hu Kulcsszavak: Szivattyús energiatárolás, Pelton turbina
Őrtechnológia a gyakorlatban
Őrtechnológia a gyakorlatban ENERGIAFORRÁSOK II. Akkumulátorok, elemek, peltier elemek Szimler András BME HVT, Őrkutató Csoport, 708.labor Li alapú akkumulátorok Li-ion Mechanikailag erısebb Szivárgásveszély
Kisebb napelemes alkalmazásokra a kompakt alternatíva.
Kisebb napelemes alkalmazásokra a kompakt alternatíva. A Sonnenschein szolár-akkumulátorok speciálisan a kis és közepes teljesítménykövetelmények kielégítésére szolgálnak a szabadidős és fogyasztói használat
Dr.Tóth László
Szélenergia Dr.Tóth László Dr.Tóth László Dr.Tóth László Dr.Tóth László Dr.Tóth László Amerikai vízhúzó 1900 Dr.Tóth László Darrieus 1975 Dr.Tóth László Smith Putnam szélgenerátor 1941 Gedser Dán 200 kw
Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A
Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.
PCS100 UPS-I Ipari felhasználási célú UPS
DMPC LV Power Conditioning, 09/2015 PCS100 UPS-I Ipari felhasználási célú UPS 2UCD120000E028 rev A September 25, 2015 Slide 1 PCS100 UPS-I, Ipari felhasználási célú UPS A létesítményét tápláló energiaellátás
Regionális nemzeti nemzetközi energiastratégia
Klima- und Energiemodellregion ökoenergieland Regionális nemzeti nemzetközi energiastratégia Energiastratégia Ökoenergetikai Modellrégió Cél: energetikai önellátás 2015-ig Burgenland -Bglandi Energiaügynökség
II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 7. Villamosenergia termelés, szállítás, tárolás Hunyadi Sándor
A 2015. LVII-es energiahatékonysági törvényben meghatározott auditori és energetikai szakreferens vizsga felkészítő anyaga II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 7. Villamosenergia
ELOSZTOTT ENERGIA TÁROLÁS BMF KANDÓ EKH
ELOSZTOTT ENERGIA TÁROLÁS BMF KANDÓ EKH Herbert Ferenc 2006. november 30. Egy régi álom a palackba zárt villámok energiája ENERGIA TÁROLÁS Egy ciklusban eltárolt-kivett villamosenergia E be > E ki P ki
Az E.ON hálózati célú energiatároló projektjének bemutatása
Táczi István E.ON Hálózati Innovációs Osztály 2018.04.04. Az E.ON hálózati célú energiatároló projektjének bemutatása Feszültségszabályozás az elosztóhálózaton REKK Energy Storage Day 2 Az energiatárolás
Szünetmentes áramellátás lendkerekes energiatárolással
BME OMIKK ENERGIAELLÁTÁS, ENERGIATAKARÉKOSSÁG VILÁGSZERTE 45. k. 10. sz. 2006. p. 54 61. Korszerű energetikai berendezések Szünetmentes áramellátás lendkerekes energiatárolással A lendkerék ősidők óta
Elektrotechnika 9. évfolyam
Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.
Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai
Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.
A nap- és szélerőművek integrálásának kérdései Európában. Dr. habil Göőz Lajos professor emeritus egyetemi magántanár
A nap- és szélerőművek integrálásának kérdései Európában Dr. habil Göőz Lajos professor emeritus egyetemi magántanár A Nap- és szél alapú megújuló energiaforrások nagyléptékű integrálása az országos és
MOTOR HAJTÁS Nagyfeszültségű megszakító
Forradalom a megszakító technológiában MOTOR HAJTÁS Nagyfeszültségű megszakító ABB HV Products - Page 1 Mi az a Motor Hajtás? ABB HV Products - Page 2 Energia Átvitel Energia Kioldás Energia Tárolás Energia
Toyota Hybrid Synergy Drive
Toyota Hybrid Synergy Drive PRIUS prior, to go before Ahead of its time Jövő járműve Toyota Hybrid Synergy Drive Mi a hibrid járm? Bels égés motor + villamosmotor = Hibrid Hibrid Rendszerek Osztályai Visszatekintés
Elektromos busz szakmai tanácskozás Jeránek Tamás, divízió vezető Process Industry and Drives
Elektromos busz szakmai tanácskozás 2017.04.19. Jeránek Tamás, divízió vezető Process Industry and Drives Restricted Siemens AG 2017 siemens.tld/keyword Az elektromos meghajtás alapüzletünk 170 éves tapasztalat
BINÁRIS GEOTERMIKUS ERŐMŰVEK TECHNOLÓGIAI FEJLŐDÉSE 1990- TŐL NAPJAINKIG
BINÁRIS GEOTERMIKUS ERŐMŰVEK TECHNOLÓGIAI FEJLŐDÉSE 1990- TŐL NAPJAINKIG Készítette: Koncz Ádám PhD hallgató Miskolci Egyetem Kőolaj és Földgáz Intézet Kutatás és innováció a magyar geotermiában Budapest,
2. Mágneskapcsolók: NC1-es sorozat
2. Mágneskapcsolók: NC1-es sorozat Alkalmazási terület: A mágneskapcsolót egyen- vagy váltakozó feszültséggel vezérelve kapcsolhatunk max. 6VAC névleges feszültségű és 95A névleges áramú áramkört. A készülék
Az enhome komplex energetikai megoldásai. Pénz, de honnan? Zalaegerszeg, 2015 október 1.
Az enhome komplex energetikai megoldásai Pénz, de honnan? Zalaegerszeg, 2015 október 1. Az energiaszolgáltatás jövőbeli iránya: decentralizált energia (DE) megoldások Hagyományos, központosított energiatermelés
Hozzájárulás a virtuális erőmű építéséhez: Tartályos PB gáz felhasználás teljes kiváltása az ASA Gyáli telephelyén
Service for the Future Hozzájárulás a virtuális erőmű építéséhez: 13,33 kw Tartályos PB gáz felhasználás teljes kiváltása az ASA Gyáli telephelyén Kőfalusi Viktor ASA Magyarország, László Tamás AEE Magyar
Két szóból kihoztuk a legjobbat... Altherma hibrid
Két szóból kihoztuk a legjobbat... Altherma hibrid Elromlott a gázkazánom és gyorsan ki kell cserélnem Az ügyfelek elvárásai szeretnék hőszivattyút használni, de azt hallottam, hogy nem lenne hatékony
Effects and opportunities of supplying electric vehicles by public charging stations
Effects and opportunities of supplying electric vehicles by public charging stations MEE Diplomaterv pályázat II. helyezett - 2012 Vereczki György BME Villamos Energetika Tanszék Konzulensek: Prikler László
Vegyünk elektromos buszt! De milyet? Dorner Lajos
Vegyünk elektromos buszt! De milyet? Dorner Lajos Debrecen, 2018. május 31. Milyen járművet szeretne a város?* Elvárások: Fenntartható közlekedés élhetőbb város, környezetbarát, lehetőleg zéró emissziós
TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra
TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd
SOLART-SYSTEM KFT. Napenergiás berendezések tervezése és kivitelezése. 1112 Budapest XI. Gulyás u. 20 Telefon: 2461783 Telefax: 2461783
30 ÉV Napenergiás berendezések tervezése és kivitelezése Több napelem, több energia Csak egyszer kell megvenni, utána a villany ingyen van! 1m 2 jóminőségű napelem egy évben akár 150 kwh villamos energiát
Napenergiás helyzetkép és jövőkép
Napenergiás helyzetkép és jövőkép Varga Pál elnök MÉGNAP Egyesület Napkollektoros és napelemes rendszerek (Magyarországon) Napkollektoros és napelemes rendszerek felépítése Hálózatra visszatápláló napelemes
Megújuló energia, megtérülő befektetés
Megújuló energia, megtérülő befektetés A megújuló energiaforrás fogalma Olyan energiaforrás, amely természeti folyamatok során folyamatosan rendelkezésre áll, vagy újratermelődik (napenergia, szélenergia,
MMT Magyar Megújuló Energia Technológia Szolgáltató Zrt. Medgyesegyházi projektterv bemutatása
MMT Magyar Megújuló Energia Technológia Szolgáltató Zrt Medgyesegyházi projektterv bemutatása 2011 Az MMT Zrt bemutatása Megújuló energia projektekbe történő befektetések, fejlesztések és kivitelezések
www.electromega.hu AZ ELEKTROMOS AUTÓZÁS ELŐNYEI, JÖVŐJE
AZ ELEKTROMOS AUTÓZÁS ELŐNYEI, JÖVŐJE MI AZ AUTÓK LÉNYEGE? Rövid szabályozott robbanások sorozatán eljutni A -ból B -be. MI IS KELL EHHEZ? MOTOR melyben a robbanások erejéből adódó alternáló mozgást először
Napenergia kontra atomenergia
VI. Napenergia-hasznosítás az épületgépészetben és kiállítás Napenergia kontra atomenergia Egy erőműves szakember gondolatai Varga Attila Budapest 2015 Május 12 Tartalomjegyzék 1. Napelemmel termelhető
Szabó Mihály. ABB Kft., 2013/05/09 Energiahatékonyság és termelékenység a hálózati csatlakozástól a gyártási folyamatokig
Szabó Mihály. ABB Kft., 2013/05/09 Energiahatékonyság és termelékenység a hálózati csatlakozástól a gyártási folyamatokig May 15, 2013 Slide 1 Tartalomjegyzék Energiahatékonyság Termelés és átvitel Smart
A fóti Élhető Jövő Park üzemeltetési tapasztalatai, a termelés és a fogyasztás jellegzetességei
A fóti Élhető Jövő Park üzemeltetési tapasztalatai, a termelés és a fogyasztás jellegzetességei MEE 61. Vándorgyűlés 2014.09.11. Kertész Dávid ELMŰ Nyrt. Tartalom 1 2 3 4 5 6 Projekt célja Élhető Jövő
Lítium Ion Akkumulátor Fejlesztések. Dr. Nagy László 1
Lítium Ion Akkumulátor Fejlesztések Dr. Nagy László Az EnerSys több, mint 25%-os részesedésével globális piacvezető ipari akkumulátor gyártó Németország 3 Lengyelország Csehország USA 8 Mexikó 3 Argentína
Major Ferenc részlegvezető ACIS Benzinkúttechnika kft.
Kompresszor állomások telepítésének feltételei, hatósági előírások és beruházási adatok. Gázüzemű gépjárművek műszaki kialakítása és az utólagos átalakítás módja Major Ferenc részlegvezető ACIS Benzinkúttechnika
Mágneses hűtés szobahőmérsékleten
TECHNIKA Mágneses hűtés szobahőmérsékleten Tárgyszavak: mágnes; hűtés; magnetokalorikus hatás; gadolínium. Már 1881-ben kimutatta E. Warburg német fizikus, hogy bizonyos anyagok felmelegednek, ha mágneses
Nap-, szél- és geotermikus energiák, biomassza-hasznosítás a IV. Megújuló Energia Szakmai Napon
Sűrű és gyorsan pergő szakmai programon vett részt az a több mint 200 épületgépész és villamos szakember, akik a MÉGSZ által szervezett szakmai napra ellátogattak november 15-én a budapesti Lurdy Ház konferenciaszintjére.
A NAPENERGIA FELHASZNÁLÁS ÚJ MOTORJA: A ZÖLDHŐ
A NAPENERGIA FELHASZNÁLÁS ÚJ MOTORJA: A ZÖLDHŐ HORÁNSZKY BEÁTA egyetemi tanársegéd ME GÁZMÉRNÖKI TANSZÉK OTKA Workshop, 2006. készült a OTKA T-046224 kutatási projekt keretében AZ EURÓPAI UNIÓ CÉLKITŰZÉSE...a
BETON A fenntartható építés alapja. Hatékony energiagazdálkodás
BETON A fenntartható építés alapja Hatékony energiagazdálkodás 1 / Hogyan segít a beton a hatékony energiagazdálkodásban? A fenntartható fejlődés eszméjének fontosságával a társadalom felelősen gondolkodó
E-cella Az energia rendszerek jövője
E-cella Az energia rendszerek jövője Silló Barnabás, Metalcom Zrt. HTE INFOKOM 2012 18. HTE Infokommunikációs Hálózatok és Alkalmazások Konferencia és Kiállítás Tartalom - Az energiaellátás biztonsága
rendszerszemlélet Prof. Dr. Krómer István BMF, Budapest BMF, Budapest,
A háztarth ztartási energia ellátás hatékonys konyságának nak rendszerszemlélet letű vizsgálata Prof. Dr. Krómer István BMF, Budapest BMF, Budapest, 2009 1 Tartalom A háztartási energia ellátás infrastruktúrája
Napenergiás jövőkép. Varga Pál elnök. MÉGNAP Egyesület
Napenergiás jövőkép Varga Pál elnök MÉGNAP Egyesület Fototermikus napenergia-hasznosítás Napkollektoros hőtermelés Fotovoltaikus napenergia-hasznosítás Napelemes áramtermelés Új technika az épületgépészetben
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
Energiatárolás lehetségei
Bajor József / PPMV Moduláris Rendszerek 23.02.2012. - ABB Energiatárolás lehetségei March 5, 2012 Slide 1 Energiatárolás lehetségei Tartalom Mszaki és gazdasági kényszerít erk F komponensek Alkalmazások
Savas akkumulátorok és az Ő ellenségük, az ólomszulfát.
Savas akkumulátorok és az Ő ellenségük, az ólomszulfát. Ólom akkumulátorok felépítése Működése Szulfátosodás Küzdelem az ólomszulfát ellen 2015 március 29. összeállította: HA5GY Vincze István Akkumulátorok
Kulcsszavak: ciklus, töltőáram, légcsere, térfogatáram, keresztmetszet, csepp-, és gyorstöltés
Bónusz János Akkumulátor, töltés a szükséges légcsere számítása Egyre több helyen alkalmazunk akkumulátort. Mi történik az akkumulátor töltésekor? Robbanásveszélyes-e a töltés? Hogyan kell a töltéshez
11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét
ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként
STS GROUP ZRt. FUELCELL (Hidrogén üzemanyagcellás erőművek). Előadó: Gyepes Tamás (Elnök Igazgató) Kriston Ákos. Vándorgyűlés előadás, 2009.09.11.
STS GROUP ZRt. FUELCELL (Hidrogén üzemanyagcellás erőművek). Előadó: Gyepes Tamás (Elnök Igazgató) Vándorgyűlés előadás, 2009.09.11. Kriston Ákos Tartalom Elméleti ismertetők Kriston Ákos Mi az az üzemanyagcella?
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
Az ESPAN (WP 4) Pilotprojekt zárójelentésének rövid összefoglalója: Savas ólomakkumulátor bázisú, helyhez kötött energiatároló rendszerek vizsgálata
ESPAN- Pilotprojekt: Savas ólomakkumulátor bázisú, helyhez kötött energiatároló rendszerek vizsgálata Az ESPAN (WP 4) Pilotprojekt zárójelentésének rövid összefoglalója: Savas ólomakkumulátor bázisú, helyhez
Fémöntészeti berendezések energetikai értékelésének tapasztalatai
RACIONÁLIS ENERGIAFELHASZNÁLÁS, ENERGIATAKARÉKOSSÁG 3.1 4.1 4.6 Fémöntészeti berendezések energetikai értékelésének tapasztalatai Tárgyszavak: hőveszteségek csökkentése; termikus hatásfok; rekuperátor;
A következő nagy dobás, az energiatárolás. Beöthy Ákos
A következő nagy dobás, az energiatárolás Beöthy Ákos Kutató főmunkatárs Clean Energy & Disruptive Trends Summit 2018 2018. június 7. Az energiatárolás jelentősége Dekarbonizáció: elősegíti a megújuló
A napenergia alapjai
A napenergia alapjai Magyarország energia mérlege sötét Ahonnan származik Forrás: Kardos labor 3 A légkör felső határára és a Föld felszínére érkező sugárzás spektruma Nem csak az a spektrum tud energiát
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Megújuló energiaforrások hasznosítása a járműiparban
Mobilitás és Környezet Konferencia Magyar Tudományos Akadémia Budapest, 2012. január 23. Megújuló energiaforrások hasznosítása a járműiparban Hangos Katalin, Magyar Attila, Görbe Péter, Göllei Attila Pannon
Energia Műhely 3. A hazai napkollektoros szakma jelene és jövője. Körkép a megújuló energiák alkalmazásáról. Varga Pál elnök
Energia Műhely 3. Körkép a megújuló energiák alkalmazásáról A hazai napkollektoros szakma jelene és jövője Magyar Épületgépészek Napenergia Szövetsége Varga Pál elnök Az Európai napkollektoros piac benne
Intézményrendszernek végzett munkák
Boza Pál HDI Consulting Kft. 2013. október 29. Budapest HDI Consulting Kft. Intézményrendszernek végzett munkák KEOP IH számára pályázati konstrukciók előkészítése pl. KEOP 4.3.1 Norvég Alap energiahatékonysági
Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok
Elektrotechnika 11/C Villamos áramkör A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 01 Automatikai technikus
Villamos forgógép fejlesztések a Hyundai Technologies Center Hungary kft-nél. Hyundai Technology Center Hungary Ltd
Villamos forgógép fejlesztések a Hyundai Technologies Center Hungary kft-nél A Hyundai Heavy Industries bemutatása SHIPBUILDING OFFSHORE & ENGINEERING INDUSTRIAL PLANT & ENGINEERING ELECTRO ELECTRIC SYSTEMS
MAGYAR KAPCSOLT ENERGIA TÁRSASÁG COGEN HUNGARY. A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag
? A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag Tartalom MAGYAR KAPCSOLT ENERGIA TÁRSASÁG A biogáz és a fosszilis energiahordozók A biogáz felhasználásának
Napenergia hasznosítás
Fókusztéma - üzemeltetőknek Napenergia hasznosítás Szoláris potenciál (éves szoláris hozam) Fa Lignit Földgáz Tüzelőolaj A tájolás és a meredekség hatása az energiahozamra Tájolás (fok) Nyugat Kelet Délnyugat
Hagyományos és modern energiaforrások
Hagyományos és modern energiaforrások Életünket rendkívül kényelmessé teszi, hogy a környezetünkben kiépített, elektromos vezetékekből álló hálózatok segítségével nagyon könnyen és szinte mindenhol hozzáférhetünk
Solar-Pécs. Napelem típusok ismertetése. Monokristályos Polikristályos Vékonyréteg Hibrid
Napelem típusok ismertetése Monokristályos Polikristályos Vékonyréteg Hibrid előnyök Monokristályos legjobb hatásfok: 15-18% 20-25 év teljesítmény garancia 30 év élettartam hátrányok árnyékra érzékeny
+ 2000 MW Út egy új energiarendszer felé
+ 2000 MW Út egy új energiarendszer felé egyetemi docens Pécsi Tudományegyetem Közgazdaságtudományi Kar Stratégiai Tanulmányok Tanszéke Interregionális Megújuló Energiaklaszter Egyesület somogyv@videant.hu
Fázisváltó anyagok az energetikában
Fázisváltó anyagok az energetikában 2014.09.25. Kárpát-medencei Magyar Energetikai Szakemberek XVIII. Szimpóziuma Tartalom Fázisváltó anyagok bemutatása Felhasználás kapszulába ágyazva Folyamatban lévő
IV. Számpéldák. 2. Folyamatok, ipari üzemek Hunyadi Sándor
A 2015. LVII-es energiahatékonysági törvényben meghatározott auditori és energetikai szakreferens vizsga felkészítő anyaga IV. Számpéldák 2. Folyamatok, ipari üzemek Hunyadi Sándor 2017. 2.1 Mérés, elszámolás,
10 kwp TELJESÍTMÉNY HÁLÓZATRA DOLGOZÓ FOTOVILLAMOS RENDSZER TELEPÍTÉSI HELYSZÍNÉNEK KIVÁLASZTÁSA
10 kwp TELJESÍTMÉNY HÁLÓZATRA DOLGOZÓ FOTOVILLAMOS RENDSZER TELEPÍTÉSI HELYSZÍNÉNEK KIVÁLASZTÁSA FARKAS I. 1 - BUZÁS J. 1 - SERES I. 1 - KOCSIS L. 2 - SZCS M. 3 1 Szent István Egyetem, Fizika és Folyamatirányítási
13 Elektrokémia. Elektrokémia Dia 1 /52
13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió:
KÉTFŐTARTÓS FUTÓDARUK
KÉPVISELET EMELŐ BERENDEZÉSEK KÉTFŐTARTÓS FUTÓDARUK Elmas kétfõtartós futódaru Demag rendszer Elektromos emelõmûvel és Demag vonszolókábeles áramellátással felszerelve Teherbírás 3,2 t Fesztáv 28,8 m Emelési
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
A TISZTA SZÉN TECHNOLÓGIA ÉS AZ ENERGIATÁROLÁS EGYÜTTES LEHETŐSÉGE AZ ENERGETIKAI SZÉN-DIOXID KIBOCSÁTÁS CSÖKKENTÉSÉRE
A TISZTA SZÉN TECHNOLÓGIA ÉS AZ ENERGIATÁROLÁS EGYÜTTES LEHETŐSÉGE AZ ENERGETIKAI SZÉN-DIOXID KIBOCSÁTÁS CSÖKKENTÉSÉRE dr. habil. Raisz Iván Vizsgáljuk meg, hogy e négy szereplőcsoportból összeállt rendszer
Erőművi technológiák összehasonlítása
Erőművi technológiák összehasonlítása Dr. Kádár Péter peter.kadar@t-online.hu 1 Vázlat Összehasonlítási szempontok - Hatásfok - Beruházási költség - Üzemanyag költség - CO2 kibocsátás - Hálózati hatások