KONDUKTOMETRIÁS MÉRÉSEK
|
|
- Alexandra Székely
- 8 évvel ezelőtt
- Látták:
Átírás
1 KON KONDUKTOMETRIÁS MÉRÉSEK A GYAKORLAT CÉLJA: A konduktometria alapjainak megismerése. Elektrolitoldatok vezetőképességének vizsgálata. Oxálsav titrálása N-metil-glükamin mérőoldattal, modern konduktometriás műszerrel való végpontjelzés mellett. A MÉRÉSI MÓDSZER ALAPELVEI Az analitikai kémiában a konduktometriás módszerrel elektrolitoldatok elektromos vezetőképességét mérjük, és ebből illetve ennek kémiai reakciók hatására bekövetkező változásaiból származtatunk analitikai információkat. Az anyagok vezetőképességén (jele G, mértékegysége a siemens, S) az elektromos (ohmikus) ellenállásuk (jele R, mértékegysége az ohm, Ω) reciprokát értjük. Az elektromos vezetéshez olyan töltéshordozók (pl. elektronok, ill. anionok és kationok) jelenléte szükséges, amelyek képesek arra, hogy az elektromos tér hatására elmozduljanak. Ennek alapján különböztetünk meg elektromos vezetőket és szigetelőket. A tiszta víz, mivel benne töltéshordozók csak igen kis, az autoprotolízisnek megfelelő [H + ] = [OH ] 10 7 mol/l koncentrációban vannak jelen, csak nagyon kis mértékben vezeti az elektromos áramot, szigetelőnek tekinthető. Elektrolitok vizes oldataiban azonban a kationok és anionok koncentrációja jelentős lehet, emiatt azok az elektrolitikus disszociáció mértékétől függően többnyire vezetők. Ha egy elektrolit oldatba két azonos méretű, sík felületű, párhuzamos elektródlap (pl. Pt-lap) merül, amelyek felületének nagysága A, a köztük levő távolság pedig l, akkor az így kapott vezetőképességi cellára igaz, hogy G = 1 R A = κ = l κ K tehát a vezetőképessége egyenesen arányos A-val és fordítottan arányos l-lel. Az A/l hányados reciprokát (K), ami a vezetőképességi cella alakjától (geometriai kiképzésétől) függő mennyiség, cellaállandónak is nevezzük. A fenti kifejezés magában foglal egy, az adott elektrolitoldatra jellemző κ arányossági tényezőt is, az ún. fajlagos (egyes könyvekben specifikus) vezetőképességet, ami megadja a két, egységnyi (1 cm 2 ) felületű, egymástól egységnyi távolságra (1 cm-re) levő elektród között levő elektrolitoldat vezetőképességét
2 (vegyük észre a fenti és a fémes vezetők ohmikus ellenállását definiáló, a középiskolában tanult egyenletek közötti analógiát!). Egy kétkomponensű (tehát egy oldószerből és egy elektrolitból álló) oldat vezetőképessége az oldatban levő kationok és anionok vezetőképességeinek összegeként számítható, a többkomponensű (kettő vagy több elektrolitot tartalmazó) oldatoké pedig az egyes elektrolitok vezetőképességeinek összegeként adható meg. Az oldatok vezetőképessége tehát additív tulajdonság. A vezetőképesség nyilvánvalóan függ az oldat térfogategységében levő ionok számától (tehát a koncentrációtól), valamint az ionok mozgékonyságától (vagyis attól a sebességtől, amellyel egy adott ion az elektromos tér hatására mozogni képes). A koncentráció hatásának figyelembevételére vezették be az ekvivalens (egyes könyvekben moláris fajlagos) vezetőképesség (Λ) fogalmát, amely κ Λ = 1000 c Az elektrolitoldatok ekvivalens vezetőképessége a tapasztalatok szerint egy kissé függ a koncentrációtól. Ennek az az oka, hogy a töltéshordozók véges koncentrációjú oldatokban egymás elektrosztatikus (vonzó ill. taszító) terében kénytelenek mozogni. Az ionok egymástól teljesen függetlenül csak végtelen híg oldatokban vándorolnak. Az ilyen oldatokra (nulla koncentrációra történő extrapolációval) megadott vezetőképességi adat (Λ 0 ) már csak az elektrolit ionjaira jellemző állandó, amely értéke csak a hőmérséklettől és az oldószertől függ. Az elektromos vezetőképesség additivitása miatt a konduktometria nem szelektív módszer. Emiatt analitikai alkalmazása olyan rendszerek vizsgálatára korlátozódik, amelyek i) csak egyetlen elektrolitot tartalmaznak (tehát a háttér hozzájárulása elhanyagolható), vagy ii) olyan kémiai reakciók játszódnak le bennük, amelyek során a rendszert alkotó ionok mozgékonysága a (nem nulla háttérhez képest) jelentősen megváltozik. Emiatt pl. konduktometriás módszerrel komplexometriás ill. redoxi titrálásokat általában nem lehet követni, mert az oldat ph-jának ill. redoxipotenciáljának állandóságáért felelős puffer, ami maga is egy elektrolit, nagy mennyiségben van jelen a rendszerben, így az határozza meg az oldat vezetőképességét, és elfedi a komplexképződéssel ill. redoxi reakcióval járó vezetőképesség változást. A konduktometria gyakorlata. Konduktometriás módszerrel homogén (tiszta) elektrolitoldatok koncentrációja közvetlenül is meghatározható (direkt konduktometria), bár az ekvivalens vezetőképesség koncentrációfüggése és viszonylag nagy hőmérsékleti koefficiense miatt erre csak speciális esetekben alkalmazzák. Egy oldat vezetőképességének ismerete azonban már önmagában is értékes analitikai adat lehet, pl. a természetes vizek vezetőképessége azok összes sótartalmát jellemzi. Desztillált ill. ioncserélt víz minőségellenőrzésére, illetve vezető szennyezéseinek kimutatására szintén alkalmazható a vezetőképesség mérés (megjegyzendő azonban, hogy így csak ionos szennyeződések mutathatók ki, nyomnyi szerves szennyeződések azonban nem). Sokkal elterjedtebb a konduktometria alkalmazása titrálások végpontjelzésére (konduktometriás titrálás). Erre
3 akkor van lehetőség, ha a titrálás során az ionkoncentráció jelentősen változik, vagy állandó ionkoncentráció mellett különböző mozgékonyságú ionok cseréje játszódik le. Mindkét effektus jelentkezhet pl. a sav-bázis titrálások során. Közismert, hogy a szervetlen ionok között különleges szerepet töltenek be a hidrogén- és a hidroxidionok, ugyanis ezek mozgékonysága (különösen a H + -é) jóval nagyobb, mint a többi szervetlen ioné. Ezért, ha pl. erős savat titrálunk erős bázissal (pl. sósav és NaOH), és figyelemmel kísérjük a vezetőképesség változását, megfigyelhetjük, hogy az ekvivalenciapont előtt az oldat vezetőképessége csökken, ugyanis a reakció során a mozgékony H + ionokat lecseréljük lomhább (nagyobb méretű) Na + ionokra. Az ekvivalenciapont után viszont a feleslegben adagolt NaOH egyrészt az összionkoncentrációt növeli, másrészt nagy mozgékonyságú OH - ionokat juttat az oldatba - emiatt a vezetőképesség az ekvivalenciapont után növekedni kezd. Bonyolultabb a helyzet, ha egy gyenge savat (pl. ecetsavat) titrálunk egy erős bázissal. Kezdetben az oldat vezetőképességét az ecetsav disszociácójából származó, mozgékony protonok koncentrációja határozza meg. A lúg adagolásának hatására hidrogénionok helyett nátrium kationok jutnak az oldatba (mint az erős sav/erős lúg esetben), továbbá az ecetsav disszociációja is visszaszorul a reakció során növekvő acetátion koncentráció miatt. Mindezek miatt a vezetőképesség kezdetben csökken. Ez a csökkenés azonban a mérőoldat további adagolása hatására egyszer megáll, ugyanis az ecetsav disszociációjának teljes visszaszorulása után már a semleges ecetsavmolekulákat fogjuk lecserélni töltéshordozó acetát és nátrium ionokra - ez pedig a vezetőképesség növekedését okozza. A vezetőképességi titrálási görbe ezért minimumon áthaladva nőni kezd. Ez a növekedés az ekvivalenciapont után az előbbi bekezdésben említett okok miatt még gyorsabb lesz. A titrálási görbe utóbbi két eltérő meredekségű, közel lineáris szakaszának metszéspontjából megállapítható az ekvivalenciapont helye. A kiértékelést bizonytalanná teszi, hogy az ekvivalenciapont előtti és utáni szakaszok meredeksége közötti eltérés sokszor kicsi, vagyis a töréspont nem elég éles. Gyenge sav gyenge bázissal történő titrálása esetén a töréspont bizonytalanságából adódó hiba csökkenthető. Ezt most a gyakorlaton is végrehajtandó mérés (oxálsav N-metilglükamin bázissal történő titrálása) példáján mutatjuk be. Az oxálsav (HOOC COOH) kétbázisú sav, első protonja (pk a1 = 1,05) közepesen erős savként, míg a második (pk a2 = 3,55) gyenge savként titrálható. A titrálószerként használt N-metil-glükamin (C 6 H 11 O 5 NH CH 3 ) egy hexózamin, amely bázikus szekunder aminocsoportja révén képes protonokat megkötni (pk a = 9,20). A metil-glükamin törzsoldatának vezetőképessége elhanyagolható, mivel abban vezetésre képes részecskék csak nagyon kis koncentrációban vannak jelen. A titrálás elején az oldat vezetőképességét az oxálsav erősebben savas protonjának koncentrációja határozza meg, hiszen ekkor ez a legnagyobb mozgékonyságú ionos komponens az oldatban. A mozgékony protonok N-metil-glükaminnal reagálva kevésbé mozgékony metil-glükammónium-ionná alakulnak át, ez okozza az oldat vezetőképességének kezdeti csökkenését. Az első proton megtitrálását követően, az oxálsav második, gyengébben savas protonja a következő reakció szerint reagál: OOC COOH + C 6 H 11 O 5 NH CH 3 = OOC COO + C 6 H 11 O 5 NH 2 + CH 3
4 Látható, hogy a reakció során növekszik a töltéshordozó részecskék száma, ez pedig a vezetőképesség növekedésével jár együtt. Emiatt a titrálási görbe a kezdeti csökkenés után egy minimumon áthaladva növekedni kezd. Az ekvivalenciapontot követően, amikor a N- metil-glükamin feleslegbe kerül, az általában jelentéktelen hígulástól eltekintve már semmi olyan reakció nem játszódik le a rendszerben, ami a vezetőképesség változását okozhatná. Emiatt a vezetőképesség egy közel állandó értékre áll be. Így az ekvivalenciapont a titrálási görbén egy töréspontban jelentkezik, ami az emelkedő és a közel vízszintes szakaszra illesztett egyenesek metszéspontjából könnyen meghatározható. Az oxálsav N-metil-glükamin bázissal történő konduktometriás titrálási görbéjét az alábbi ábra mutatja be. G G (S) V (cm 3 ) a mérőoldat térfogata 1.ábra. Oxálsav N-metil-glükaminnal történő titrálása során kapott vezetőképességi titrálási görbe és kiértékelése SZÜKSÉGES ANYAGOK, ESZKÖZÖK ÉS MŰSZEREK kb. 0,1 M koncentrációjú NaCl, HCl és NaOH oldat kb. 0,1 M koncentrációjú, pontosan ismert hatóértékű N-metil-glükamin oldat Desztillált víz, csapvíz 1 db 25 cm 3 -es hagyományos büretta 1 db 100 cm 3 -es hiteles mérőlombik (az ismeretlen számára) 1 db 10 cm 3 -es hiteles pipetta 4 db 250 cm 3 -es főzőpohár (a titráláshoz és az elektród öblítéséhez) 5 db 100 cm 3 -es főzőpohár (az elektrolit oldatok vezetőképességének vizsgálatához) 1 db pipettázó labda 1 db üvegtölcsér papírtörlő
5 WPA CMD510 típusú konduktométer mérőelektróddal (K = 1,0 cm 1 ) Radelkis OP951/1 típusú mágneses keverő keverőrúddal AZ ELVÉGZENDŐ FELADATOK ÉS A FELHASZNÁLANDÓ MŰSZEREK LEÍRÁSA A konduktometriás mérőműszer. A vezetőképesség méréséhez egy WPA CMD510 típusú konduktométert használunk, amely egy vezetőképesség mérésére alkalmas elektróddal van összekapcsolva. Maga az elektród rozsdamentes acélgyűrűkkel szerelt, cellaállandója K=1,0, beépített hőmérsekletszenzorral. A mérés során lényegében az oldat elektromos ellenállását mérjük meg. Az egész cella geometriai elrendezése (tehát a cellaállandó) a mérés során nem változhat. Emiatt a vezetőképesség változását a mérés során csak az oldatösszetételben bekövetekezett változások okozhatják. Fontos megjegyezni, hogy a konduktometriás méréseket általában kisfrekvenciás váltóárammal hajtjuk végre, egyenáram alkamazása ugyanis nemkívánatos elektródfolyamatokat (pl. elektrolízist) indíthatna meg a vizsgálandó rendszerben. A műszert bekapcsoljuk az ON/OFF gombbal, ekkor a kijelzőn a következőket kell látnunk: "MEAS". A műszer ilyenkor mérőállásban van. A műszer automatikusan váltja a méréshatárt, a mért értékek 0 µs és 200 ms közé eshetnek. Direkt konduktometria. Öblítsük le alaposan az elektródot, és engedjük desztillált vízbe úgy, hogy a folyadék teljesen (légbuborékoktól mentesen) lepje el az elektródon található mindkét acélgyűrűt. Jegyezzük fel a mért értéket. Ismételjük meg a mérést csapvíz alkalmazásával. Számítsuk ki a desztillált víz és a csapvíz specifikus vezetőképességét, ha tudjuk, hogy a méréshez használt elektród cellaállandója K = 1,0 cm 1. Helyezzük az elektródot rövid időre kb. 0,1 mol/l NaCl, HCl és NaOH oldatba, és határozzuk meg mindegyik oldat vezetőképességét. Ügyeljünk arra, hogy az elektródot a mérések között, majd az utolsó mérés után is alaposan öblítsük le desztillált vízzel. Oxálsav meghatározása konduktometriás titrálással. A meghatározandó oxálsavból 100,00 cm 3 -es mérőlombikban törzsoldatot készítünk. A törzsoldat 10,00 cm 3 -es részletét 250 cm 3 -es főzőpohárba pipettázzuk, és desztillált vízzel annyira hígítjuk, hogy az oldatba merített elektród mindkét gyűrűjét elfedje a folyadék. Az oldatot mágneses keverővel kevertetjük. Kézi bürettából 0,5 cm 3 -es részletekben a 0,1 mol/l-es koncentrációjú (pontosan ismert hatóértékű) N-metil-glükamin oldatot adagolunk a rendszerhez. Minden adagolás után kb s-ot várunk, hogy az oldat homogenizálódjon, majd feljegyezzük a műszer állását. A titrálást mindaddig folytatjuk, amíg legalább hat egymást követő mérési pontban ugyanazt a vezetőképesség értéket kapjuk. A leolvasott vezetőképesség értékeket a fogyott mérőoldat térfogatának függvényében grafikonon ábrázoljuk, és a töréspont grafikus meghatározása alapján kiszámítjuk a törzsoldat koncentrációját. A meghatározás pontosságának növelése érdekében csak a töréspont körüli értékeket (pl. előtte és utána 4-5 cm 3 -rel) ábrázoljuk kinagyítva (1 cm 3 mérőoldat = 2 cm a grafikonon). A számításoknál vegyük figyelembe, hogy az oxálsav kétértékű sav! A titrálást legalább háromszor végezzük el.
6 BENYÚJTANDÓ ADATOK, EREDMÉNYEK A mért desztillált- és csapvíz, valamint NaCl, NaOH, HCl oldatok mért vezetőképessége és számított specifikus vezetőképessége és azok különbségének értelmezése az ionmozgékonyságok alapján Oxálsav N-metil-glükaminnal történő titrálásának konduktometriás titrálási görbéi Az ismeretlen oxálsav törzsoldat koncentrációja mol/l-ben és ennek precizitása KÉRDÉSEK ÉS FELADATOK ÖNÁLLÓ FELKÉSZÜLÉSHEZ 1. Adja meg a vezetőképesség definícióját és az összefüggést a vezetőképesség és az ohmikus ellenállás között! 2. Definiálja a specifikus és az ekvivalens vezetőképesség fogalmát! 3. Milyen tényezőktől függ egy elektrolitoldat vezetőképessége? 4. Miért tér el egymástól a véges koncentrációjú és végtelen híg oldat ekvivalens vezetőképessége? 5. Mit értünk direkt konduktometria alatt, és melyek annak felhasználási területei? 6. Milyen feltételek mellett alkalmazható a konduktometria titrálások végpontjelzésére? 7. Miért nem alkalmazható a konduktometria komplexometriás és redox titrálások végpontjelzésére? 8. Vázolja fel és röviden értelmezze egy erős sav-erős bázis, gyenge sav-erős bázis és egy gyenge sav-gyenge bázis titrálás konduktometriás titrálási görbéit! 9. Vázolja fel az oxálsav N-metil-glükaminnal történő, konduktometriás végpontjelzéssel végrehajtott titrálásának a titrálási görbéjét, és röviden értelmezze annak egyes szakaszait! 10. Egy 0,001 M koncentrációjú hangyasav oldat fajlagos vezetőképessége 1, ohm -1 cm -1. A végtelen hígítású hangyasavoldat ekvivalens vezetőképessége 364,5 ohm -1 cm 2 mol -1. Számítsa ki, hogy mekkora a hangyasav disszociációs állandója! (a helyes megoldás: 1, )
KONDUKTOMETRIÁS MÉRÉSEK
A környezetvédelem analitikája KON KONDUKTOMETRIÁS MÉRÉSEK A GYAKORLAT CÉLJA: A konduktometria alapjainak megismerése. Elektrolitoldatok vezetőképességének vizsgálata. Oxálsav titrálása N-metil-glükamin
Jegyzőkönyv. Konduktometria. Ungvárainé Dr. Nagy Zsuzsanna
Jegyzőkönyv CS_DU_e 2014.11.27. Konduktometria Ungvárainé Dr. Nagy Zsuzsanna Margócsy Ádám Mihálka Éva Zsuzsanna Róth Csaba Varga Bence I. A mérés elve A konduktometria az oldatok elektromos vezetésének
Ecetsav koncentrációjának meghatározása titrálással
Ecetsav koncentrációjának meghatározása titrálással A titrálás lényege, hogy a meghatározandó komponenst tartalmazó oldathoz olyan ismert koncentrációjú oldatot adagolunk, amely a reakcióegyenlet szerint
II. éves Kémia BSc szakos hallgatók. Konduktometriás mérés. Gyakorlati útmutató. Készítette: Dr. Bényei Attila tudományos főmunkatárs
II. éves Kémia BSc szakos hallgatók Műszeres analitika gyakorlat Konduktometriás mérés Gyakorlati útmutató Készítette: Dr. Bényei Attila tudományos főmunkatárs Szerkesztette: Dr. Nagy Dávid tudományos
ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :
ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra : H 2 O H + + OH -, (2 H 2 O H 3 O + + 2 OH - ). Semleges oldatban a hidrogén-ion
Elérhetőségek. Jegyzőkönyv követelmények
Elérhetőségek Lukács Diána, PhD hallgató Mérnöki Kar, Kémia Intézet, Analitikai Kémia Intézeti Tanszék C épület, 419-es szoba lukacsd@almos.uni-pannon.hu Jegyzőkönyv követelmények Csoportos jegyzőkönyv
Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel
Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel 1. Bevezetés Az elektromos ellenállás anyagi tulajdonság, melyen -definíció szerint- az anyagon áthaladó 1 amper intenzitású
ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :
ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra : H 2 O H + + OH -, (2 H 2 O H 3 O + + 2 OH - ). Semleges oldatban a hidrogén-ion
II. éves gyógyszerész hallgatók. Műszeres analitika gyakorlat. Konduktometriás mérés. Gyakorlati útmutató
II. éves gyógyszerész hallgatók Műszeres analitika gyakorlat Konduktometriás mérés Gyakorlati útmutató Készítette: Dr. Bényei Attila tudományos főmunkatárs Debreceni Egyetem Fizikai Kémiai Tanszék Debrecen,
Elektro-analitikai számítási feladatok 1. Potenciometria
Elektro-analitikai számítási feladatok 1. Potenciometria 1. Vas-só részlegesen oxidált oldatába Pt elektródot merítettünk. Ennek az elektródnak a potenciálját egy telített kalomel elektródhoz képest mérjük
Ivóvíz savasságának meghatározása sav-bázis titrálással (SGM)
Ivóvíz savasságának meghatározása sav-bázis titrálással (SGM) I. Elméleti alapok: A vizek savasságát a savasan hidrolizáló sók és savak okozzák. A savasságot a semlegesítéshez szükséges erős bázis mennyiségével
VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola
VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI ORSZÁGOS SZAKMAI TANULMÁNYI
Elektrolitok nem elektrolitok, vezetőképesség mérése
Elektrolitok nem elektrolitok, vezetőképesség mérése Név: Neptun-kód: mérőhely: Labor előzetes feladatok A vezetőképesség változása kémiai reakció közben 10,00 cm 3 ismeretlen koncentrációjú sósav oldatához
Számítások ph-val kombinálva
Bemelegítő, gondolkodtató kérdések Igaz-e? Indoklással válaszolj! A A semleges oldat ph-ja mindig éppen 7. B A tömény kénsav ph-ja 0 vagy annál is kisebb. C A 0,1 mol/dm 3 koncentrációjú sósav ph-ja azonos
Többértékű savak és bázisok Többértékű savnak/lúgnak azokat az oldatokat nevezzük, amelyek több protont képesek leadni/felvenni.
ELEKTROLIT EGYENSÚLYOK : ph SZÁMITÁS Általános ismeretek A savak vizes oldatban protont adnak át a vízmolekuláknak és így megnövelik az oldat H + (pontosabban oxónium - H 3 O + ) ion koncentrációját. Erős
Általános Kémia GY 3.tantermi gyakorlat
Általános Kémia GY 3.tantermi gyakorlat ph számítás: Erős savak, erős bázisok Gyenge savak, gyenge bázisok Pufferek, pufferkapacitás Honlap: http://harmatv.web.elte.hu Példatárak: Villányi Attila: Ötösöm
1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk?
Számítások ph-val kombinálva 1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk? Mekkora az eredeti oldatok anyagmennyiség-koncentrációja?
1.1. Reakciósebességet befolyásoló tényezők, a tioszulfát bomlása
2. Laboratóriumi gyakorlat A laborgyakorlatok anyagát összeállította: dr. Pasinszki Tibor egyetemi tanár 1.1. Reakciósebességet befolyásoló tényezők, a tioszulfát bomlása A reakciósebesség növelhető a
Hulladékos csoport tervezett időbeosztás
Hulladékos csoport tervezett időbeosztás 3. ciklus: 2012. január 16 február 27. január 16. titrimetria elmélet (ismétlés) A ciklus mérései: sav bázis, komplexometriás, csapadékos és redoxi titrálások.
Vizes oldatok ph-jának mérése
Vizes oldatok ph-jának mérése Név: Neptun-kód: Labor elızetes feladat Mennyi lesz annak a hangyasav oldatnak a ph-ja, amelynek koncentrációja 0,330 mol/dm 3? (K s = 1,77 10-4 mol/dm 3 ) Mekkora a disszociációfok?
6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban
6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.
Sav bázis egyensúlyok vizes oldatban
Sav bázis egyensúlyok vizes oldatban Disszociációs egyensúlyi állandó HAc H + + Ac - ecetsav disszociációja [H + ] [Ac - ] K sav = [HAc] NH 4 OH NH 4 + + OH - [NH + 4 ] [OH - ] K bázis = [ NH 4 OH] Ammóniumhidroxid
Titrimetria - Térfogatos kémiai analízis -
Titrimetria - Térfogatos kémiai analízis - Alapfogalmak Elv (ismert térfogatú anyag oldatához annyi ismert konc. oldatot adnak, amely azzal maradéktalanul reagál) Titrálás végpontja (egyenértékpont) Törzsoldat,
Kémia fogorvostan hallgatóknak Munkafüzet 9. hét
Kémia fogorvostan hallgatóknak Munkafüzet 9. hét Potenciometriás ph-mérés, pufferoldatok vizsgálata (154-163. oldal) Írták: Berente Zoltán, Nagy Veronika, Takátsy Anikó Szerkesztette: Nagy Veronika Név:
23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan
23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan 1. Bevezetés Sav-bázis titrálások végpontjelzésére (a mőszeres indikáció mellett) ma is gyakran alkalmazunk festék indikátorokat.
1. feladat Összesen: 18 pont. 2. feladat Összesen: 9 pont
1. feladat Összesen: 18 pont Különböző anyagok vízzel való kölcsönhatását vizsgáljuk. Töltse ki a táblázatot! második oszlopba írja, hogy oldódik-e vagy nem oldódik vízben az anyag, illetve ha reagál,
800-5000 Hz U. oldat. R κ=l/ra. 1.ábra Az oldatok vezetőképességének mérése
8 gyak. Konduktometria A gyakorlat célja: Az oldat ionos alkotóinak összegző, nem specifikus mérése (a víz tisztasága), a konduktometria felhasználása titrálás végpontjelzésére. A módszer elve Elektrolitok
Kémiai alapismeretek 6. hét
Kémiai alapismeretek 6. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék biner 2013. október 7-11. 1/15 2013/2014 I. félév, Horváth Attila c Egyensúly:
Közös elektronpár létrehozása
Kémiai reakciók 10. hét a reagáló részecskék között közös elektronpár létrehozása valósul meg sav-bázis reakciók komplexképződés elektronátadás és átvétel történik redoxi reakciók Közös elektronpár létrehozása
Környezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése
örnyezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése I. A számolási feladatok megoldása során az oldatok koncentrációjának számításához alapvetıen a következı ismeretekre van szükség:
Általános Kémia. Sav-bázis egyensúlyok. Ecetsav és sósav elegye. Gyenge sav és erős sav keveréke. Példa8-1. Példa 8-1
Sav-bázis egyensúlyok 8-1 A közös ion effektus 8-1 A közös ion effektus 8-2 ek 8-3 Indikátorok 8- Semlegesítési reakció, titrálási görbe 8-5 Poliprotikus savak oldatai 8-6 Sav-bázis egyensúlyi számítások,
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
1. Kolorimetriás mérések A sav-bázis indikátorok olyan "festékek", melyek színüket a ph függvényében
ph-mérés Egy savat vagy lúgot tartalmazó vizes oldat savasságának vagy lúgosságának erősségét a H + vagy a OH - ion aktivitással lehet jellemezni. A víz ionszorzatának következtében a két ion aktivitása
LABORATÓRIUMI OKTATÁSI SEGÉDLET
LABORATÓRIUMI OKTATÁSI SEGÉDLET a Környezetmérnöki méréstechnika, monitoring I. /Környezeti analízis I. c. (MFKMM31K03/MFKOA31K03) tantárgyakhoz kapcsolódó laboratóriumi gyakorlat feladataihoz Nappali
Természetvédő 1., 3. csoport tervezett időbeosztás
Természetvédő 1., 3. csoport tervezett időbeosztás 3. ciklus: 2012. január 05. Elektro-analitika elmélet. 2012. január 12. Titrimetria elmélet 2012. január 19. március 01. A ciklus mérései: 1. ph-mérés,
5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
Kémiai reakciók. Közös elektronpár létrehozása. Általános és szervetlen kémia 10. hét. Elızı héten elsajátítottuk, hogy.
Általános és szervetlen kémia 10. hét Elızı héten elsajátítottuk, hogy a kémiai reakciókat hogyan lehet csoportosítani milyen kinetikai összefüggések érvényesek Mai témakörök a közös elektronpár létrehozásával
ph-mérés ÜVEGELEKTRÓDDAL, SAV-BÁZIS TITRÁLÁS ph-metriás VÉGPONTJELZÉSSEL
PHM ph-mérés ÜVEGELEKTRÓDDAL, SAV-BÁZIS TITRÁLÁS ph-metriás VÉGPONTJELZÉSSEL A GYAKORLAT CÉLJA: Oldatok ph-jának mérése kombinált üvegelektróddal. A potenciometrikus titrálás alkalmazása ortofoszforsav
VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola
A versenyző kódja:... VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI
Oldatkészítés, ph- és sűrűségmérés
Oldatkészítés, ph- és sűrűségmérés A laboratóriumi gyakorlat során elvégzendő feladat: Oldatok hígítása, adott ph-jú pufferoldat készítése és vizsgálata, valamint egy oldat sűrűségének mérése. Felkészülés
Kémia OKTV döntő forduló II. kategória, 1. feladat Budapest, 2011. április 9.
Oktatási Hivatal Kémia OKTV döntő forduló II. kategória, 1. feladat Budapest, 2011. április 9. A feladat elolvasására 15 perc áll rendelkezésre. A feladathoz csak a 15 perc letelte után szabad hozzákezdeni.
HInd Ind + H + A ph érzékelése indikátorokkal
A ph érzékelése indikátorokkal A sav-bázis indikátorok olyan "festékek", melyek színüket a ph függvényében változtatják. Ennek alapja az, hogy egy HB indikátor maga is H+ kationra és B- anionra disszociál,
Oldódás, mint egyensúly
Oldódás, mint egyensúly Szilárd (A) anyag oldódása: K = [A] oldott [A] szilárd állandó K [A] szilárd = [A] oldott S = telített oldat conc. Folyadék oldódása: analóg módon Gázok oldódása: [gáz] oldott =
Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion
Klasszikus analitikai módszerek:
Klasszikus analitikai módszerek: Azok a módszerek, melyek kémiai reakciókon alapszanak, de az elemzéshez csupán a tömeg és térfogat pontos mérésére van szükség. A legfontosabb klasszikus analitikai módszerek
Kémiai reakciók Műszaki kémia, Anyagtan I. 11. előadás
Kémiai reakciók Műszaki kémia, Anyagtan I. 11. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Kémiai reakció Kémiai reakció: különböző anyagok kémiai összetételének, ill. szerkezetének
Általános Kémia Gyakorlat III. zárthelyi november 7.
A1 Figyelem! Csak a követhetıen kidolgozott feladatokra adunk pontot. Kérjük, az összes eredményét ezeken a lapokon adja be, egyéb papírt nem fogadunk el. A megoldást minden esetben arra a lapra írja fel,
Eredeti Veszprémi T. (digitálisan Csonka G) jegyzet: X. és XI. fejezet
2012/2013 tavasz félév 11. óra Oldatok vezetőképessége Vezetőképesség, elektromos ellenállás, fajlagos mennységek, cellaállandó Erős elektroltok fajlagos ellenállása és vezetőképessége Komplexképződés
Titrálási feladatok számításai. I. Mintafeladatok
Titrálási feladatok számításai I. Mintafeladatok 1. Egy 0,2555 mol/ koncentrációjú HNO-oldat 25,0 cm részleteire rendre 2,60; 24,60; 24,50; 24,40 cm KOH fogyott. Mennyi a KOH-oldat pontos koncentrációja?
1. feladat Összesen: 7 pont. 2. feladat Összesen: 16 pont
1. feladat Összesen: 7 pont Gyógyszergyártás során képződött oldatból 7 mintát vettünk. Egy analitikai mérés kiértékelésének eredményeként a következő tömegkoncentrációkat határoztuk meg: A minta sorszáma:
(Kémiai alapok) és
01/013 tavaszi félév 6. óra ph-számítás (I) Vízionszorzat, Erős savak és bázisok ph-ja Erős savak és bázisok nagyon híg oldatának ph-ja (pl. 10 7 M HCl) Gyenge savak és bázisok ph-ja (töményebb, illetve
HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA
HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.
Általános Kémia GY, 2. tantermi gyakorlat
Általános Kémia GY, 2. tantermi gyakorlat Sztöchiometriai számítások -titrálás: ld. : a 2. laborgyakorlat leírásánál Gáztörvények A kémhatás fogalma -ld.: a 2. laborgyakorlat leírásánál Honlap: http://harmatv.web.elte.hu
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
4. A metil-acetát lúgos hidrolízise. Előkészítő előadás
4. A metil-acetát lúgos hidrolízise Előkészítő előadás 207.02.20. A metil-acetát hidrolízise Metil-acetát: ecetsav metil észtere, CH 3 COOCH 3 Hidrolízis: reakció a vízzel, mint oldószerrel. CH 3 COOCH
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
ELEKTROLITOK VEZETÉSÉVEL KAPCSOLATOS FOGALMAK
ELEKTROLITOK VEZETÉSÉVEL KAPCSOLATOS FOGALMAK Egy tetszőleges vezetőn átfolyó áramerősség (I) és a vezetőn eső feszültség (U) között az ellenállás teremt kapcsolatot (ld. középiskolai fizika): U I R R
Oldódás, mint egyensúly
Oldódás, mint egyensúly Szilárd (A) anyag oldódása: K = [A] oldott [A] szilárd állandó K [A] szilárd = [A] oldott S = telített oldat conc. Folyadék oldódása: analóg módon Gázok oldódása: [gáz] oldott K
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel
Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Név: Neptun kód: _ mérőhely: _ Labor előzetes feladatok 20 C-on különböző töménységű ecetsav-oldatok sűrűségét megmérve az
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Dr. Abrankó László. Gravimetria, titrimetria
Dr. Abrankó László Gravimetria, titrimetria Az analitikai mérések folyamata 1. Kérdésfeltevés 2. Mintavétel (elsődleges mintavétel) 3. Mintaelőkészítés 4. Szükség esetén további elválasztás, mintatisztítás
Természetvédő 1., 3. csoport tervezett időbeosztás
Természetvédő 1., 3. csoport tervezett időbeosztás 4. ciklus: 2012. március 08. Optikai mérések elmélet. A ciklus mérései: 1. nitrit, 2. ammónium, 3. refraktometriax2, mérőbőrönd. Forgatási terv: Csoport
X = 9,477 10 3 mol. ph = 4,07 [H + ] = 8,51138 10 5 mol/dm 3 Gyenge sav ph-jának a számolása (általánosan alkalmazható képlet):
. Egy átrium-hidroxidot és átrium-acetátot tartalmazó mita 50,00 cm 3 -es részletée megmérjük a ph-t, ami,65-ek adódott. 8,65 cm 3 0, mol/dm 3 kocetrációjú sósavat adva a mitához, a mért ph 5,065. Meyi
Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet
Orvosi Fizika 13. Elektromosságtan és mágnességtan az életfolyamatokban 2. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 2011. december 5. Egyenáram Vezető
A XVII. VegyÉSZtorna I. fordulójának feladatai és megoldásai
Megoldások: 1. Mekkora a ph-ja annak a sósavoldatnak, amelyben a kloridion koncentrációja 0,01 mol/dm 3? (ph =?,??) A sósav a hidrogén-klorid (HCl) vizes oldata, amelyben a HCl teljesen disszociál, mivel
Vezetőképesség meghatározása
Vezetőképesség meghatározása Az elektrolitok vezetőképességének meghatározását konduktométerrel végezzük. A készülék működése az oldat ellenállásának mérésén alapszik. A közvetlenül vezetőképességet kijelző
Mozgófázisok a HILIC-ban. Módszer specifikus feltétel: kevésbé poláris, mint az állófázis vagy a víz Miért a víz?
Dr Fekete Jenı: A folyadékkromatográfia újabb fejlesztési irányai - HILIC Mozgófázisok a HILIC-ban Módszer specifikus feltétel: kevésbé poláris, mint az állófázis vagy a víz Miért a víz? Mitıl l poláris
A gyakorlat leírása. A mérési feladat
A gyakorlat leírása Szükséges anyagok: 0,00 mol dm -3 koncentrációjú AgNO 3 oldat 0,00 mol dm -3 koncentrációjú KCl oldat 0,5 mol dm -3 koncentrációjú KNO 3 oldat 0,05 mol dm -3 koncentrációjú Ca(NO 3
Általános kémia vizsgakérdések
Általános kémia vizsgakérdések 1. Mutassa be egy atom felépítését! 2. Mivel magyarázza egy atom semlegességét? 3. Adja meg a rendszám és a tömegszám fogalmát! 4. Mit nevezünk elemnek és vegyületnek? 5.
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
Az oldatok összetétele
Az oldatok összetétele Az oldatok összetételét (töménységét) többféleképpen fejezhetjük ki. Ezek közül itt a tömegszázalék, vegyesszázalék és a mólos oldat fogalmát tárgyaljuk. a.) Tömegszázalék (jele:
ELEKTROKÉMIA. Alapmennyiségek. I: áramersség, mértékegysége (SI alapegység): A:
ELEKTOKÉMIA Alapmennyiségek I: áramersség, mértékegysége (SI alapegység): A: A az áram erssége, ha 2 végtelen hosszú, elhanyagolható átmérj vezetben áramló konstans áram hatására a két vezet között 2 0-7
EGYÉB GYAKORLÓ FELADATOK Összetétel számítás
EGYÉB GYAKORLÓ FELADATOK Összetétel számítás 1. Mekkora tömegű NaOH-ot kell bemérni 50 cm 3 1,00 mol/dm 3 koncentrációjú NaOH-oldat elkészítéséhez? M r (NaCl) = 40,0. 2. Mekkora tömegű KHCO 3 -ot kell
KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)
KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont 1. Adja meg a következő ionok nevét, illetve képletét! (12 pont) Az ion neve Kloridion Az ion képlete Cl - (1 pont) Hidroxidion (1 pont) OH - Nitrátion NO
Drog- és toxikológus 2. csoport tervezett időbeosztás
Drog- és toxikológus 2. csoport tervezett időbeosztás 1. ciklus: 2013. szeptember 05 2013. október 24. 09. 05. bevezetés, elmélet 10. 03. 3-4. gyakorlat 09. 12. elektro-analitika elmélet 09. 19. 1-2. gyakorlat
Laboratóriumi technikus laboratóriumi technikus 54 524 01 0010 54 02 Drog és toxikológiai
É 049-06/1/3 A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján.
laboratóriumi technikus laboratóriumi technikus laboratóriumi technikus
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3
5. gyakorlat. Tömegmérés, térfogatmérés, pipettázás gyakorlása tömegméréssel kombinálva. A mérési eredmények megadása. Sóoldat sőrőségének meghatározása, koncentrációjának megadása a mért sőrőség alapján.
1. feladat. Aminosavak mennyiségi meghatározása
1. feladat Aminosavak mennyiségi meghatározása Az aminosavak mennyiségének meghatározása lényeges analitikai feladat, amit manapság általában automatizált műszerekkel végeznek. Mindazonáltal van olyan
Voltammetriás görbe: a munkaleketród potenciáljának (E) függvényében ábrázoljuk a körben folyó áram erősségét
AMPEROMETRIA (VOLTAMMETRIA) a mérendő oldatba merülő (munka-) elektródra feszültséget kapcsolva, a rendszerben folyó áramot mérjük és ebből nyerünk analitikai információt Voltammetriás görbe: a munkaleketród
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Környezetvédelemben felhasznált elektroanalitikai módszerek csoportosítása Potenciometria (ph, Li +, F - ) Voltametria (oldott oxigén) Coulometria
O k ta t á si Hivatal
O k ta t á si Hivatal Országos Középiskolai Tanulmányi Verseny Kémia I. kategória 3. forduló 1. feladat Budapest, 2017. március 18. Ismeretlen gyenge sav moláris tömegének meghatározása, valamint disszociációállandójának
Az oldatok összetétele
Az oldatok összetétele Az oldatok összetételét (töménységét) többféleképpen fejezhetjük ki. Ezek közül itt a tömegszázalék, vegyes százalék és a mólos oldat fogalmát tárgyaljuk. a.) Tömegszázalék (jele:
Voltammetriás görbe: a munkaleketród potenciáljának (E) függvényében ábrázoljuk a körben folyó áram erősségét
AMPEROMETRIA (VOLTAMMETRIA) a mérendő oldatba merülő (munka-) elektródra feszültséget kapcsolva, a rendszerben folyó áramot mérjük és ebből nyerünk analitikai információt Voltammetriás görbe: a munkaleketród
4.Gyakorlat Oldatkészítés szilárd sóból, komplexometriás titrálás. Oldatkészítés szilárd anyagokból
4.Gyakorlat Oldatkészítés szilárd sóból, komplexometriás titrálás Szükséges anyagok: A gyakorlatvezető által kiadott szilárd sók Oldatkészítés szilárd anyagokból Szükséges eszközök: 1 db 100 cm 3 -es mérőlombik,
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
7. gyak. Szilárd minta S tartalmának meghatározása égetést követően jodometriásan
7. gyak. Szilárd minta S tartalmának meghatározása égetést követően jodometriásan A gyakorlat célja: Megismerkedni az analízis azon eljárásaival, amelyik adott komponens meghatározását a minta elégetése
A kémiai egyensúlyi rendszerek
A kémiai egyensúlyi rendszerek HenryLouis Le Chatelier (1850196) Karl Ferdinand Braun (18501918) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 011 A kémiai egyensúly A kémiai egyensúlyok
Elektrokémia kommunikációs dosszié ELEKTROKÉMIA. ANYAGMÉRNÖK NAPPALI MSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
ELEKTROKÉMIA ANYAGMÉRNÖK NAPPALI MSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2014. Tartalom jegyzék 1. Tantárgyleírás,
KÉMIA. Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003
KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 ű érettségire felkészítő tananyag tanterve /11-12. ill. 12-13. évfolyam/ Elérendő célok: a természettudományos gondolkodás
1. feladat Összesen: 7 pont. 2. feladat Összesen: 8 pont
1. feladat Összesen: 7 pont Hét egymást követő titrálás fogyásai a következők: Sorszám: 1. 2. 3. 4. 5. 6. 7. Fogyások (cm 3 ) 20,25 20,30 20,40 20,35 20,80 20,30 20,20 A) Keresse meg és húzza át a szemmel
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
KÖRNYEZETVÉDELMI GYAKORLATOK. Általános laborszámítások
KÖRNYEZETVÉDELMI GYAKORLATOK Általános laborszámítások Készítette: Rausch Péter, 2014 1. Moláris tömegek számítása összegképletből 1 mol = 6 10 23 db részecske, entitás (atom, molekula, ion stb.) tömege.
KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003
KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban
1. Koncentrációszámítás, oldatkészítés
1. onentráiószámítás, oldatkészítés 1.1. példa onyhasó oldat készítése során 5,5 g Na Cl-t oldottunk fel 5 liter vízben. Mennyi az oldat tömegkonentráiója (g/ dm ), normalitása (ekv/dm ), molaritása (mol/
A javításhoz kb. az érettségi feladatok javítása az útmutató irányelv. Részpontszámok adhatók. Más, de helyes gondolatmenetet is el kell fogadni!
Megoldások A javításhoz kb. az érettségi feladatok javítása az útmutató irányelv. Részpontszámok adhatók. Más, de helyes gondolatmenetet is el kell fogadni! **********************************************
Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások
KÉMIA TANMENETEK 7-8-9-10 osztályoknak
KÉMIA TANMENETEK 7-8-9-10 osztályoknak Néhány gondolat a mellékletekhez: A tanterv nem tankönyvhöz készült, hanem témakörökre bontva mutatja be a minimumot és az optimumot. A felsőbb osztályba lépés alapja
KÉMIA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
KÉMIA Elvárt kompetenciák: I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK induktív következtetés (egyedi tényekből az általános törvényszerűségekre) deduktív következtetés (az általános törvényszerűségekből