Adatszerkezetek és adattípusok. Vermek-Sorok (dinamikusan)
|
|
- Ákos Szőke
- 4 évvel ezelőtt
- Látták:
Átírás
1 6. Adatszerkezetek és adattípusok Vermek-Sorok (dinamikusan)
2 Fontos tudnivalók Elméleti tesztek: Első projekt témája (tétel, tömb, halmaz) Parciális (7-8-9 hét)
3 Algoritmusok és adatszerkezetek Algoritmusok elemzése Adatszerkezetek és adattípusok Statikus adatszerkezetek: Tétel (rekord), tömb Félstatikus adatszerkezetek: Vermek, sorok Dinamikus adatszerkezetek: Listák
4 Ismétlés, összefoglaló Dinamikus adatszerkezetek: Fák, Bináris keresőfák Hasítótáblák Rendezési algoritmusok Keresési algoritmusok Adattömörítés
5 13 14 Félig strukturált adatok Összefoglaló és ismétlés
6 ! Válaszaitok Ha gondot okoz a labor házi megoldása, honnan kérsz segítséget? (egy szó)
7 ? RAJTAD A SOR! Szeretnéd a parciálison használni a jegyzeted?
8 ? RAJTAD A SOR! Add meg a következő kérdésre a helyes választ (mérjed az időt!!!)
9 Ismeretek ellenőrzése - Figyelmesen olvasd el a kérdést - Csak egy helyes válasz van - 10 kérdésre kell válaszolni - A válaszok megadása időhöz kötött - Sor=várakozási sor Jó munkát!
10 Feladat-Verem Helyes zárójelezés:döntsük el, hogy egy kifejezésben használt zárójelek használata helyes-e: -a nyitó és csukó zárójelek száma megegyezik -a zárójelezés bármely pontjában a nyitó zárójelek száma nagyobb vagy egyenlő, mint a csukó zárójelek száma
11 Feladat-sor Egy bevásárlóközpont két parkolójának kivezetése ugyanarra az útra nyílik. Mindkét parkoló kijáratát rendőrlámpa szabályozza. A parkolók kivezető szakaszain a lámpa előtt autók állnak sorban. Az egyik lámpa 3 autót enged át egyszerre, a másik csak kettőt. Írj programot, mely meghatározza az elvezető úton lévő autók sorrendjét. Használj sor adatszerkezetet és a hozzá kapcsolódó műveleteket!
12 Absztrakt adattípusok (AAT) Összetett típusok Statikus adatszerkezetek Tétel (record) Tömb (array) Halmaz (set) Félstatikus adatszerkezetek Verem (stack) Várakozási sor (queue) Hasító tábla (hashing table) Dinamikus adatszerkezetek Lineáris lista (list) Fa (tree) bináris fa
13 Dinamikus adatszerkezetek a dinamikus adatszerkezetek komponenseinek száma változik a program végrehajtása során (nő vagy csökken)) elkerülhető a statikus tárkezelés hátrányai (a tárhely nem bizonyul elégségesnek vagy túl nagynak bizonyul) elkerülhető a statikus tárkezelés hátrányai ami a törlés és beszúrás időigényességét illeti (tologatás balra, jobbra)
14 Dinamikus adatszerkezetek dinamikus adatszerekezetek esetén a beszúrás és törlés az adatszerkezet láncolását teszi szükségessé a dinamikus változónak tartalmaznia kell a feldolgozandó információ mellett a láncolásra hivatkozó információt is azok a dinamikus adtaszerkezetek, amelyekben az elemek egyetlen szinten fűződnek (láncolódnak) egymás után a lineáris lista nevet viselik speciális lineáris listák: verem, várakozási sor, egyszeresen-, kétszeresen- és körkörösen láncolt lista
15 Listák
16 Lista csomópontok
17 Lista - osztályozás
18 A verem (Stack) LIFO = last in first out (dinamikus implementáció) Értelmezés: 1.Statikus Dinamikus megvalósítás esetén a verem elemeit egy tömbben tároljuk nek tárolása egy speciális listát használunk, amelyben minden beszúrási és törlési művelet csak a lista egyik végén történik. 2.A veremben lévő elemek számát, más szóval az utoljára betett elem sorszámát egy ún. veremmutató tartalmazza. A veremben utoljára betett elem címét egy ún. veremmutató pointer tartalmazza. 3. Ha új elemet teszünk a verembe, a veremmutató értéke eggyel nő, ha kiveszünk, akkor eggyel csökken. Üres verem esetén értéke 0, teli verem esetén pedig egyenlő a vektor maximális indexével. A kapcsolattartó mező annak az elemnek a címe, amelyet az előző beszúrás alkalmával helyeztünk a verembe. Ez alól csak egy elem kivétel, az alap, melynek a kapcsolatmezője NULL.
19 A verem (stack) Értékhalmaz: mystack verem sp a verem teteje (veremmutató) typedef struct { int maxsize; int sp; int *items; } STACK; STACK *mystack; Stack verem typedef struct NodeType{ int info; struct NodeType *next; }NodeType; NodeType *topptr; Érték Saját cím Következő elem címe
20 A verem (Stack) Műveletek: (O(1)) Üres?: igaz, ha a verem csúcsának mutatója NULL-e IsEmpty (topptr) if topptr=null then return true else return false!!! topptr=null (főprogramban) Inicializálás: egy új csomópont helyfoglalása, a kapcsolattartó mező értéke NULL Create () uj_elem helyfoglálása uj_elem->next=null NULL
21 A verem (stack) Verembe (push): egy elem bevitele a verembe (a verem tetejére ). létrehozunk egy új csomópontot Push (topptr, a) NodeType newnode newnode=create()!!!! int main() {NodeType *node=null; } NULL newnode 2 topptr 1
22 A verem (stack) Verembe (push): egy elem bevitele a verembe (a verem tetejére ). létrehozunk egy új csomópontot feltöltjük értékkel az info mezőt Push (topptr, a) NodeType newnode newnode=create() newnode->info=a!!!! int main() {NodeType *node=null; } newnode 3 NULL 2 topptr 1
23 A verem (stack) Verembe (push): egy elem bevitele a verembe (a verem tetejére ). létrehozunk egy új csomópontot feltöltjük értékkel az info mezőt Push (topptr, a) NodeType newnode newnode=create() newnode->info=a!!!! int main() {NodeType *node=null; } a kapcsolatmezőbe bemásoljuk a legfelső elem címét newnode->next=topptr 3 NULL newnode 2 topptr 1
24 A verem (stack) Verembe (push): egy elem bevitele a verembe (a verem tetejére ). létrehozunk egy új csomópontot feltöltjük értékkel az info mezőt Push (topptr, a) NodeType newnode newnode=create() newnode->info=a!!!! int main() {NodeType *node=null; } a kapcsolatmezőbe bemásoljuk a legfelső elem címét ez lesz a legfelső elem newnode->next=topptr topptr=newnode 3 NULL topptr=newnode topptr 2 1
25 A verem (stack) Veremből (pop): a verem tetején található elem kivétele a veremből. Csak akkor tudunk elemet kivenni, ha a verem nem üres Pop (topptr) 3 topptr 2 1
26 A verem (stack) Veremből (pop): a verem tetején található elem kivétele a veremből. Csak akkor tudunk elemet kivenni, ha a verem nem üres Kimentjük a legfelső elem címét és hasznos információját Pop (topptr) NodType auxnode int auxinfo auxnode=topptr auxinfo=topptr->info auxnode 3 topptr 2 1
27 A verem (stack) Veremből (pop): a verem tetején található elem kivétele a veremből. Csak akkor tudunk elemet kivenni, ha a verem nem üres Kimentjük a legfelső elem címét és hasznos információját A veremmutató pointer a következő elemre fog mutatni Pop (topptr) NodType auxnode int auxinfo auxnode=topptr auxinfo=topptr->info topptr=topptr->next auxnode 3 2 topptr topptr 1
28 A verem (stack) Veremből (pop): a verem tetején található elem kivétele a veremből. Csak akkor tudunk elemet kivenni, ha a verem nem üres Kimentjük a legfelső elem címét és hasznos információját A veremmutató pointer a következő elemre fog mutatni Kitöröljük a legfelső elemet (hely felszabadítása) Visszatérítjük a kitörölt elem hasznos információját Pop (topptr) NodType auxnode int auxinfo auxnode=topptr auxinfo=topptr->info topptr=topptr->next free(auxnode) return auxinfo auxnode topptr topptr
29 A verem (stack) Verem legfelső eleme (top): a verem tetején található elem visszatérítése. Csak akkor sikeres, ha a verem nem üres Top (topptr) return topptr->info; 3 topptr 2 1
30 Verem dinamikus implementálása function.h typedef struct NodeType{ int info; struct NodeType *next; }NodeType; NodeType* create(); void push(nodetype** topptr, int data); int top(nodetype*topptr); int pop(nodetype**topptr); int isempty(nodetype *topptr);
31 Verem dinamikus implementálása function.c NodeType *create() { NodeType *newnode = (NodeType *) malloc(sizeof(struct Node *)); newnode->next = NULL; return newnode; }
32 Verem dinamikus implementálása void push(nodetype **topptr, int data) { NodeType *newnode = create(); newnode->info = data; newnode->next = *topptr; *topptr=newnode; }
33 Verem dinamikus implementálása int top(nodetype*topptr) {ha nem üres return topptr->info; } int pop(nodetype**topptr) {ha nem üres {NodeType *aux; int auxinfo; aux = *topptr; *topptr = aux->next; auxinfo = aux->info; free(aux); return auxinfo; }
34 A várakozási sor (QUEUE) a hozzáférés a sor elemeihez a sor elejétől indulva valósítható meg az elemek az érkezésük sorrendjében tárolódnak és ebben a sorrendben érhetők el létező elemet csak a sor elejéről távolíthatunk el új elemet csak a sor végére szúrhatunk be
35 A várakozási sor (Queue) Értékhalmaz: (O(1)). Queue a sor typedef struct NodeType {int info; struct NodeType *next; } NodeType; NodeType *front, *last;!!!! int main() {NodeType *first=null; last=null;} Érték Saját cím Következő elem címe
36 A várakozási sor (QUEUE) Értékhalmaz: Üres?: igaz, ha a sor eleje és a vége is a NULL pointer IsEmpty (first) if first=null then return true else return false first=null last=null (főprogramban) Inicializálás: egy új csomópont helyfoglalása, a kapcsolattartó mező értéke NULL Create () uj_elem helyfoglálása uj_elem->next=null
37 A várakozási sor (Queue) Új elem bevitele a Sorba (insert): egy elem bevitele a sorba (a sor végére) létrehozunk egy új csomópontot feltöltjük értékkel az info mezőt Insert(first, last, a) NodeType newnode newnode=create() newnode->info=a first last a newnode NULL ha üres a sor, ez lesz az első és az utolsó elem különben: az utolsó elemet összekötjük az új elemmel az utolsó elem címe az új elem címe lesz if (IsEmpty(first)) {first=newnode last=newnode } Else { last->next=newnode; last=newnode; } adr1 1 adr2 first adr2 2 adr3 newnode adr3 3 NULL last adr4 4 NULL last
38 A várakozási sor (Queue) Elem törlése a Sorból (delete): egy elem törlése a sorból(a sor elejéről, ha nem üres a sor) A sor első elemének a címét egy segédváltozóba másoljuk, az itt levő hasznos információt pedig egy info mezőnek tipusával megegyező változóba Delete(first) NodeType auxnode if (!IsEmpty(first) { auxnode=first; int auxinfo=first.info auxnode adr1 1 adr2 first last newnode a NULL adr2 adr3 2 adr3 3 NULL Az első elem címe az utána következő elem címe lesz first=fistr->next first first last felszabadítjuk a segédváltozó segítségével a régi első elem által elfoglalt tárrészt Free(auxNode) return auxinfo } else return INT_MIN;
39 Egyszeresen láncolt lista Egyszeresen láncolt lista=várakozási sor + elem törlése elölről +???
40 Dokumentáció Cormen-Lieserson-Rivest-Stein.-.Uj.algoritmusok.pdf
félstatikus adatszerkezetek: verem, várakozási sor, hasítótábla dinamikus adatszerkezetek: lineáris lista, fa, hálózat
Listák félstatikus adatszerkezetek: verem, várakozási sor, hasítótábla dinamikus adatszerkezetek: lineáris lista, fa, hálózat A verem LIFO lista (Last In First Out) angolul stack, románul stivă bevitel
Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája
Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból
Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek
Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:
Elemi adatszerkezetek
2017/12/16 17:22 1/18 Elemi adatszerkezetek < Programozás Elemi adatszerkezetek Szerző: Sallai András Copyright Sallai András, 2011, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu
Verem Verem mutató 01
A számítástechnikában a verem (stack) egy speciális adatszerkezet, amiben csak kétféle művelet van. A berak (push) egy elemet a verembe rak, a kivesz (pop) egy elemet elvesz a verem tetejéről. Mindig az
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
A programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek:
A programozás alapjai 1 Dinamikus adatszerkezetek:. előadás Híradástechnikai Tanszék Dinamikus adatszerkezetek: Adott építőelemekből, adott szabályok szerint felépített, de nem rögzített méretű adatszerkezetek.
Programozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Adatszerkezetek 1. Dr. Iványi Péter
Adatszerkezetek 1. Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot kódoltan tároljuk
Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter
Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot
Információs Technológia
Információs Technológia Sor és verem adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2009. november 19. Alapötlet
Miről lesz ma szó? A PROGAMOZÁS ALAPJAI 1. Dinamikus adatszerkezetek. Dinamikus adatszerkezetek. Önhivatkozó struktúrák. Önhivatkozó struktúrák
2012. március 27. A PROGAMOZÁS ALAPJAI 1 Vitéz András egyetemi adjunktus BME Híradástechnikai Tanszék vitez@hit.bme.hu Miről lesz ma szó? Dinamikus adatszerkezetek Önhivatkozó struktúra keresés, beszúrás,
.Net adatstruktúrák. Készítette: Major Péter
.Net adatstruktúrák Készítette: Major Péter Adatstruktúrák általában A.Net-ben számos nyelvvel ellentétben nem kell bajlódnunk a változó hosszúságú tömbök, listák, sorok stb. implementálásával, mert ezek
Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?
Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf
4. Előfeltételek (ha vannak) 4.1 Tantervi Nincs 4.2 Kompetenciabeli Elemi algoritmusok ismerete
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
Programozás I. - 11. gyakorlat
Programozás I. - 11. gyakorlat Struktúrák, gyakorlás Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 16, 2009 1 tar@dcs.vein.hu Tar
Láncolt listák. Egyszerű, rendezett és speciális láncolt listák. Programozás II. előadás. Szénási Sándor
Láncolt listák Egyszerű, rendezett és speciális láncolt listák előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Láncolt
Algoritmusok és adatszerkezetek I. 1. előadás
Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási
Adatszerkezetek 7a. Dr. IványiPéter
Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a
Adatszerkezetek és algoritmusok
2009. november 13. Ismétlés El z órai anyagok áttekintése Ismétlés Specikáció Típusok, kifejezések, m veletek, adatok ábrázolása, típusabsztakció Vezérlési szerkezetek Függvények, paraméterátadás, rekurziók
Adatszerkezetek 1. előadás
Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk
Bevezetés a Programozásba II 12. előadás. Adatszerkezetek alkalmazása (Standard Template Library)
Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar Bevezetés a Programozásba II 12. előadás (Standard Template Library) 2014.05.19. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto
Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E
5. SOR A sor adatszerkezet is ismerős a mindennapokból, például a várakozási sornak számos előfordulásával van dolgunk, akár emberekről akár tárgyakról (pl. munkadarabokról) legyen szó. A sor adattípus
Tuesday, March 6, 12. Hasító táblázatok
Hasító táblázatok Halmaz adattípus U (kulcsuniverzum) K (aktuális kulcsok) Függvény adattípus U (univerzum) ÉT (értelmezési tartomány) ÉK (érték készlet) Milyen az univerzum? Közvetlen címzésű táblázatok
Táblázatok fontosabb műveletei 1
Táblázatok fontosabb műveletei 1 - - Soros táblázat procedure BESZÚR1(TÁBLA, újelem) - - beszúrás soros táblázatba - - a táblázatot egy rekordokat tartalmazó dinamikus vektorral reprezentáljuk - - a rekordok
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Összetett adatszerkezetek a MAPLE -ben Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. március 11. TARTALOMJEGYZÉK 1 of 66 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Kifejezéssorozatok
Járműfedélzeti rendszerek II. 4. előadás Dr. Bécsi Tamás
Járműfedélzeti rendszerek II. 4. előadás Dr. Bécsi Tamás 6. Struktúrák A struktúra egy vagy több, esetleg különböző típusú változó együttese, amelyet a kényelmes kezelhetőség céljából önálló névvel látunk
Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism)
Programozás alapjai C nyelv 8. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény
Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában
Programozás alapjai C nyelv 8. gyakorlat Szeberényi mre BME T Programozás alapjai. (C nyelv, gyakorlat) BME-T Sz.. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény
Láncolt Listák. Adat1 Adat2 Adat3 ø. Adat1 Adat2 ø Adat3
Láncolt Listák Adatszerkezetek Adatszerkezet: Az adatelemek egy olyan véges halmaza, amelyben az adatelemek között szerkezeti összefüggések vannak Megvalósítások: - Tömb, Láncolt lista, Fa, Kupac, Gráf,
Önszervező bináris keresőfák
Önszervező bináris keresőfák Vágható-egyesíthető halmaz adattípus H={2,5,7,11,23,45,75} Vag(H,23) Egyesit(H1,H2) H1= {2,5,7,11} H2= {23,45,75} Vágás A keresési útvonal mentén feldaraboljuk a fát, majd
21. Adatszerkezetek Az adattípus absztrakciós szintjei Absztrakt adattípus (ADT) Absztrakt adatszerkezet (ADS) Egyszerű adattípusok Tömbök
2. Adatszerkezetek Az adattípus absztrakciós szintjei http://people.inf.elte.hu/fekete/docs_/adt_ads.pdf Absztrakt adattípus (ADT) Az adattípust úgy specifikáljuk, hogy szerkezetére, reprezentálására,
Adatszerkezet - műveletek
Adatszerkezet - műveletek adatszerkezet létrehozása adat felvétele adat keresése adat módosítása adat törlése elemszám visszaadása minden adat törlése (üresít) adatszerkezet felszámolása (megszüntet) +
Algoritmusok és adatszerkezetek gyakorlat 07
Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet
3/1. tétel: Linearis adatszerkezetek és műveleteik
3/1. tétel: Linearis adatszerkezetek és műveleteik A gyűjtemények (collections) közé sorolhatók a halmaz (set), a csomag (bag, multiset) és a vector (sequence, list). Gyűjtemények általánosan Értelmezzük
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
ADATSZERKEZETEK (VEREM, SOR)
ADATSZERKEZETEK (VEREM, SOR) 1. ADATSZERKEZET FOGALMA Az adatszerkezet egymással kapcsolatban álló adatok összessége, amelyen meghatározott, az adatszerkezetre jellemző műveletek végezhetők el. Az adatok
A lista adatszerkezet A lista elemek egymásutániságát jelenti. Fajtái: statikus, dinamikus lista.
Lista adatszerkezet A lista adatszerkezet jellemzői 1 Különböző problémák számítógépes megoldása során gyakran van szükség olyan adatszerkezetre, amely nagyszámú, azonos típusú elem tárolására alkalmas,
Alkalmazott modul: Programozás 9. előadás. Strukturált programozás: dinamikus adatszerkezetek
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás 9. előadás Strukturált programozás: dinamikus adatszerkezetek Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto
Algoritmusok és adatszerkezetek I. 2. előadás
Algoritmusok és adatszerkezetek I. 2. előadás Verem Verem= speciális sorozattípus Műveletei: Üres, üres?, Verembe, Veremből, tető Üres: Verem üres?(verem): Logikai tető(verem): Elem {NemDef} Verembe(Verem,Elem):
Adatszerkezetek Bevezetés Adatszerkezet Adatszerkezet típusok Műveletek Bonyolultság
datszerkezetek Bevezetés datszerkezet adatok rendszerének matematikai, logikai modellje elég jó ahhoz, hogy tükrözze a valós kapcsolatokat elég egyszerű a kezeléshez datszerkezet típusok Tömbök lineáris
Körkörös listák. fej. utolsó. utolsó. fej
Körkörös listák fej utolsó fej utolsó Példa. Kiszámolós játék. Körben áll n gyermek. k-asával kiszámoljuk őket. Minden k-adik kilép a körből. Az nyer, aki utolsónak marad. #include using namespace
Buborékrendezés: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábrázolás: For ciklussal:
Buborékrendezés: For ciklussal: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábr.: ha p egy mutató típusú változó akkor p^ az általa mutatott adatelem, p^.adat;p^.mut. A semmibe mutató ponter a NIL.Szabad
Adatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 8. előadás (Horváth Gyula anyagai felhasználásával) Kereső- és rendezőfák Közös tulajdonságok: A gyökérelem (vagy kulcsértéke) nagyobb vagy egyenlő minden tőle balra levő elemnél. A
Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan
Egyirányban láncolt lista
Egyirányban láncolt lista A tárhely (listaelem) az adatelem értékén kívül egy mutatót tartalmaz, amely a következő listaelem címét tartalmazza. A láncolt lista első elemének címét egy, a láncszerkezeten
end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
Adatszerkezetek és algoritmusok
2009. november 20. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció El z órák anyagainak
STL. Algoritmus. Iterátor. Tároló. Elsődleges komponensek: Tárolók Algoritmusok Bejárók
STL Elsődleges komponensek: Tárolók Algoritmusok Bejárók Másodlagos komponensek: Függvény objektumok Adapterek Allokátorok (helyfoglalók) Tulajdonságok Tárolók: Vektor (vector) Lista (list) Halmaz (set)
Például számokból álló, egyszeresen láncolt lista felépítéséhez az alábbi struktúra definíciót használhatjuk:
8. előadás Ismétlés Dinamikus adatszerkezetek: listák (egyszeresen vagy többszörösen láncolt), fák. Kétfelé ágazó fa: bináris fa Dinamikus adatszerkezetek - önhivatkozó adatstruktúrák: adatok és reájuk
Programozás alapjai. 5. előadás
5. előadás Wagner György Általános Informatikai Tanszék Cserélve kiválasztásos rendezés (1) A minimum-maximum keresés elvére épül. Ismétlés: minimum keresés A halmazból egy tetszőleges elemet kinevezünk
Láncolt listák. PPT 2007/2008 tavasz.
Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Láncolt listák elvi felépítése Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Láncolt
Programozás C++ -ban
Programozás C++ -ban 4. Bevezetés az osztályokba 4.1 Az adatokhoz való hozzáférés ellenőrzése Egy C programban a struktúrák minden része mindig elérhető. Ugyanakkor ez nem a legkedvezőbb helyzet. Több
Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Függvények C program egymás mellé rendelt függvényekből áll. A függvény (alprogram) jó absztrakciós eszköz a programok
Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.05. -1- Függvények C program egymás mellé rendelt függvényekből
Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.
Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás
Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.
1.előadás Tornai Kálmán
1.előadás Tornai Kálmán tornai.kalman@itk.ppke.hu Általános tudnivalók Előadás: 2 óra (Labor)gyakorlat: 3 óra Előismeretek: Kötelező: Bevezetés a programozásba I-II. Algebra és diszkrét matematika I. II.
Emlékeztető: a fordítás lépései. Szimbólumtábla-kezelés. Információáramlás. Információáramlás. Információáramlás.
Emlékeztető: a fordítás lépései Forrás-kezelő (source handler) Szimbólumtábla-kezelés Fordítóprogramok előadás (A, C, T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus elemző
Adatszerkezetek és algoritmusok
2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú
4. VEREM. Üres: V Verembe: V E V Veremből: V V E Felső: V E
4. VEREM A mindennapokban is találkozunk verem alapú tároló struktúrákkal. Legismertebb példa a névadó, a mezőgazdaságban használt verem. Az informatikában legismertebb veremalkalmazások az eljáráshívások
Információs Technológia
Információs Technológia Rekurzió, Fa adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 18. Rekurzió Rekurzió
Alkalmazott modul: Programozás
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás Feladatgyűjtemény Összeállította: Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Frissítve: 2015.
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként
Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala
Programozási nyelvek Java
statikus programszerkezet Programozási nyelvek Java Kozsik Tamás előadása alapján Készítette: Nagy Krisztián 2. előadás csomag könyvtárak könyvtárak forrásfájlok bájtkódok (.java) (.class) primitív osztály
Érdekes informatika feladatok
A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket
Bánsághi Anna 2014 Bánsághi Anna 1 of 33
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 7. ELŐADÁS - ABSZTRAKT ADATTÍPUS 2014 Bánsághi Anna 1 of 33 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1
Köszönetnyilvánítás Bevezetés Kinek szól a könyv? Elvárt előismeretek A könyv témája A könyv használata A megközelítés alapelvei Törekedjünk az egyszerűségre! Ne optimalizáljunk előre! Felhasználói interfészek
van neve lehetnek bemeneti paraméterei (argumentumai) lehet visszatérési értéke a függvényt úgy használjuk, hogy meghívjuk
függvények ismétlése lista fogalma, használata Game of Life program (listák használatának gyakorlása) listák másolása (alap szintű, teljes körű) Reversi 2 Emlékeztető a függvények lényegében mini-programok,
Adatszerkezetek és algoritmusok
Adatszerkezetek és algoritmusok 1 Bevezetés Adatszerkezet egyszerű vagy összetett alapadatok rendszerének matematikai, logikai modellje elég jó ahhoz, hogy tükrözze a valós kapcsolatokat elég egyszerű
... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra)
6. Fabejáró algoritmusok Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban
Algoritmusok és adatszerkezetek II.
Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 3. Kiegyensúlyozott keresőfák A T tulajdonság magasság-egyensúlyozó
Algoritmusok és adatszerkezetek I. 2. előadás
Algoritmusok és adatszerkezetek I. 2. előadás Verem Verem= speciális sorozattípus Műveletei: Üres, üres?, Verembe, Veremből, tető Üres: Verem üres?(verem): Logikai tető(verem): Elem {NemDef} Verembe(Verem,Elem):
Számláló rendezés. Példa
Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a
Objektum elvű alkalmazások fejlesztése Kifejezés lengyel formára hozása és kiértékelése
Objektum elvű alkalmazások fejlesztése Kifejezés lengyel formára hozása és kiértékelése Készítette: Gregorics Tibor Szabóné Nacsa Rozália Alakítsunk át egy infix formájú aritmetikai kifejezést postfix
Adatszerkezetek Hasító táblák. Dr. Iványi Péter
Adatszerkezetek Hasító táblák Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a
Gelle Kitti Algoritmusok és adatszerkezetek gyakorlat - 07 Hasítótáblák
Algoritmusok és adatszerkezetek gyakorlat - 07 Hasítótáblák Gelle Kitti 2017. 10. 25. Gelle Kitti Algoritmusok és adatszerkezetek gyakorlat - 07 Hasítótáblák 2017. 10. 25. 1 / 20 Hasítótáblák T 0 h(k 2)
Módosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12
Módosítható Prioritási sor Binomiális kupaccal modosit(x,k) {! if (k>x.kulcs) {!! x.kulcs=k ;!! y=x!! z=x.apa ;!! while(z!=nil and y.kulcs
Fejlett programozási nyelvek C++ Iterátorok
Fejlett programozási nyelvek C++ Iterátorok 10. előadás Antal Margit 2009 slide 1 Témakörök I. Bevezetés II. Iterátor definíció III. Iterátorok jellemzői IV. Iterátorkategóriák V. Iterátor adapterek slide
Generikus osztályok, gyűjtemények és algoritmusok
Programozási, gyűjtemények és algoritmusok bejárása Informatikai Kar Eötvös Loránd Tudományegyetem 1 Tartalom 1 bejárása 2 bejárása 2 Java-ban és UML-ben bejárása Az UML-beli paraméteres osztályok a Java
III. Adatszerkezetek és algoritmusok
III. Adatszerkezetek és algoritmusok 1 Bevezetés Adatszerkezet egyszerű vagy összetett alapadatok rendszerének matematikai, logikai modellje elég jó ahhoz, hogy tükrözze a valós kapcsolatokat elég egyszerű
ADATSTRUKTÚRÁK ÉS ALGORITMUSOK
Írta: ADONYI RÓBERT ADATSTRUKTÚRÁK ÉS ALGORITMUSOK Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Adonyi Róbert, Pannon Egyetem Műszaki Informatikai Kar Rendszer- és Számítástudományi Tanszék LEKTORÁLTA:
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Algoritmusok és adatszerkezetek II.
Szegedi Tudományegyetem - Természettudományi és Informatikai Kar - Informatikai Tanszékcsoport - Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszék - Németh Tamás Algoritmusok és adatszerkezetek
Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris
Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi
A verem (stack) A verem egy olyan struktúra, aminek a tetejéről kivehetünk egy (vagy sorban több) elemet. A verem felhasználása
A verem (stack) A verem egy olyan struktúra, aminek a tetejére betehetünk egy új (vagy sorban több) elemet a tetejéről kivehetünk egy (vagy sorban több) elemet A verem felhasználása Függvény visszatérési
Programozási segédlet
Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
A lista eleme. mutató rész. adat rész. Listaelem létrehozása. Node Deklarálás. Létrehozás. Az elemet nekünk kell bef zni a listába
A lista eleme 0 adat rész mutató rész Listaelem létrehozása p: Node 0 0 3 0 Az elemet nekünk kell bef zni a listába Deklarálás struct Node { int int value; Node* next; next; adattagok Létrehozás Node*
Objektum elvű alkalmazások fejlesztése. Verem típus osztály-sablonja
Objektum elvű alkalmazások fejlesztése Verem típus osztály-sablonja Készítette: Gregorics Tibor Készítsünk olyan újra-felhasználható kódot, amellyel vermeket lehet létrehozni és használni. Egy verem-objektum
9. előadás. A táblázat. A táblázatról általában, soros, önátrendező, rendezett és kulcstranszformációs táblázat
. előadás ról általában, soros, önátrendező, rendezett és kulcstranszformációs Adatszerkezetek és algoritmusok előadás 0. április. ról általában,, és Debreceni Egyetem Informatikai Kar. Általános tudnivalók
Bevezetés a programozásba 2
Bevezetés a programozásba 2 7. Előadás: STL konténerek, sablonok http://digitus.itk.ppke.hu/~flugi/ Vector int int main() { vector v(10); int int sum=0; for for (int i=0;i
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
Absztrakt adatstruktúrák A bináris fák
ciós lámpa a legnagyobb élettartamú és a legjobb hatásfokú fényforrásnak tekinthető, nyugodtan mondhatjuk, hogy a jövő fényforrása. Ezt bizonyítja az a tény, hogy ezen a területen a kutatások és a bejelentett