I.2.5. A rugalmassági erő. Hooke törvénye. A feszítőerő útmutató: rugalmassági erő és feszítőerő feladatokban I.2.6.
|
|
- György Tóth
- 9 évvel ezelőtt
- Látták:
Átírás
1
2 Tartalomjegyzék Fizikai mennyiségek és mértékegységek Alapmennyiségek és mértékegységek útmutató: Különböző nagyságrendű mértékegységek közötti átalakítás Származtatott mennyiségek és mértékegységek útmutató: Származtatott mennyiségek mértékegységei és azok elnevezései közötti átalakítások I. Mechanika I.1. Kinematika útmutató: A pálya típusának meghatározása I.1.1. Az egyenes vonalú mozgások a) Egyenes vonalú egyenletes mozgás b) Egyenes vonalú egyenletesen változó mozgás I.1.2. Görbe vonalú mozgások a) Hajítások a1. Függőleges felfele hajítás...16 a2. Vízszintes hajítás a3. Ferde hajítás b) Egyenletes körmozgás útmutató: Kinematika feladatok megoldása I.2. Dinamika I.2.1. Newton törvényei a) Newton I. törvénye (a tehetetlenség elve)...25 b) Newton II. törvénye (a mozgástörvény) c) Newton III törvénye (hatás és ellenhatás) I.2.2. A súly (nehézségi erő)...27 I.2.3. Súrlódás, súrlódási erő...28 I.2.4. Az erő felbontása komponensekre. A lejtő útmutató: Az erők felbontása komponensekre lejtő esetében
3 I.2.5. A rugalmassági erő. Hooke törvénye. A feszítőerő útmutató: rugalmassági erő és feszítőerő feladatokban I.2.6. Nyomerő, nyomás, hidrosztatikai nyomás, légnyomás I.2.7. Impulzus. Impulzustétel útmutató: Az impulzusmegmaradás használata feladatsorokban I.2.8. Tehetetlenségi erő (inerciaerő) I.2.9. A centripetális erő és a centrifugális tehetetlenségi erő I Az általános tömegmozgás törvénye. A gravitációs erő I Arkhimédész törvénye. Felhajtóerő I.3. Statika I.3.1. Pontszerű test egyensúlya...46 I.3.2. Merev test egyensúlyának feltétele I.3.3. A súlypont. Egyensúlyi helyzetek útmutató: Az egyensúlyi állapot feltételeinek meghatározása I.4. Munka és energia I.4.1. A mechanikai munka I.4.2. A teljesítmény...54 I.4.3. Az energia a) A helyzeti energia (potenciális energia)...55 a1. A gravitációs potenciális (helyzeti) energia...55 a2. A rugalmas potenciális energia...55 b) A mozgási energia (kinetikus energia)...56 I.4.4. Munkatétel. Az energiamegmaradás tétele a) Munkatétel...56 b) Az energiamegmaradás tétele I.4.5. A hatásfok útmutató: A munkatétel és az energiamegmaradás tételének alkalmazása
4 II. Termodinamika II.1. Termodinamikai alapfogalmak II.2. A termodinamika nulladik főtétele II.3. Kalorimetria útmutató: Kaloriméter használata és kalorimetriás problémák megoldása II.4. A termodinamika első főtétele II.5. Az ideális gáz II.5.1. Az ideális gáz állapotegyenlete II.5.2. Az ideális gáz állapotváltozásai útmutató: Az ideális gáz állapotváltozásai II.6. Halmazállapot-változások (fázisátmenetek) II.6.1. Olvadás, fagyás II.6.2. Párolgás, forrás, lecsapódás II.6.3. Szublimáció, megszilárdulás (kondenzáció)...95 II.7. Hőerőgépek, hűtőgépek és hőszivattyúk II.7.1. Otto-féle benzinmotor II.7.2. Dízelmotor II.8. A termodinamika második főtétele útmutató: Hőerőgépek hatásfokának meghatározása III. Elektromosságtan III.1. A testek elektromos állapota. Elektromos töltések III.2. Elektromos áram Az elektromos töltés megmaradásának elve útmutató: Áramköri elemek jelölése és egyszerű áramkör ábrázolása III.3. Ohm törvénye. Elektromos ellenállás III.3.1. Ohm törvénye az áramkör egy szakaszára III.3.2. Ohm törvénye az egész áramkörre útmutató: Ohm törvényének alkalmazása
5 III.4. Kirchoff törvényei III.4.1. Kirchoff I. törvénye III.4.2. Kirchoff II. törvénye III.5. Ellenállások kapcsolása III.5.1. Az ellenállások soros kapcsolása III.5.2. Az ellenállások párhuzamos kapcsolása III.6. Az áramforrások kapcsolása III.6.1. Áramforrások soros kapcsolása III.6.2. Áramforrások párhuzamos kapcsolása útmutató: Elektromos hálózatok megoldása III.7. Elektromos energia és teljesítmény útmutató: Az elektromos teljesítmény és hatásfok kihasználása IV. Optika IV.1. Geometriai optika IV.1.1. Fénytani alapfogalmak IV.1.2. A fény terjedése (a geometriai optika alapelvei) IV.1.3. A fényvisszaverődés IV.1.4. A fénytörés IV.1.5. Optikai leképezés (képalkotás) a) Síktükör képalkotása b) Vékony lencsék képalkotása A gyűjtőlencse képalkotási esetei útmutató: Fénytörés (lencséken), fényvisszaverődés IV.2. Hullámoptika IV.2.1. Young-féle kettős rés (Young Tresnel-interferencia) IV.3. Kvantumfizika alapjai (kvantumoptika vagy fotonoptika) A külső fényelektromos hatás törvényei: Einstein hipotézise
6 Fizikai mennyiségek és mértékegységek A természetben lejátszódó jelenségek mögött általában általánosabb érvényű törvénytelenségek állnak. Ahhoz, hogy ne csak minőségi, hanem mennyiségi összefüggéseket is feltárhassunk, mérhető fizikai mennyiségeket kell definiálni. Az adott mennyiség a definíció alapján egyértelműen mérhető kell legyen, úgy, hogy különböző mérési módszerek is ugyanazt az eredményt adják. Például a Heisenbergről szóló anekdotában is a torony magasságának mérésére számtalan helyes lehetőségről olvashatunk. A mérés lényege, hogy az eredményül kapott adat, összehasonlítható kell legyen más adatokkal, melyek ugyanilyen mennyiségeket jellemeznek. Ezért a fizikai mennyiségeket két adattal jellemezzük: mértékszám (egy szám) x mértékegység (pl.: kg). A mértékszám megmutatja, hogy az adott fizikai mennyiség hányszorosa a mértékegységnek. Belátható, hogy mindkét adat jelenléte ugyanolyan fontos, hiszen nem mindegy, hogy a termés 100 kg krumpli, vagy 100 t (tonna) krumpli. Megjegyezzük azonban, nem minden mennyiség rendelkezik mértékegységgel. Például valamely anyag optikai törésmutatójának 2 kifejezésekor csak egy számot adunk meg: 21, stb. Ez 3 olyan esetben fordulhat elő, ha az adott mennyiség valamely másik mennyiség két értékének arányaként írható fel. A v1 törésmutató esetében ez: n ahol a v1 és v2 sebességeket v2 jelölnek. Legyen v1=10 8 m és v2= m. Ez esetben a s s 1
7 8 m 1 v 1 törésmutató n 1 s, v2 8 m 3 3 tehát mértékegység s nélküli mennyiség (más néven: dimenziótlan). Romániában a nemzetközi mértékegységrendszert használjuk és a következőképpen jelöljük: m SI 1kg, ami azt jelenti, hogy a tömeg mértékegysége az 1 kg. Más jelölés: m 1kg. SI A fizikai mennyiségeknek általában van egyezményesen elfogadott jelölése, gyakran több jelölés létezik ugyanarra a mennyiségre, de mi is vezethetünk be saját jelölést, ha a megfelelő helyen ismertetjük, hogy mit mivel jelöltünk. A mértékegységek jelölése szintén egyezményes. Alapmennyiségek és mértékegységek A nemzetközi mértékegységrendszer hét alapmennyiségből és két kiegészítő mennyiségből, valamint az ezekből származott mennyiségekből és mértékegységekből áll. 1. táblázat: Alapmennyiségek, mértékegységek és jelölés Alapmennyiségek Jelölés Mértékegység Jelölés hosszúság l méter m tömeg m kilogramm kg idő t másodperc s elektromos I amper A áramerősség hőmérséklet T, t kelvin K fényerősség I kandela cd anyagmennyiség v, n mól mol 2
8 Kiegészítő mennyiségek szög αβγ radián rad térszög Ωω szteradián sr A felsorolt mennyiségekről a továbbiakban lesz szó. Ahhoz, hogy egyszerűbbé tegyük különböző nagyságrendű értékek kifejezését, használhatjuk a 10 meghatározott pozitív vagy negatív kitevőjű hatványaival való szorzást és a nekik megfelelő előszócskákat, amelyeket a mértékegységek elé illesztünk. Így egy mennyiség nagyobb vagy kisebb mértékegységben is kifejező. Például, ha települések közötti távolságot szeretnénk kifejezni, akkor a km-t használjuk, de ha egy atomon belüli távolságról beszélünk, például az atommag méretéről, akkor az fm-t használjuk. 2. táblázat: A mértékegységek tízes hatványszorzói Megnevezés Nagyság Jelölés (előszócska) (a 10 hatványaiként) tera T giga G 10 9 mega M 10 6 kilo k 10 3 hekto h 10 2 deka da(dk) =1 deci d 10-1 centi c 10-2 milli m 10-3 mikro μ 10-6 nano n 10-9 piho p femto f atto a
9 1. útmutató: Különböző nagyságrendű mértékegységek közötti átalakítás Cél: egy mennyiséget jellemző értéket egy adott nagyságrendből egy másik nagyságrendű mértékegységbe átalakítani Módszer: felhasználva a fenti táblázatot a kezdeti mértékegységben szereplő előszócskához tartozó 10-es szorzót használjuk, majd a végső mértékegységhez tartozó 10-es szorzót, úgy, hogy közben ne változzon meg a mennyiség értéke (szorzunk 10 h 10 -h -val) Példák: 1. 23km= m=23000m (km-ből méterbe) g 3 g 3 kg 0, 003kg (g-ból kg-ba) = km 6 m 6 m 6 cm 6 cm =1 (g-ból kg-ba) nm 2300 m 2300 m m 2300 m 0, 23 m (nm-ből μm-be) F 600 F 600 mf mf 0,6mF (μf-ból mf-ba; F a Farad jelölése) A 5 A 5 ma 5000mA (A-ből ma-be) = m=1cm (m-ből cm-be) m 5 m 5 m 5 m 0, 5km =1 (m-ből km-be) 4
10 3 9. 0,3kmol 0,3 mol 300mol (kmol-ból mol-ba) m m km s s h 3 km km ,2 3 h h Származtatott mennyiségek és mértékegységek Az SI alapmennyiségből származtatott fizikai mennyiségeket, illetve mértékegységeket az alap- és kiegészítő egységek megfelelő szorzatai és hányadosai adják. Általában külön elnevezést és jelölést használunk rájuk, de mindig felírhatóak az alapmennyiségek függvényében is. Ebben a különböző mennyiségek közötti összefüggések, képletek segítenek. 2. útmutató: Származtatott mennyiségek mértékegységei és azok elnevezései közötti átalakítások Cél: adott mértékegység felírása más mértékegységek függvényében Módszer: végiggondoljuk az adott mennyiségre ismert összefüggéseket kiválasztjuk azt, amelyben a számunkra lényeges mennyiségek (esetleg alapmennyiségek) szerepelnek felírjuk az adott mennyiséget a többi függvényében mindegyik mennyiség helyére behelyettesítünk egységnyi értéket a mértékegységgel együtt elvégezzük az egyszerűsítéseket, összevonásokat megjegyezzük, hogy a mértékegységek mindig egységnyi értékűek (tehát 1 m és sosem 0,5 m), a fizikai állandóknak viszont bármilyen értéke lehet 5
11 II. Termodinamika A termodinamika a testek hőállapotával és annak változásával foglalkozó tudomány. A klasszikus termodinamika (hőtan) a testek makroszkopikus jellemzőit empirikus úton határozza meg, illetve mennyiségi összefüggéseket állít fel, a statisztikus termodinamika (molekuláris hőelmélet) a makroszkopikus mennyiségek közötti összefüggéseket az anyag mikroszkopikus szerkezete, a részecskék rendezetlen mozgása és kölcsönhatása alapján határozza meg. Mindkét szemlélet azonos eredményekhez vezet. II.1. Termodinamikai alapfogalmak Az anyagnak azt a legkisebb részét, amelyet az anyag fizikai felbontásával kapunk, és amely még megőrzi ennek kémiai tulajdonságát, molekulának nevezzük. A molekulák további bontásából kapjuk az atomokat, melyek a molekulákból tisztán vegyi úton előállíthatók. Avogadro törvénye: az azonos térfogatú gázok azonos nyomáson és hőmérsékleten azonos számú molekulát tartalmaznak (az anyagi minőségtől függetlenül), tehát azonos anyagmennyiséget is. Az anyagmennyiséget mólban mérjük. Egy mól annak a rendszernek az anyagmennyisége, mely annyi elemi egységet (atom, molekula) tartalmaz, mint ahány atom van 0,12kg 12 C- ben. Ez kb. 6, elemi egység. Jelölés: v N m Képlet: vagy N A n N a molekulák száma m a molekulák össztömege 64
12 Mértékegység: SI 1kmol (1kmol=1000mol) Megjegyzés: az ennek megfelelő molekulaszámot Avogadroszámnak 26 nevezzük: N A 6,023 molekula/kmol vagy 23 N A 6,023 molekula/mol Egy mól anyagmennyiség tömege a móltömeg. Jelölés: μ Mértékegység: Képlet: SI 1 kg mol A man m A az A anyag egy A molekulájának tömege A relatív molekulatömeg megmutatja, hogy az anyag egy molekulájának tömege hányszor nagyobb a 12 C szénatom tömegének 1/12-ed részénél. Jelölés: μr Képlet: A r m m A A az A molekula tömege mc Mértékegység: 1 m C a 12 C szénatom tömege r SI (dimenziótlan) A 12-es szénatom tömegének 1/12-ed része az atomtömegegység. Jelölés: u Képlet: m u c 27 1,66 kg 12 Megjegyzés: így a 12 C tömege 12u (12 atomtömegegység) Mértékegység: u SI 1kg 65
13 III. Elektromosságtan Az elektromos töltések jelenlétéből illetve mozgásából adódó hatásokat vizsgáló tudomány az elektromosságtan. Az elektromosság a mágnesség fogalmával együtt alkotja az elektromágnességet, mely a négy alapvető kölcsönhatás egyike. III.1. A testek elektromos állapota. Elektromos töltések Az atomok a pozitív töltésű atommagból és a negatív töltésű elektronokból állnak. Az atommag pozitív töltése a protonok jelenlétének tudható be, hiszen a neutronok elektromos szempontból semleges részecskék. Az elektronok a mag körüli héjakban vannak (csak képletesen megfogalmazva), és számuk megegyezik a protonok számával. Ez esetben az atom kifele nem mutat elektromos hatást. Az atom elektromos szempontból semleges (semleges elektromos állapot), ha ugyanannyi elektront és protont tartalmaz. Az előbbieket összefoglalva és általánosítva testekre, azt mondhatjuk, hogy egy test pozitív töltéssel rendelkezik, ha elektronhiánya van, negatív töltéssel rendelkezik elektrontöbblet esetén. Az anyagok elektromos szempontból két csoportra oszthatók: vezető- és szigetelő anyagokra. Azokat az anyagokat, amelyek mozgásképes töltéshordozókat (elektronokat, ionokat) tartalmaznak, elektromos vezetőknek nevezzük (pl.: fémek, szén); nagyon kis számú mozgásképes töltéshordozók esetén pedig elektromos szigetelőknek hívjuk (pl.: üveg, porcelán, fa, műanyagok). 107
14 III.2. Elektromos áram Töltéshordozók rendezett irányú mozgását elektromos áramnak nevezzük. A töltéshordozók lehetnek elektronok, protonok, ionok, stb.; a mozgásukat fenntartó erő az elektromos erő. Az áramforrásból, a fogyasztóból és az összekötő vezetékekből álló zárt rendszert áramkörnek nevezzük. Ha az áramkört egy kapcsolóval (K) megszakítjuk, az elektronok áramlása megszűnik. Az áramforrások olyan berendezések, amelyek valamilyen energiát elektromos energiává képesek alakítani (pl.: vegyi, mechanikai, hő stb.). Az elektromos energia különböző gépek, berendezések, készülékek segítségével más energiává alakítható át. Ezeket az eszközöket az áramkörbe kapcsolva fogyasztóknak nevezzük. Megjegyzés: a fentiek alapján az áramforrások csak energiát alakítanak át és nem áramot termelnek a fogyasztók nem áramot, hanem energiát használnak és más energiává alakítják tehát az elektromos áramnak energiaközvetítő, szállító szerepe van. Ha az áramforrás sarkaihoz vezetővel fogyasztót kapcsolunk, a negatív pólusról (sarkáról) a szabad elektronok a fogyasztón át az áramforrás pozitív sarka fele haladnak (fizikai áramirány valódi áramirány). Megjegyzés: tudománytörténeti szempontok miatt az egyezményes áramirány a fizikai áramirány fordítottja. Az egyezményes áramirány a pozitív töltések elmozdulási irányával egyezik meg. A vezető keresztmetszetén egységnyi idő alatt áthaladó töltésmennyiséget áramerősségnek nevezzük. Jelölés: I Q Q Képlet: I vagy I t t 108
15 Q töltésmennyiség t idő Mértékegység: I SI 1A (Amper) Megjegyzés: az amper az SI-ben alapmértékegység értékét az áramot vivő vezetők közötti erőhatással rögzítjük: 1 amper az olyan állandó elektromos áram erőssége, amely két párhuzamos, egyenes, végtelen hosszúságú, elhanyagolhatóan kis keresztmetszetű és légüres térben egymástól 1m távolságban levő vezetőben folyva, a hét vezető között méretenként N erőt hoz létre. Az elektromos állapotban lévő testek tulajdonságait mennyiségileg az elektromos töltésükkel jellemezzük. Jelölés: Q vagy q Képlet: Q=I t I áramerősség Mértékegység: Q SI 1C 1A 1S Megjegyzések: a legkisebb töltés az elektron töltése (elemi töltés): 19 Q e 1,6 C egy test elektromos töltése csak az elemi töltés egész számú többszörös lehet Q n e, n Az elektromos töltés megmaradásának elve Elektromos szempontból szigetelt rendszerben a rendszerben lévő testek elektromos töltéseinek algebrai összege állandó. Képlet: Q N qi áll. i 1 Elektromos áram a zárt áramkörben csak akkor jöhet létre, ha az áramforrás a töltéshordozók mozgatásához megfelelő 109
16 energiát képes szolgáltatni. Elektromos feszültségnek nevezzük az elektromos erő által egységnyi töltésen végzett munkát. Jelölés: U Képlet: L U L az elektromos erő által végzett munka Q Mértékegység: U SI 1V (Volt) Megjegyzések: áramkörökben az elektromos erő az áramforrásból származik ; az áramforrás az energiát munkavégzésre használja az áramforrás esetén az elektromotoros feszültség elnevezést használjuk, ez a terheletlen áramforrás sarkain mért feszültség elektromos töltések jelenlétében szintén elektromos erő hat a töltéssel rendelkező testekre vagy töltésekre ha a tér különböző pontjaiban más-más értékű erő hat a töltés(sel rendelkező test)ekre, két ponthoz (!) mindig rendelhetünk feszültséget a következőképpen: felhasználjuk a (mechanikai) munka tételét: LAB Ev Ek EB EA E B, E A a B illetve A pontban a töltés(sel rendekező test) potenciális energiája LAB EB E U A AB VB VA Q Q V B, V A a B illetve A pontban mért potenciálok Elektromos potenciálnak nevezzük az egységnyi töltés potenciális energiáját elektromos erő jelenlétében. Jelölés: V 110
17 E p Képlet: V Ep potenciális energia Q J V SI 1V 1 AS Megjegyzés: mivel a potenciált egységnyi töltésre értelmeztük, az a tér egy pontjának a jellemzője, míg a potenciális energia a töltésekből álló rendszer jellemzője. Az áramkörben folyó áram erősségét áramerősség-mérő műszerrel mérjük (ampermérő). Az ampermérő a rajta átfolyó áramerősséget méri, így az áramkör megszakításával kötjük a körbe (soros kapcsolás). Megjegyzés: az ideális ampermérő ellenállása zéró, tehát bekötve az áramkörbe, nem változtatja meg az áramerősséget. Az egyes áramköri elemeken eső feszültséget feszültségmérő műszerrel mérjük (voltmérő). A voltmérőt az áramkörnek mindig ahhoz a két pontjához kell csatlakoztatni, amelyek között a feszültséget mérni szeretnénk (párhuzamos kapcsolás). Megjegyzés: az ideális voltmérő ellenállása végtelen, tehát bekötve párhuzamosan egy áramköri elemmel, nem változtatja meg az azon átfolyó áram áramerősséget az előző kijelentéssel ekvivalens: az ampermérőn átfolyó áram erőssége gyakorlatilag zéró. A mérőműszerek többnyire az elektromos áram mágneses hatása alapján működnek. 13. útmutató: Áramköri elemek jelölése és egyszerű áramkör ábrázolása Cél: egyszerű áramköri elemeket elhelyezni az áramkörbe, megismerni a megfelelő jelöléseket és megfelelően jelölni a fizikai mennyiségeket. Módszer: használjuk a következőkben bemutatott egyezményes jelöléseket különböző áramköri elemek esetén Mértékegység: 111
18 írjuk az áramköri elemek mellé az azokat jellemző fizikai mennyiségeket használjuk az egyezményes áramirány értelmezését az áram iránya a pozitív sarokból a negatív sarok fele mutat az ampermérőt kössük sorba a fogyasztókkal, úgy hogy: megszakítjuk a vezetőket, beiktatjuk az ampermérőt, majd oda kötjük vissza a vezetéket az ampermérő másik sarkához a voltmérőt mindig párhuzamosan kötjük azzal az áramköri elemmel, melynek sarkain mérni kívánjuk a feszültséget (szemléletesen mintha a voltmérő vezetékét egyszerűen rácsíptetnénk az áramköri elem sarkaira) mivel a vezetéket többnyire ideálisnak tekintjük, lényegtelen, hogy az elektromos vezeték egyes irányokba milyen hosszú; kivághatunk belőle vagy beköthetünk még más szakaszokat. Példák: I. Tanuljuk meg a következő áramköri elemek jelöléseit: 1. U feszültségű egyenáramú áramforrás 1 2. E1 elektromotoros feszültségű elem 2 3. E2 elektromotoros feszültségű telep 3 4. elektromos vezeték K kapcsolóval 4 5. ellenállás (R) 5 6. voltmérő (U) 6 7. ampermérő (A) 7 8. I áramerősség 8 9. egyszerű fogyasztó (izzólámpa) 9 112
19 III.1. ábra: Fogyasztó, kapcsoló, elem, telep III.2. ábra: Ellenállás, feszültségforrás, voltmérő, ampermérő 113
20 IV. Optika Az optika (fénytan) a fényjelenségekkel és a fény terjedésének törvényeivel foglalkozó tudomány. A fényről kialakult felfogás, illetve a vizsgálati módszer szerint az optikát három nagy fejezetre szokás osztani: geometriai optika, hullámoptika, kvantum- vagy fotonoptika. A geometriai optika az optikának az a fejezete, mely a fényjelenségeket olyan térrészben tanulmányozza, amelyek méretei sokszorosan meghaladják a fény hullámhosszát. Ebben a tartományban a fény terjedésére a fénysugár fogalmát vezetjük be és mértani összefüggéseket állapítunk meg, anélkül, hogy figyelembe vennénk a fény természetét. A hullámoptika tárgykörébe azok a jelenségek tartoznak, amelyek során a fény kis méretű nyílásokon halad, útjában kicsi akadály található, illetve ha a fényjelenségeket akadályok széleinek közvetlen közelében vizsgáljuk. Másképp megfogalmazva a hullámoptika a fény hullámhosszát nagyságrendben megközelítő térrészekben lejátszódó fényelhajlási, az interferencia és a fénypolarizáció jelenségekkel foglalkozik. Ez esetben a fény természetére vonatkozó hullámfelfogástól indulunk ki. Azokat a jelenségeket, melyek során a fény anyagi közeggel hat kölcsön, az anyag atomi szintű építőelemeivel kerül kapcsolatba, a kvantum- vagy fotonoptika tanulmányozza. Ezek méretei jóval kisebbek a fény hullámhosszánál. A jelenségek megértése a korpuszkuláris szemléletmód alapján történik. IV.1. Geometriai optika IV.1.1. Fénytani alapfogalmak Fényforrásnak nevezzük mindazokat a testeket, amelyek fényt sugároznak a környezetükbe. Elsődleges fényforrások az önmagukban világító testek, a másodlagos (másodrendű) fény- 142
21 források a rájuk eső fényt verik vissza. Ha a fényforrás méretei megfelelően kicsik, pontszerű fényforrásnak nevezzük. A pontszerű fényforrásoknak nem tulajdonítunk geometriai mértékeket (nincs sem szélessége, sem hosszúsága). A geometriai optikai felfogás szerint a sugárzás a fényforrás minden pontjából (pontszerű fényforrás esetén egyetlen pontból) minden irányba kiinduló vonalak mentén terjed. Ezeket a vonalakat nevezzük fénysugaraknak. Több fénysugár halmaza alkotja a sugárnyalábot. A sugárnyalábot alkotó fénysugarak kölcsönös helyzetétől függően egy nyaláb lehet párhuzamos (IV.1. ábra), széttartó (vagy divergens) (IV.2. ábra) és összetartó (vagy konvergens) (IV.3. ábra). IV.1. ábra: Párhuzamos nyaláb IV.2. ábra: Széttartó nyaláb IV.3. ábra: Összetartó nyaláb 143
Fizikai mennyiségek és mértékegységek... 1
Tartalomjegyzék Fizikai mennyiségek és mértékegységek... 1 Alapmennyiségek és mértékegységek... 2 1. útmutató: Különböző nagyságrendű mértékegységek közötti átalakítás... 3 Származtatott mennyiségek és
Tartalomjegyzék. Fizikai mennyiségek és mértékegységek. I. Mechanika
Tartalomjegyzék Fizikai mennyiségek és mértékegységek Alapmennyiségek és mértékegységek... 2 1. útmutató: Különböző nagyságrendű mértékegységek közötti átalakítás... 4 Származtatott mennyiségek és mértékegységek...
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
Elektromos töltés, áram, áramkör
Elektromos töltés, áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban
Elektromos áram, áramkör
Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek
FIZIKA VIZSGATEMATIKA
FIZIKA VIZSGATEMATIKA osztályozó vizsga írásbeli szóbeli időtartam 60p 10p arány az értékelésnél 60% 40% A vizsga értékelése jeles (5) 80%-tól jó (4) 65%-tól közepes (3) 50%-tól elégséges (2) 35%-tól Ha
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
Elektromos áram, áramkör
Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek
Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)
Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%) A vizsga értékelése: Elégtelen: ha az írásbeli és a szóbeli rész összesen nem éri el a
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
Elektromosság, áram, feszültség
Elektromosság, áram, feszültség Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok
Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem Alapinformációk a tantárgyról a tárgy oktatója: Dr. Berta Miklós Fizika és
A klasszikus mechanika alapjai
A klasszikus mechanika alapjai FIZIKA 9. Mozgások, állapotváltozások 2017. október 27. Tartalomjegyzék 1 Az SI egységek Az SI alapegységei Az SI előtagok Az SI származtatott mennyiségei 2 i alapfogalmak
Fizika vizsgakövetelmény
Fizika vizsgakövetelmény A tanuló tudja, hogy a fizika alapvető megismerési módszere a megfigyelés, kísérletezés, mérés, és ezeket mindig valamilyen szempont szerint végezzük. Legyen képes fizikai jelenségek
V e r s e n y f e l h í v á s
A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Sárospataki Református Kollégium Gimnáziumában TÁMOP-3.1.3-11/2-2012-0021 V e r s e n y f e l h í v á s A Sárospataki Református
Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály
Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test
Elektromos áram, áramkör, kapcsolások
Elektromos áram, áramkör, kapcsolások Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az
Elektromos töltés, áram, áramkörök
Elektromos töltés, áram, áramkörök Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
Nemzetközi Mértékegységrendszer
Nemzetközi Mértékegységrendszer 1.óra A fizika tárgya, mérés, mértékegységek. Fűzisz Természet Fizika Mérés, mennyiség A testek, anyagok bizonyos tulajdonságait számszerűen megadó adatokat mennyiségnek
Az SI mértékegységrendszer
PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN Az SI mértékegységrendszer http://hu.wikipedia.org/wiki/si_mértékegységrendszer 1 2015.09.14.. Az SI mértékegységrendszer Mértékegységekkel szembeni
FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június
1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
Az SI mértékegység rendszer
Az SI mértékegység rendszer Az egyes fizikai mennyiségek közötti kapcsolatokat méréssel tudjuk meghatározni, de egy mennyiség méréséhez valamilyen rögzített értéket kell alapul választanunk. Ezt az alapul
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
Mechanika - Versenyfeladatok
Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor
Mi az áramerősség fogalma? (1 helyes válasz) 1. 1:56 Normál Egységnyi idő alatt áthaladó töltések száma. Egységnyi idő alatt áthaladó feszültségek száma. Egységnyi idő alatt áthaladó áramerősségek száma.
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...
Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár
Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre
Fizika 8. oszt. Fizika 8. oszt.
1. Statikus elektromosság Dörzsöléssel a testek elektromos állapotba hozhatók. Ilyenkor egyik testről töltések mennek át a másikra. Az a test, amelyről a negatív töltések (elektronok) átmennek, pozitív
Összefoglaló kérdések fizikából 2009-2010. I. Mechanika
Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;
Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A
Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.
Felvételi, 2017 július -Alapképzés, fizika vizsga-
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott
SZÁMÍTÁSOS FELADATOK
2015 SZÁMÍTÁSOS FELADATOK A következő négy feladatot tetszőleges sorrendben oldhatod meg, de minden feladat megoldását külön lapra írd! Csak a kiosztott, számozott lapokon dolgozhatsz. Az eredmény puszta
ELEKTROMOSSÁG ÉS MÁGNESESSÉG
ELEKTROMOSSÁG ÉS MÁGNESESSÉG A) változat Név:... osztály:... 1. Milyen töltésű a proton? 2. Egészítsd ki a következő mondatot! Az azonos elektromos töltések... egymást. 3. A PVC-rudat megdörzsöltük egy
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
A NEMZETKÖZI MÉRTÉKEGYSÉG-RENDSZER (AZ SI)
A NEMZETKÖZI MÉRTÉKEGYSÉG-RENDSZER (AZ SI) A Nemzetközi Mértékegység-rendszer bevezetését, az erre épült törvényes mértékegységeket hazánkban a mérésügyről szóló 1991. évi XLV. törvény szabályozza. Az
Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.
A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység
Fizika összefoglaló kérdések (11. évfolyam)
I. Mechanika Fizika összefoglaló kérdések (11. évfolyam) 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
Elektromos áramerősség
Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.
Mechanika 1. Az egyenes vonalú mozgások
I. Mechanika 1. Az egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést! elvégzendő kísérlet Mikola-cső; dönthető
Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás
Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába
Az Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó.
Ohm törvénye Az Ohm törvény Az áramkörben folyó áram erőssége függ az alkalmazott áramforrás feszültségétől. Könnyen elvégezhető kísérlettel mérhetjük az áramkörbe kapcsolt fogyasztón a feszültséget és
Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai
Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.
A mechanikai alaptörvények ismerete
A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára
Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
Fizika Vetélkedő 8 oszt. 2013
Fizika Vetélkedő 8 oszt. 2013 Osztályz«grade» Tárgy:«subject» at: Dátum:«date» 1 Hány proton elektromos töltése egyenlő nagyságú 6 elektron töltésével 2 Melyik állítás fogadható el az alábbiak közül? A
Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök segítségével! Eszközök: Kiskocsi-sín, Stopperóra, Mérőszalag
Fizika érettségi 2017. Szóbeli tételek kísérletei és a kísérleti eszközök képei 1. Egyenes vonalú, egyenletesen változó mozgás Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök
A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június
A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június I. Mechanika Newton törvényei Egyenes vonalú mozgások Munka, mechanikai energia Pontszerű és merev test egyensúlya, egyszerű gépek Periodikus
Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat
Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
TestLine - Fizika 8. évfolyam elektromosság 2. Minta feladatsor
1. Fizikai mennyiségek Jele: (1), (2), (3) R, (4) t, (5) Mértékegysége: (1), (2), (3) Ohm, (4) s, (5) V 3:06 Normál Számítása: (1) /, (2) *R, (3) *t, (4) /t, (5) / Jele Mértékegysége Számítása dő Töltés
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:
Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra
TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd
= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy
Határozzuk meg és ellenállások értékét, ha =00V, = 00, az ampermérő 88mA áramot, a voltmérő,v feszültséget jelez! Az ampermérő ellenállását elhanyagolhatóan kicsinek, a voltmérőét végtelen nagynak tekinthetjük
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató
Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Követelmény fizikából Általános iskola
Követelmény fizikából Általános iskola 7. osztály Bevezetés Megfigyelés, kísérlet mérés A testek mozgása Nyugalom és mozgás Az út és az idő mérése,jele,mértékegysége. Átváltások. A sebesség fogalma, jele,
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI
FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI 1. Egyenes vonalú mozgások 2012 Mérje meg Mikola-csőben a buborék sebességét! Mutassa meg az út, és az idő közötti kapcsolatot! Három mérést végezzen, adatait
Kémiai alapismeretek 1. hét
Kémiai alapismeretek 1. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 7. 1/14 2011/2012 II. félév, Horváth Attila c Előadás látogatás
Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia
Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története
DINAMIKA ALAPJAI. Tömeg és az erő
DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban
Elvégzendő mérések, kísérletek: Egyenes vonalú mozgások. A dinamika alaptörvényei. A körmozgás
Elvégzendő mérések, kísérletek: Egyenes vonalú mozgások Mérje meg a Mikola csőben lévő buborék sebességét, két különböző alátámasztás esetén! Több mérést végezzen! Milyen mozgást végez a buborék? Milyen
Elektromos alapjelenségek
Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor
D. Arkhimédész törvénye nyugvó folyadékokra és gázokra is érvényes.
1) Egyetlen szóval 20 pont Karikázd be a helyes állítások betűjelét! A hamisakat egyetlen szó megváltoztatásával, kihúzásával vagy hozzáírásával tedd igazzá! A kötőszók, névelők szabadon változtathatók.
. T É M A K Ö R Ö K É S K Í S É R L E T E K
T É M A K Ö R Ö K ÉS K Í S É R L E T E K Fizika 2018. Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!
Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )
Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.
III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Komplex természettudomány 3.
Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott
Bor Pál Fizikaverseny Eötvös Loránd Fizikai Társulat Csongrád Megyei Csoport DÖNTŐ április osztály
Bor Pál Fizikaverseny 2011-12. Eötvös Loránd Fizikai Társulat Csongrád Megyei Csoport DÖNTŐ 2012. április 21. Versenyző neve:...évfolyama:... Figyelj arra, hogy ezen kívül még a belső lapokon is fel kell
Érettségi témakörök fizikából őszi vizsgaidőszak
Érettségi témakörök fizikából -2016 őszi vizsgaidőszak 1. Egyenes vonalú egyenletes mozgás Mikola-cső segítségével igazolja, hogy a buborék egyenes vonalú egyenletes mozgást végez. Két különböző hajlásszög
Mivel foglalkozik a hőtan?
Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:
TANMENET Fizika 7. évfolyam
TANMENET Fizika 7. évfolyam az Oktatáskutató és Fejlesztő Intézet NT-11715 raktári számú tankönyvéhez a kerettanterv B) változata szerint Heti 2 óra, évi 72 óra A tananyag feldolgozása során kiemelt figyelmet
Mérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
A testek részecskéinek szerkezete
A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok
A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük.
Elektromos mezőben az elektromos töltésekre erő hat. Az erő hatására az elektromos töltések elmozdulnak, a mező munkát végez. A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak
Munka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,