Polimerek adalékanyagai Dr. Tábi Tamás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Polimerek adalékanyagai Dr. Tábi Tamás"

Átírás

1 Polimerek adalékanyagai Dr. Tábi Tamás Szeptember 30.

2 Mi is az a polimer és a műanyag? Polimer: Olyan hosszúláncú vegyület (makromolekula) amelyben sok ezer építőegység kapcsolódik össze egymással. Lehet természetes, mint például a keményítő vagy a cellulóz vagy pedig mesterséges. Műanyag: Adalékanyagokkal társított mesterséges polimer. Az adalékanyagok hozzáadása azért szükséges a polimerhez, hogy tovább javítsuk az előnyös és kiküszöböljük a hátrányos tulajdonságokat. Sok esetben egy adaléknak több tulajdonságra is hatása van (pl. a lágyítók sok esetben csúsztatók is; a korom, amely a fekete színt biztosítja egyben UV stabilizátor, elektromos vezetőképesség növelő és erősítő adalék is). Az adalékanyagok funkciója lehet: - Tulajdonság-módosítás, - Feldolgozás-javítás, - Árcsökkentés.

3 Polimerek adalékanyagai Árcsökkentő adalékanyagok: - Töltőanyagok Feldolgozás-javító adalékanyagok: - Lágyítók, - Csúsztatók (formaleválasztók). Tulajdonság-módosító adalékanyagok: - Töltőanyagok, - Lágyítók, - Erősítőanyagok, - Színezékek, - Fehér és fekete pigmentek, - Stabilizátorok (Antioxidánsok, UV stabilizátorok, hőstabilizátorok, hidrolízis), - Égésgátlók, - Habosítók, - Ütésállóság-növelők, - Tapadásgátlók, - Bomlást elősegítők, - Kompatibilizálók, - Antisztatizálók (antisztatikumok),

4 Polimerek adalékanyagai Tulajdonság-módosító adalékanyagok: - Gócképzők (átlátszóság növelők), - Zsugorodáscsökkentők, - Anti-bakteriális, - Gázzáró-képesség növelők, - Páralecsapódás csökkentők, - Elektromos vezetőképesség növelők, - Hővezető-képesség növelők, - Savmegkötők (sósav-akceptorok), - Optikai fehérítők, -

5 Töltőanyagok

6 Töltőanyagok Az adalékanyag funkciója és működési mechanizmusa: Általában az ár csökkentése, de emellett célzott tulajdonságmódosítás is megvalósítható segítségükkel. Ilyen lehet pl. merevség, keménység, vegyszerállóság, hő-, vagy elektromos vezetőképesség, hőállóság, gázzáróképesség növelése, zsugorodás egyenletesebbé tétele (vetemedés csökkentése), tömegcsökkentés. Egyes töltőanyagok akár a szilárdságot, vagy az ütésállóságot is növelhetik. Mivel nagyobb a hővezetésük a polimereknél, így az ömledékben javítják a hővezetést, és így kisebb ciklusidő érhető el. A töltőanyagok hajlamosak ugyanakkor aggregátumokat képezni (sok szemcse összetapad), amely aggregálódási hajlamot leginkább a szemcseméret, a felületi feszültség és a feldolgozás közbeni nyíróerők befolyásolják. A töltőanyagok tulajdonságmódosító hatása jelentősen eltérhet a szemcseméretük következtében (többféle szemcseméretben kaphatóak). Sztearinsav bevonattal szokták ellátni, hogy növeljék az adhéziót. Jelenlegi fejlesztések: Többfunkciós adalékanyagok, amelyek egyszerre növelik a merevséget, UV állóságot, hőállóságot, hő-, és elektromos vezetőképességet, méretstabilitást (zsugorodást egyenletesen csökkentik), és egyben égésgátlók.

7 Töltőanyagok Adalékanyag Az alkalmazás célja Leggyakoribb felhasználás Kréta-mészkő merevségnövelő, árcsökkentő általános Kvarcliszt merevségnövelő, hővezetés javító, kedvező elektromos EP tulajdonság javító Kaolin árcsökkentő, vegyszerállóság- és elektromos tulajdonság UP, termoplasztok javító Talkum merevség-, hajlítószilárdság-, hővezetés-, hőállóság PE, PP növelő Csillám elektromos szigetelés-, hőállóság-, gázzárás növelő termoplasztok Perlit merevségnövelő, fajlagostömeg-csökkentő duroplasztok Üveggyöngy merevségnövelő termo- és duroplasztok Üreges üveggyöngy merevségnövelő, fajlagos tömegcsökkentő termo- és duroplasztok Üvegszál (paplan szövet) vázanyag UP, EP, PA, PS, ABS Azbeszt (por, szálasanyag) hő- és vegyszerállóság növelő UP, EP, termoplasztok Bárium-szulfát fajlagos tömeg növelő, hangtompító PVC Alumínium-oxid merevség-, hő- és elektromos vezetésnövelő termoplasztok Cink-oxid időjárásállóság növelő termoplasztok Korom (szénszál) szilárdság- elektromosvezetés növelő gumik, termoplasztok Grafit (por, szálasanyag) elektromos vezetésnövelő, csúszásjavító termoplasztok Cellulózőrlemény szilárdságnövelő PF, UF, MF Faliszt szilárdságnövelő PF, UF, PP Szintetikus szálasanyagok vázanyagok duroplasztok

8 Leggyakrabban alkalmazott töltőanyagok

9 Leggyakrabban alkalmazott töltőanyagok Aerosil (üveggyöngy) Legfőbb funkció: Tömegcsökkentés, jobb folyóképesség, megnövelt vegyszerállóság, zsugorodást egyenletesebbé teszi (vetemedés csökken)

10 Leggyakrabban alkalmazott töltőanyagok Krétapor Legfőbb funkció: Árcsökkentés, merevség növelés (leginkább PVC-ben használják), fehér pigment, ciklusidő csökken (10-40%-ban)

11 Leggyakrabban alkalmazott töltőanyagok Talkum Legfőbb funkció: Merevség, ütésállóság, hőállóság növelés, gócképző, zsugorodást egyenletesebbé teszi (vetemedés csökken)

12 Leggyakrabban alkalmazott töltőanyagok Titán-Dioxid Legfőbb funkció: Merevségnövelés, fehér színezék

13 Leggyakrabban alkalmazott töltőanyagok Nano-részecskék Legfőbb funkció: Jobb folyóképesség, gázzáró képesség, égésgátlás, elektromos vezetőképesség növelés, antisztatikum, de aggregálódhat

14 Lágyítók

15 Lágyítók Fizikai háttér: Egyes polimerek rugalmassága, hajlékonysága nem megfelelő az adott célra. Az adalékanyag funkciója és működési mechanizmusa: A lágyítók használatával nő a polimer hajlékonysága, hidegállósága, nyúlása, esetlegesen az ütésállósága (ütőmunkája), javul a feldolgozhatóság, csökken az ömledék-viszkozitás (kisebb fröccsöntési nyomás), csökken a T g, és a rugalmassági modulusz és a szilárdság. A lágyítók kis molekulatömegű polimerek, vagy oligomerek, amelyek kompatibilisak a lágyítani kívánt polimerrel. Kis molekulatömegű lágyító hatásosabb (kevesebb kell belőle), de kimigrál(hat) a felületre vagy kioldódhat a polimerből (élelmiszeripari használata engedélyköteles), amíg a nagyobb molekulatömegű kisebb hatékonyságú, ugyanakkor jelentősen kevéssé migrál. A lágyítók 80%-át a PVC lágyítására és feldolgozhatóvá-tételére használják. Működésük szerint másodlagos kötéseket alakítanak ki a polimer láncmolekuláival, növelik a polimer molekulák közti távolságot, így növelik azok mobilitását és ezáltal deformálhatóságát. Részbenkristályos polimerek esetében a kristályos részarány változatlan marad, a lágyító csak az amorf részarányt módosítja. Gyorsítják a kristályosodás folyamatát.

16 Lágyítók Főbb követelmények a lágyítókkal szemben: - Kis illékonyság, - Vízoldhatatlanság, - Jó hő-, és fényállóság, - Összeférhetőség a polimerrel, - Migrációállóság, tartós hatás, - Hidegállóság, - Vegyszerállóság, - Lángállóság, - Biológiai bonthatóság (víz és szén-dioxid képződik). További hatása a polimerre: Sok esetben a lágyító alkalmas egyben csúsztatóként, valamint formaleválasztóként és a molekulaláncok mozgékonyságát növelve növeli a kristály-gócok növekedési sebességét, azaz gyorsítja a kristályosodási folyamatot, de a gócképződési folyamatot nem (lásd gócképzők).

17 Lágyítók Példák adalékanyagra: A világ összes lágyító termelésének 85%-át a PVC lágyítására használják. - Ftalátok (ftálsav észterek), - Adipinsavak, - Foszforsavészterek, - Citrát-észterek (biológiailag lebomló).

18 Csúsztatók (formaleválasztók)

19 Hatása a polimerre: Utólagos műveletek (festés, nyomtatás nem mindig lehetségesek a kimigráló csúsztató miatt) Példák adalékanyagra: - Fém sztearátok (pl. Magnézium-, cink-sztearát) - PTFE (Teflon) (nem jellemző, inkább erősen súrlódó alkatrészeknél használják) - Bór-nitrid (természetes csúsztató, hővezető, de elektromosan szigetelő) - Zsírsav amidok és észterek - Poliolefin viaszok Csúsztatók (formaleválasztók) Az adalékanyag funkciója és működési mechanizmusa: Az ömledék-viszkozitás csökkentése (megnövelt kihozatal extrúziónál, kisebb nyomás extrúziónál és fröccsöntéskor), a termék szerszámból való eltávolításának segítése, ömledéktörési jelenség megszűntetése (cápabőr) vagy a termék önkenésének megvalósítása. Léteznek belső (kompaundálás során kerül a polimerbe) és külső (működés előtt a súrlódó felületekre viszik fel) csúsztatók. A belső csúsztatók kimigrálnak a felületre, és így fejtik ki hatásukat. A külső csúszatók (kenőolaj,- zsír) általában hatékonyabbak.

20 Erősítőanyagok

21 Erősítőanyagok Az adalékanyag funkciója és működési mechanizmusa: Nagy fajlagos felületű szál (kis átmérő) vagy korong (kis vastagság) a kiváló adhéziónak és nagy saját szilárdságuknak köszönhetően szilárdságnövelő hatást fejt ki. Az erősítőanyagok a feszültséget a mátrixtól átveszik. Rövid szálakat fröccsöntés esetén, hosszú (végtelen) szálakat hőre keményedő kompozitoknál szoktak alkalmazni, de lehetőség van hosszúszálas fröccsöntésre is. Hatása a polimerre: Mechanikai tulajdonságok (szálhossz-eloszlástól függően merevség, szilárdság, ütésállóság) növekednek. Szálorientáció irányú zsugorodás jelentősen csökken. Nagyobb vetemedési hajlam (szálirányra merőlegesen kevéssé csökken). Nagyobb hőállóság, jobb kopási tulajdonságok (főként szén és aramid szálakkal). Kisebb kúszási és kifáradási hajlam. Szén-, és fém szálak esetében elektromos-, és hővezető képesség nő. Példák adalékanyagra: - Üvegszál (legfőképp ez használatos) - Szénszál - Aramid szál - Poliészter, PE, PP szál - Természetes (cellulóz alapú) szálak (len, kender, szizál, stb.)

22 Szálhossz eloszlás [%] Erősítőanyagok RUGALMASSÁGI MODULUSZ SZILÁRDSÁG ÜTÉSÁLLÓSÁG 5 0 Üvegszál hossz [µm]

23 Színezékek

24 Színezékek Az adalékanyag funkciója és működési mechanizmusa: A fény spektrumából bizonyos hullámhossz-tartományokat elnyelnek, másokat visszasugároznak. Esztétikai szempontok miatt a polimereket sok esetben pigmentekkel színezik. Ezek lehetnek: - Szervetlen színezékek (pl. Titán-dioxid (fehér)) - Szerves színezékek - Polimerben oldódó folyékony festékek (folyékony színezék) A mesterkeverék egy előre kompaundált polimer (úgynevezett hordozó) és nagy koncentrációjú pigment keveréke. Hozzáadása a polimerhez lehet pre-colored (fröccsöntés előtti kompaundálás) vagy self-colored (fröccsöntőgépre szerelt gravimetrikus adagoló) módon lehetséges. Egyéb hatása a polimerre: Egyes színezékek egyben UV stabilizátorként is funkcionálnak. A pigmentek aggregálódhatnak, ekkor célszerű sztearinsavat alkalmazni felületaktív adalékként, hogy el tudjanak egymáson csúszni.

25 Színezékek Szervetlen színezék Szerves színezék Folyékony festék Kevéssé drága Közepes-drága Drága Nagy (hő)stabilitás Kis-nagy (hő)stabilitás Kis (hő)stabilitás Kis színezési erősség Nagy színezési erősség Nagyon nagy színezési erősség Könnyű feldolgozni Nehéz feldolgozni Nagy koncentrációban nehéz feldolgozni, adagoló szükséges Oldhatatlan Oldhatatlan Oldódik Könnyű eloszlatni Nehezebb eloszlatni Nem kell eloszlatni (polimerben oldódik) Nem migrál Migrál Nem migrál Matt, pasztellszínek Világos színek Világos színek Hőre lágyulókhoz alkalmas Többnyire alkalmas a hőre lágyulókhoz Poliolefinekhez nem használható

26 Infravörös sugárzást elnyelő pigment: A napfény hősugárzását elnyeli, de a látható fényt átengedi. Alkalmazható pl. autó napfénytetőként. Egyéb színezékek Alumínium pigmentek: Fémes, csillogó szín elérésére használják Titánium-dioxid, vagy vas-oxid bevonatú csillám: Gyöngyházfény elérésére használják Fényre interferáló pigmentek: A megtekintés szögétől függően más színűek Fluoreszkáló vagy foszforeszkáló pigmentek: A napfény bizonyos spektruma gerjeszti és a többlet energiát kisugározza Termokróm és fotokróm pigmentek: Megváltoztatják a színüket, ha hő vagy fény éri. Lehetséges felhasználás: UV fényre sötétedő napszemüveg lencse, hegesztő pajzs.

27 Fehér és fekete pigmentek

28 Fehér és fekete pigmentek Az adalékanyag funkciója és működési mechanizmusa: A fény spektrumából szinte az összes hullámhossz-tartományt elnyelik (fekete) vagy épp visszasugározzák (fehér). Egyéb hatása a polimerre: Mindkét esetben UV stabilizátorként is működnek, megnövelt időjárásállóság. Példák fehér pigmentekre: Titán-dioxid (TiO 2 ): A leghatékonyabb, legelterjedtebb fehér pigment. Jó kémiai, termikus stabilitás, diszpergálhatóság jellemzi, valamint nem toxikus. Mivel elnyeli az UV sugárzást (és hővé alakítja), így megvédi a polimert. Cink-szulfid (ZnS): A Titán-dioxid alternatívája. A ZnS (3-mas Mohs keménység) jóval puhább anyag, mint a TiO 2 (6-7-es Mohs keménység) így kisebb a szerszám és egyéb alkatrészek kopása, ugyanakkor kevesebb UV fényt nyel el.

29 Egyéb hehér és fekete pigmentek További példák adalékanyagra: - Alimínium-szilikát - Bárium-szulfát - Kálcium-szilikát - Magnézium-szilikát (talkum) Fekete pigment (szinte kizárólag ezt használják): Korom: Ideális többfunkciós adalékanyag, mivel színez, erősít, UV állóságot növeli, antisztatizál (elektromosan vezető). Leginkább a gumiipar használ kormot a gumi kopás, kifáradás, valamint szakítás elleni erősítésére. Általánosan igaz, hogy a kisebb szemcseméretű korom jobb tulajdonságokat kölcsönöz a polimernek, ugyanakkor nehezebb eloszlatni.

30 Stabilizátorok

31 Az adalékanyag funkciója és működési mechanizmusa: A polimer oxigén (+ hő) és/vagy UV sugárzással szembeni ellenállóképességének növelése, hogy az adott polimert nagyobb hőmérsékleten fel lehessen dolgozni, vagy hosszú ideig bírja az emelt üzemhőmérsékletet vagy kültéri körülményeket. Stabilizátorok Fizikai háttér: A polimerek bomlása megindulhat: - Fizikai tényezők (hő, nyíróerők, napfény), - Kémiai behatás (oxigén, víz, vegyszerek), - Biológiai tényezők (gombák, baktériumok) hatására. Ezek alapján megkülönböztetünk UV stabilizátorokat, antioxidánsokat (hőstabilizátorokat). A tisztán termikus bomlás jellege háromféle lehet: - Statisztikus lánctördelődés (degradáció) - Depolimerizáció (polimerizációval ellentétes folyamat, oligomerek, monomerek keletkeznek) - Elimináció (oldalcsoportok leszakadnak, de a főlánc sértetlen)

32 Antioxidánsok

33 Antioxidánsok Fizikai háttér: Az oxidációt a levegő oxigénje (+ hő) inicializálja. Oxidáció során szabadgyökök képződnek, amelyek az oxigénnel reagálva peroxid gyököket, utóbbiak pedig a polimer lánccal tovább reagálva hidroperoxidokat hoznak létre. Ez a reakció degradálja, öregíti és ezáltal ridegíti a polimer terméket. Az oxidáció hatására esztétikai (sárgulás), optikai (átlátszóság-csökkenés) és mechanikai tulajdonságok romlása következik be. Az antioxidánsok semlegesítik ezeket a szabadgyököket. Az adalékanyag funkciója és működési mechanizmusa: Az oxidáció hatására létrejövő káros hatások megakadályozása. Az alkalmazott mennyiség 1-2%. Megkülönböztetünk elsőrendű és másodrendű antioxidánst. Az elsőrendű antioxidánsok a szabad gyökök létrejöttét gátolja ( gyökfogók ), a másodrendűek pedig a hidroperoxidot bontja le ( peroxid bontók ). Példák adalékanyagra: - Térben gátolt fenolok, aromás aminok (elsőrendű antioxidánsok) - Foszfitok, tioéterek (másodrendű antioxidánsok) - Kettőt együttesen szokták alkalmazni a szinergikus hatás miatt

34 UV stabilizátorok

35 UV stabilizátorok Fizikai háttér: A napsugárzás UV tartományának energiája azonos nagyságrendű mint a fővegyérték-erők energiája, így a polimerek kültéri használat esetén fotodegradálódhatnak (foto-oxidálódhatnak), ami ridegedéshez, a termék/alkatrész berepedezéséhez, ütésállóságának (és a többi mechanikai tulajdonság) drasztikus csökkenéséhez, elszíneződéshez vezethet. A fény a polimer terméken visszaverődhet, szóródhat, áthatolhat rajta, vagy elnyelődhet. Foto-oxidációt az elnyelt fénysugárzás okozza és leginkább a polimer láncban található kettős kötésekre van hatással, mivel azokat gerjeszti. Egyes hullámhossz tartományok egyes polimerekre károsabbak, míg másokra nem. Pl. PP esetében a 330 nm alatti hullámhossz tartomány a veszélyesebb, amíg PE esetében a 330 nm feletti. Részben kristályos polimereknél a kristályos részarány szétszórja a fényt, így ezek a polimerek még jobban ki vannak téve a foto-oxidációnak.

36 UV stabilizátorok Az adalékanyag funkciója és működési mechanizmusa: A napsugárzás okozta oxidáció káros hatásának csökkentésére. Az alkalmazott mennyiség 0,01-2%. Működési mechanizmus (hasonló az antioxidánsokhoz) szerint lehetnek: - UV-abszorberek, vagy UV-árnyékolók (elnyelik a sugárzást és hőenergiává alakítják vagy leárnyékolják az UV tartományt) - Kioltók (a fény által gerjesztett atomcsoportok energiáját átveszik és leadják) - Hidroperoxid-bontók (a fotooxidáció következtében létrejövő hidroperoxidcsoportokat bontják) - Gyökfogók (a bomlás első lépéseként létrejövő csoportokat, szabadgyököket megkötik)

37 UV stabilizátorok Példák adalékanyagra: UV-árnyékolók: Kálcium-karbonát (önmagában használva fehér színt kölcsönöz a terméknek) UV-abszorberek: Benzofenon vegyületek Kioltók: Nikkel alapú stabilizátorok Gyökfogók, hidroperoxid-bontók: Úgynevezett HALS (Hindered Amine Light Stabilizers) vegyületek

38 Hidrolízis elleni stabilizátorok

39 Példák adalékanyagra: - Polikarbodiimidek Hidrolízis elleni stabilizátorok Fizikai háttér: Egyes polimerek hajlamosak hidrolízis útján (víz és nagy hőmérséklet együttes hatására) degradálódni. A hidrolízis tulajdonképpen a polikondenzációs reakció megfordítása. A poliolefinek nem, de a poliészterek vagy poliamidok ki vannak téve a hidrolízis veszélyének. A hidrolízis során a poliészter észter csoportjaiból sav és alkohol csoportok jönnek létre, amelyek katalizálják a reakciót, így az autokatalitikussá (önfenntartó) válik. A reakció során a polimer lánc tördelődik, a polimer termék/alkatrész pedig ridegebbé válik, majd szétesik. Az alapanyag nem megfelelő szárítása esetén a hidrolízis már a feldolgozó berendezésben megindulhat. A Politejsav (PLA) mint lebontható polimer tulajdonképpen hidrobontható, azaz egy kezdeti hidrolízis után képesek csak a bontó baktériumok feldolgozni a most már csak oligomer formában jelen lévő tejsavat. Az adalékanyag funkciója és működési mechanizmusa: A hidrolízis lassítása. Az adalékanyag reagál a hidrolízis által létrehozott savakkal, így nem lesz autokatalitikus a reakció.

40 A Politejsav (PLA) lebomlása

41 PLA laboratóriumi lebontása PLA PLA/30m% keményítő PLA/15m% cellulóz

42 PLA laboratóriumi lebontása Tömegváltozás [%] PLA PLA/30m%keményítő PLA/15m%cellulóz Tömegváltozás [%] PLA PLA/30m%keményítő PLA/15m%cellulóz -35 Lebontási idő [óra] Enzimes oldat -35 Lebontási idő [óra] Desztillált víz PLA PLA/30m% keményítő PLA/15m% cellulóz

43 Égésgátlók

44 Az adalékanyag funkciója és működési mechanizmusa: Égés folyamatának gátlása főként villamos-, jármű és építőipari termékekben/alkatrészekben. Működésük során az égéshez szükséges egyik elem (hő, éghető anyag, oxigén) utánpótlását megszakítják. Működésük legtöbb esetben az oxigén elvonásával (nitrogén gáz vagy halogének képződésével), vagy a hő elvonásával (vízképződéssel), vagy az éghető anyag hozzáférhetőségének elzárásával (elszenesedett réteg létrehozásával) jár, de nem az égés a legveszélyesebb, hanem az égés során keletkező toxikus melléktermékek és a sűrű füst. Az égésgátlók további feladata, hogy meggátolja az égő anyag csöpögését, és csökkentse az utóizzást. Jelenleg a kutatások arra irányulnak, hogy a lehető legkevesebb füstöt képezzen a folyamatosan égésben tartott polimer termék. Égésgátlók Fizikai háttér: A polimerek többsége szerves molekulák révén könnyen éghető. A PE, PP, PS, PET, PUR, UP, EP könnyen égnek, de a PVC, a nagy hőállóságú polimerek, klór, valamint fluor (PTFE) tartalmú polimerek bizonyos mértékig természetüknél fogva égésgátoltak, azaz a gyújtóláng eltávolítását követően égésük megszűnik, önkioltók. Az éghetőségüket a LOI index segítségével minősítik.

45 Égésgátlók

46 Égésgátlók Példák adalékanyagra (többségük tartalmaz brómot, klórt, foszfort, antimont, vagy alumíniumot): - Alumínium-trihidrát (legelterjedtebb égésgátló): kettős hatás, hőt von el és vizet fejleszt - Antimon-trioxid - Magnézium-hidroxid - Szerves halogén (Cl, Br) vegyületek: környezetvédelmi előírások miatt háttérbe szorultak (füstöt képez égés közben) - Szerves foszforvegyületek - Nanorészecskék: legújabb kutatások irányvonala

47 Habosítók

48 Az adalékanyag funkciója és működési mechanizmusa: Habosítók segítségével csökkenthető a polimer termék tömege, növelhető a hőszigetelése, csökkenthető a zsugorodása, így vastagfalú termékek is gyárthatóak beszívódásmentesre. Léteznek kémiai és fizikai habosítók. Kémiai habosítás: Kémiai habosító egy szilárd, szerves adalékanyag, ami adott hőmérséklettartományban elbomlik és gázt (tipikusan N 2 -t, de egyesek CO 2 -t) fejleszt, ami elvégzi a habosítást. Struktúrhab jön létre, azaz fröccsöntéskor a szerszámfal mentén nem jön létre hab, csak a magban. Kémiai habosítóval való fröccsöntéskor szükséges rugós vagy vezérelhető zárt fúvóka. Szükséges beállítási paraméterek: Nagy torlónyomás (az ömledék a hengerben még ne habosodjon, kellően homogén legyen), részleges kitöltés (majd a habosodó ömledék kitölti a szerszámüreget), gyors befröccsöntés (ha lehűl az ömledék, akkor nem habosodik), 4 mm falvastagság felett célszerű alkalmazni (itt már van értelme). Habosítók Fizikai háttér: A polimer ömledékbe vezetett gáz nyomásának segítségével habszerkezet alakul ki.

49 Habosítók

50 Habosítók

51 Habosítók Kémiai habosítás: Kémiai habosítók lehetnek exoterm és endoterm habosítók a bomlás során fellépő energia szükségletük értelmében. Exoterm kémiai habosítók: Az exoterm habosítók a bomlásuk során több energiát adnak le, mint amennyi a reakcióhoz szükséges, így önfenntartó a folyamat. Az ilyen habosítóval végezett habosítás esetén intenzív hűtés szükséges, hogy elkerülhető legyen a kidobás után a termék tágulása. Endoterm kémiai habosítók: Az endoterm habosítók esetén plusz hő szükséges a reakció fenntartásához. Kisebb a ciklusidő, mint az exoterm esetében, mivel kisebb a hűtés-igénye.

52 Kémiai habosítók (szilárd adalék): - Azodikarbonamid (legelterjedtebb) - Szódabikarbóna (CO -t fejleszt, de vizet is, így korrózióveszély lép fel) Habosítók Fizikai habosítás: A fizikai habosítás során pedig inert és komprimált gázt vezetnek be fizikailag az extruder vagy a fröccsöntőgép hengerébe, így létrehozva a habszerkezetet. A gáz vagy folyadék eloszlatásáról gondoskodni kell. Jelentős nyomás és hőmérséklet alatt szuperkritikus fluidum állapot lép fel (ebben az állapotban nincs felületi feszültség, így kiváló eloszlatás érhető el), aminek segítségével megváltozik a habszerkezet, finomszemcsés lesz. Példák adalékanyagra: Fizikai habosítók (gázok): - Izobután - Izopentán - Argon - Szén-dioxid - Nitrogén

53 Habosítók

54 Ütésállóság-növelő adalékok

55 Ütésállóság-növelő adalékok Az adalékanyag funkciója és működési mechanizmusa: Az ütésállóság (ütőmunka) növelése, bemetszésre való érzékenység, valamint a repedésterjedés sebességének csökkentése elsősorban rideg polimerek, vagy pedig alapvetően szívós, de kis hőmérsékleten ridegen viselkedő polimerek esetében. A szilárd adalékanyagok működési mechanizmusa, hogy önmaguk vezetik el a dinamikus behatás energiáját, például mikronos nagyságú gumirészecskék segítségével. Hatása a polimerre: Alapanyag: (bemetszett) [kj/m 2 ] (nem bemetszett) [kj/m 2 ] Sok esetben az adalékanyag hozzáadásának mennyiségével csökken a szilárdság LDPE Nem törik Nem törik és a merevség. PP 10 >40 Példák adalékanyagra: - Dimer savak - PMMA (PVC esetében) Charpy ütőszilárdság Charpy ütőszilárdság PA 25 Nem törik PMMA 2 15 PS 2 10 HIPS 8 80 ABS PC 70 Nem törik

56 Tapadásgátló adalékok

57 Tapadásgátló adalékok Az adalékanyag funkciója és működési mechanizmusa: A fóliák egymáson való elcsúszását segíti elő, hogy a legtöbb esetben csomagolásra használt fóliát szét lehessen nyitni. Leginkább a PE és PP-hez szokták hozzáadni, hogy a fólia-fólia súrlódási együtthatót csökkentse azáltal, hogy a tapadásgátló kimigrál a felületre. Mivel a PE kristályos részaránya kisebb, mint a PP-é, így a PE esetében gyorsabban tud a felületre migrálni a tapadásgátló. Mivel az átlátszóságot célszerű nem megváltoztatni, ezért tapadásgátlónak a polimer fóliához hasonló törésmutatóval rendelkező anyagot kell választani. Példák adalékanyagra: - Oleamid (zsírsav) - Sztearátok - Talkum (megváltoztatja a fénytörést)

58 Bomlást elősegítő adalékok

59 Az adalékanyag funkciója és működési mechanizmusa: Az adalékanyag segítségével hagyományos, kőolaj alapú polimerek is bonthatóak lesznek, méghozzá időzíthetően. Az adalékanyag UV fény, vagy oxigéndús környezetben felgyorsítja a polimer termék bomlását, így csökken a molekulatömeg, a termék berepedezik, szétesik, és a kis darabok vízoldhatóak lesznek, valamint feldolgozhatóak a bontó baktériumok által. Megoszlanak a vélemények, hogy a talajban az apró darabokat a bontó baktériumok fel tudják-e dolgozni, azaz valóban biológiai úton bontható válik-e a termék, vagy csak szétesővé. Mindezek alapján komoly viták folynak a biopolimeresek és az adalékanyagosok között, hogy melyik megoldás a környezetbarát és melyik lesz a jövő (még ha az adalék működik is, továbbra is kőolaj alapú a polimer). Példák adalékanyagra: - EPI TDPA nevű adalékanyaga - d w nevű adalékanyag Bomlást elősegítő adalékok Fizikai háttér: Habár a piacon léteznek megújuló erőforrásból előállított, és egyben biológiai úton lebontható polimerek, ugyanakkor ezek tulajdonsága, feldolgozhatósága nem mindig megfelelő a kívánt célra.

60 Kompatibilizálók

61 Kompatibilizálók Fizikai háttér: A legtöbb polimer keveréke inkompatibilis, azaz nem összeférhető, így az ömledékállapotú keverés után, lehűtve szétválnak fázisaikra. Ez jól nyomon követhető DSC méréssel a T g -k alakulásán. Amint egy darab közös T g jelentkezik, úgy a keverék összeférhető, ezzel szemben egy összeférhetetlen keverékben az alkotók T g -je külön-külön megtalálható. Megkülönböztetünk továbbá termodinamikai és technológiai kompatibilitást. A termodinamikai (magasabb rendű) kompatibilitás garantálja, hogy a két fázis összeférhető. A technológiai kompatibilitás esetében nem áll fenn a termodinamikai kompatibilitás, de a két fázis keveréke még egy megfelelő tulajdonságokkal rendelkező, használható anyagot alkot. Az adalékanyag funkciója és működési mechanizmusa: Mindkét fázishoz kapcsolódó kémiai kötés kialakítása és így az összeférhetőség biztosítása. Léteznek reaktív és nem-reaktív kompatibilizálók. A nem reaktív kompatibilizáció esetében egy harmadik komponenst viszünk a rendszerbe, amely jól kapcsolódik mindkét fázishoz. Ilyenek lehetnek az ojtott polimerek: pl. PS és PC kompatibilizálására PS-g-PC (PS-ral ojtott (grafting) PC).

62 Kompatibilizálók Az adalékanyag funkciója és működési mechanizmusa: Reaktív kompatibilizáláskor tipikusan az extruderben létrejövő reakció (pl. polimerizáció, ojtás) során alakul ki a fázisok oldhatósága. Példák adalékanyagra: Nem reaktív kompatibilizálók: - PS-g-PC (PS és PC esetén) - PC-g-PMMA (PC és PMMA esetén) Reaktív kompatibilizálók: - Maleinsav anhidrid (HDPE és HIPS) - Etilén-glikol-dimetakrilát (PBT és PP)

63 Antisztatizáló adalékok

64 Antisztatizáló adalékok Fizikai háttér: Mivel a polimerek nem vezetik az elektromos áramot (jó szigetelők), ezért fel tudnak töltődni és az elektrosztatikus kisülések veszélyt jelenthetnek közvetlenül vagy közvetve (szikra, gyulladás, robbanásveszély). A száraz felület elengedhetetlen a sztatikus elektromosság kialakulásához. Az adalékanyag funkciója és működési mechanizmusa: Vezetőképessé teszik a polimert vagy a teljes keresztmetszeten belül vagy pedig csak a felületen, így le tudja vezetni az elektrosztatikus feltöltődést. Leggyakrabban fóliagyártásnál szükséges a használatuk, ahol a kész fóliát nagy sebességgel tekercselik. Az adalékanyagot még feldolgozás előtt adják a polimerhez. Léteznek belső és külső antisztatizálók. A belső antisztatizáló a feldolgozás során kimigrál a felületre (csak csekély mértékben kompatibilis a polimerrel) és a hidrofil tulajdonsága következtében a levegő páratartalmát magához vonzza, ami biztosítja az elektromos vezetést. Külső antisztatizálók esetében a felületre kívülről viszik fel a réteget (spray, mártó, stb.). A legegyszerűbb megoldás korom hozzáadása a polimerhez, így az valamelyest elektromosan vezető lesz (de mindenképpen fekete).

65 Antisztatizáló adalékok Példák adalékanyagra: - Korom (elektromosan vezető adalék) - Fém szálak (elektromechanikai interferencia elleni védelem) - Szerves sók - Poliglikol-észterek - Zsírsav-észterek

66 Antisztatizáló berendezés Ionizáló

67 Gócképzők (átlátszóság növelő adalékok)

68 Gócképzők (átlátszóság növelő adalékok) Kristályosodás folyamata: A kristályosodás a részben-kristályos polimerekre jellemző folyamat, amint az ömledékből hűtve (ömledékállapotban nincs kristályos részarány) létrejön a kristályos szerkezet. A kristályosodás úgynevezett kristálygócok képződéséből, valamint azok növekedési szakaszából áll. A gócképződés lehet homogén (spontán) vagy heterogén. Homogén gócképződés esetén az ömledékből hűtve a molekulaláncok spontán csoportosulásai alkotnak kristálygócokat. Heterogén gócképződés esetén kívülről bevitt gócképzők, vagy bármilyen idegen anyag indukálja a kristálygócok kialakulását. A kristályosodás sebességét a kristálygócok képződésének sebessége és növekedésük sebessége együttesen határozza meg.

69 Gócképzők (átlátszóság növelő adalékok)

70 Gócképzők (átlátszóság növelő adalékok) Kristályosodás, kristályos részarány vizsgálata : - Kristályosodás vizsgálata történhet DSC-vel, amely mérés során a mintát konstans fűtési sebességgel fel, majd pedig lehűtik. A kristályosodás csúcshőmérséklete (gócképzési hatékonyság) és a görbe alatti területet értékelik:, ahol X [%] a polimer minta kristályos részaránya, ΔH m [J/g] az olvadáshő, ΔH cc [J/g] a hideg-kristályosodási entalpia, ΔH f [J/g] a 100%-ban kristályos minta olvadáshője (referencia), α [-] a töltőanyag (ha van) tömegaránya. - A DSC mérés segítségével nem csak a kristályos részarány és a kristályosodási csúcshőméréséklet határozható meg, de a kristályosodási kinetika is jól leírható az úgynevezett Avrami összefüggéssel (izoterm): 1 ln 1 x k, ahol x a relatív kristályos hányad [%], t az idő [óra], k a kristályosodás sebességi állandója [%/óra], n pedig az Avrami kitevő. Az n 1 és 4 között változhat a gócképződés (0 vagy 1) és gócnövekedés alapján (1, 2, vagy 3). A gócnövekedés (krisztallitok növekedése) 1 (fibrilla), 2 (lemez) vagy 3 (szferolit) dimenziós lehet. n t

71 Gócképzők (átlátszóság növelő adalékok) 10 C/min dq/dt [mw] Exoterm Hőmérséklet [ C]

72 Gócképzők (átlátszóság növelő adalékok) Kristályosodás, kristályos részarány vizsgálata: A gócszám a kristályosodás során lehet állandó (0) vagy pedig nőhet lineárisan az idővel (1). A zárójelben látható számok összege adja ki az Avrami kitevőt. - A kristályos részarány ugyanakkor számítható a sűrűség-különbségből is, ami a részben-kristályos (nagyobb sűrűség) és amorf polimer között fennáll. - Végül Röntgen-diffrakcióval (WAXD) is számolható a kristályos részarány a területek arányából:

73 Gócképzők (átlátszóság növelő adalékok)

74 Gócképzők (átlátszóság növelő adalékok) Gócképzés szükségességének fizikai háttere: - Egyes részben kristályos polimerek nagyon lassan kristályosodnak ömledékből való hűtéskor (pl. PLA), így nem érik el a lehető legnagyobb kristályos részarányt (gócképzők). - Egyes részben kristályos polimerek ugyan kellően gyorsan kikristályosodnak, de átlátszóságuk megszűnik a kristályos részarány következtében, így azok nem vagy csak korlátozva alkalmazhatóak orvostechnikai és csomagolástechnikai célokra (átlátszóság növelő). Többféle kristályos módosulat létezik, pl. PP esetében: α, β, γ, PLA esetében α, β, γ, és η. A gócképzők általában egyfajta kristálymódosulat képződését segítik elő. Amely gócképző hatékony az egyik polimer esetében az egyáltalán nem biztos, hogy hatékony lesz egy másik polimer esetén.

75 Gócképzők (átlátszóság növelő adalékok) Az adalékanyag funkciója és működési mechanizmusa: - Lassú kristályosodás esetén (pl. PLA) a gócképzők feladata a kristálygócok képződésének elősegítése, és ezáltal a kristályos részarány növelése. A kristályos részarány növelésével növelhető a polimer hőállósága, csökkenthető a gyártáshoz szükséges ciklusidő. - Kellően gyors kristályosodás esetén (pl. PP) a megszilárdult ömledék átlátszósága nem lehet tökéletes a kristályos részarány miatt, amely megtöri a fényt (az amorf polimerek az átlátszóak), ugyanakkor a kristályos részecskenagyság csökkentésével (kisebb szferolitok) az átlátszóság javítható. Ebben az esetben a gócképzők feladata az átlátszóság növelése, mivel a kristálygócok képződésének elősegítésével több, de kisebb krisztallitok jönnek létre.

76 Gócképzők (átlátszóság növelő adalékok) Tárolási modulusz [MPa] ,1 80 C, 10 perc 80 C, 20 perc 80 C, 30 perc 80 C, 40 perc 80 C, 50 perc 80 C, 60 perc 100 C, 10 perc Növekvő kristályosság Hőmérséklet [ C]

77 Gócképzők (átlátszóság növelő adalékok) Egyéb tudnivalók: - Nem minden polimer esetében érdemes gócképzőket alkalmazni. A HDPE például nagyon gyorsan kristályosodik, így gócképzők segítségével sem növelhető az átlátszósága. A PP esetében közepes kristályosodási sebesség mérhető, így ennél a polimernél sikeresen alkalmazhatóak a gócképzők az átlátszóság növelésére. - A szferolitok háromféle morfológiában vannak jelen egy fröccsöntött termékben a falvastagság mentén: Nincsenek szferolitok a lefagyott héjrégetben (gyors hűtés), orinetáltak a szferolitok a nyírt zónában és orinetálatlanok a belső magban. - PP esetében előnyösebb a β kristályos módosulat létrehozása gócképzőkkel az α kristályos módosulattal szemben. Tulajdonság α-pp β-pp Olvadási hőmérséklet [ C] Kristályos fázis sűrűsége [g/cm 3 ] 0,936 0,921 Amorf fázis sűrűsége [g/cm 3 ] 0,858 0,858 Húzó rugalmassági modulusz [GPa] 2 1,5 Húzószilárdság [MPa] 39,5 44 Nyúlás [%] Izod típusú ütőszilárdság [kj/m 2 ]

78 Gócképzők (átlátszóság növelő adalékok) Példák adalékanyagra: - Bármi - Adipinsav - Fém sók - Szorbitol - Foszfátok - Szervetlen töltőanyagok (Titánium-dioxid, talkum, aluminim-oxid, krétapor)

79 Zsugorodás-csökkentő adalékok

80 Zsugorodás-csökkentő adalékok Fizikai háttér: A polimer ömledék hűtés közben fajtérfogat-változást szenved, azaz zsugorodik. Habár az utónyomással kompenzálható a zsugorodás, egyes polimereknél így is meghaladja az 1%-ot, szálerősített esetben pedig jelentős anizotrópia lép fel a zsugorodásban, ami vetemedéshez vezet. Az adalékanyag funkciója és működési mechanizmusa: Az adalékanyag sok esetben egységesen csökkeni a folyásirányú és az arra merőleges zsugorodást, ezáltal csökkentve a vetemedési hajlamot. Az ilyen jellegű adalékok leginkább inert töltőanyagok. Hatása a polimerre: Mint amilyen az adott töltőanyagnak. Példák adalékanyagra: - Krétapor - Talkum - Alumínium-oxid

81 Zsugorodás-csökkentő adalékok

82 Anti-bakteriális adalékok

83 Anti-bakteriális adalékok Fizikai háttér: A természetes (pl. cellulóz vagy keményítő) alapú polimereket a baktériumok, gombák vagy algák könnyen megtámadják és károsítják. A szintetikus műanyagok többnyire nincsenek kitéve a baktériumok hatásának, ugyanakkor a lágyító, csúsztató tartalmuk, amely kimigrál(hat) a termék felületére elősegíti a baktériumok megtapadását, ugyanis ez tápanyagot jelent számukra. Az adalékanyag funkciója és működési mechanizmusa: Megakadályozni a baktériumok, gombák káros hatását (élettartam csökkenés, elszíneződés, kellemetlen szag) a polimer termékekre/alkatrészekre. Az alkalmazott vegyületek As (arzén), Sb (antimon), Cu (réz), Sn (ón), illetve halogén tartalmúak, így az emberre is veszélyesek, de nagyon kis mennyiségben alkalmazzák ezeket (0,1-0,2%). A működésük során az anti-bakteriális adalékanyagok kimigrálnak a felületre és gátolják a mikroorganizmusok anyagcseréjét, szaporodását, vagy meg is ölik azokat. Példák adalékanyagra: - Difenil-antimon-2-etil-hexanoát - Réz-8-oxi-kinolin - Tributil-ón-oxid - Ezüst részecskék

84 Gázzáró-képesség növelő adalékok

85 Gázzáró-képesség növelő adalékok Fizikai háttér: Egyes polimerek vízgőz, vagy gázzáró (oxigén) képessége nem megfelelő ahhoz, hogy a belőlük készített palackban vagy tartályban huzamosabb ideig folyadékot, gázt lehessen tárolni a gázok diffúziója miatt. Az oxigén diffúziójának gátlása különösen az élelmiszeripari csomagolások esetén fontos (eltarthatóság). Az adalékanyag funkciója és működési mechanizmusa: A gőz-, vagy gázzáró képesség növelése. Lemezes töltőanyagok használhatóak, amelyek növelik a gáz diffúziójának útját, ezáltal növelve a gázzáró-képességet. Lehetséges továbbá szórással utólagos bevonatot készíteni a termékre, amely egyben gázzáró-képesség növelő és karcálló is lehet. Példák adalékanyagra: - Talkum (lemezes töltőanyag) - Bór-nitrid (lemezes töltőanyag) - Epoxi-amin (szórással felvitt)

86 Páralecsapódás csökkentő adalékok

87 Páralecsapódást csökkentő adalékok Fizikai háttér: A mezőgazdasági PE takarófóliák vagy abból épített üvegházok esetében fontos tulajdonság a PE időjárás-állósága, a hő visszatartásának képessége, az átlátszóság és a páralecsapódás megelőzése. Mivel az üvegházon belül nagy a páratartalom, így az a PE fólia belső felületén fog kicsapódni, és vízcseppek alakulnak ki. A vízcseppek szórják a beeső fénysugárzást, amely az üvegház hatékonyságát csökkenti. Az adalékanyag funkciója és működési mechanizmusa: Az adalékanyag természetesen nem gátolja meg a kondenzációt, hanem, mivel az kimigrál a felületre, így a kondenzátumot egyenletesen szétteríti és lefolyatja a fólia mentén. Az adalékanyag csökkenti a víz és a polimer közti kontaktszöget ezáltal létrehozva a fólia nedvesítését. Sajnálatosan az adalékanyagot a víz gyorsan lepergeti, így rövid távú ennek az adaléknak a hatása. Példák adalékanyagra: - Glicerin monooleát - Poliglicerin észterek

88 Elektromos vezetőképesség növelő adalékok

89 Példák adalékanyagra: - Korom - Szénszálak - Szén-nanocsövek - Grafit - Grafén - Fém töltőanyagok - Fém bevonatú töltőanyagok Elektromos vezetőképesség növelő adalékok Az adalékanyag funkciója és működési mechanizmusa: A polimerek jelentős szigetelő képességének csökkentése, elektromos vezetőképesség növelése, főként elektronikai alkalmazásokhoz. Az elektromos vezetőképesség nem lineárisan nő a töltőanyaggal, hanem van egy úgynevezett perkolációs küszöb, ami felett a vezetőképesség hirtelen megnő, mivel ennél a határértéknél a töltőanyagok vezetőképes hálózatot alkotnak. Az elmélet szerint ugyanakkor a vezetőképes részecskéknek nem kell feltétlenül összeérniük, mivel bizonyos távolságot az elektronok a vezetőképes töltőanyagok közti mátrixanyag átugrásával át tudnak hidalni. Szén-nanocsövek esetében ez a perkolációs küszöb 0,5-1% töltőanyag tartalomnál jelentkezik.

90 Elektromos vezetőképesség növelő adalékok

91 Hővezető-képesség növelő adalékok

92 Thermal conductivity. [W/mK] Hővezető-képesség növelő adalékok Az adalékanyag funkciója és működési mechanizmusa: A polimerek jelentős hőszigetelésének csökkentése, hővezetésének növelése olyan alkalmazásokhoz, ahol a jelentős hőfejlődés működési problémát okoz, és a hőelvezetés a polimer alkatrész feladata. Az adalékanyag a saját, a polimerhez képest jelentősen nagyobb hővezetésével növeli a polimer hővezetését. A hővezető polimerek alkalmazási területe lehet például a LED izzó burkolata. A LED fényforrás sok hőt termel, amit el kell vezetni, ellenkező esetben romlik a hatásfok és az élettartam. Ezt a kereskedelmi forgalomban nehéz alumínium burkolattal oldották meg. Thermal conductivity. [W/mK] PLA + BN PP + BN PLA + talc PP + talc PP PP+talc PP+BN PP+TiO Filler content [vol% ]

93 Hővezető-képesség növelő adalékok Példák adalékanyagra: - Bór-nitrid (csak hővezetés) - Talkum (csak hővezetés) - Titán-dioxid (csak hővezetés) - Korom (hő-, és elektromosan vezető) - Szénszálak (hő-, és elektromosan vezető) - Szén-nanocsövek (hő-, és elektromosan vezető) - Grafit (hő-, és elektromosan vezető) - Grafén (hő-, és elektromosan vezető) - Fém töltőanyagok (hő-, és elektromosan vezető) - Fém bevonatú töltőanyagok (hő-, és elektromosan vezető)

94 Leggyakrabban alkalmazott töltőanyagok Bór-Nitrid

95 Savmegkötő adalékok (sósav akceptor adalékok)

96 Savmegkötő adalékok Fizikai háttér: PVC termikus bomlása (nagy hőmérsékleten történő feldolgozáskor) a HCl eliminációval (főláncból való lehasadással) kezdődik. A HCl önmaga katalizálja, fenntartja a reakciót, azaz az autokatalitikussá válik (önfenntartó). Az adalékanyag funkciója és működési mechanizmusa: A PVC bomlásának megakadályozása nagy hőmérsékleten. Az adalékanyag reagál az erős savakkal, semlegesítik azokat. Követelmények a sósav akceptorral szemben: - Kösse meg a képződött sósavat, - Kapcsolja ki a hibahelyeket, - Akadályozza meg az autokatalízist. Példák adalékanyagra: - Ólomsók, - Bárium-kadmium, bárium-cink, kalcium-cink szappanok.

97 Optikai fehérítő adalékok

98 Optikai fehérítő adalékok Fizikai háttér: Egyes polimerek enyhén sárgás alaptónussal rendelkeznek, ami új termékként is régi benyomását kelti. Az adalékanyag funkciója és működési mechanizmusa: A fehérség, átlátszóság fokozása érdekében az UV sugarakat elnyeli és egy részét kék-ibolya színben emittálja, ami ellensúlyozza a sárgás alaptónust. Jól el kell tudni oszlani a polimer ömledékben a feldolgozás során.

99 Legújabb kutatások

100 Legújabb kutatások Legújabb kutatások: A legújabb kutatásoknak három pillére van: - Többfunkciós adalékanyagok fejlesztése áll a kutatások középpontjában. Pl. olyan töltőanyagok (talkum), amely egyben erősít is, növeli a merevséget, ütőszilárdságot, hőállóságot; vagy pl. olyan pigmentek, amelyek egyben UV stabilitást biztosítanak, illetve olyan lágyítók, amelyek egyben csúsztatók és antisztatizálóként is funkcionálnak. - Felület-módosítások fejlesztése annak érdekében, hogy az olcsó töltőanyagok és a mátrix polimerek között jobb tapadás jöjjön létre és ezáltal jobb mechanikai tulajdonságokat lehessen elérni. - Eleget tenni az egyre szigorodó környezetvédelmi és egészségügyi előírásoknak. Ez főként az égésgátlókat és egyes országokban a nehézfém tartalmú színezékeket érinti.

101 Alapanyagok célzott módosítása 101

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok DR Hargitai Hajnalka 2011.10.19. Polimerek

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Műanyagok kiválasztásának szempontjai A műanyagok típusválasztéka ma már olyan széles, hogy az adott alkalmazás követelményeit gazdaságosan teljesítő alapanyag kiválasztása komoly

Részletesebben

A tételekhez segédeszköz nem használható.

A tételekhez segédeszköz nem használható. A vizsgafeladat ismertetése: Egy kiválasztott műanyag jellemző fizikai és kémiai tulajdonságainak ismertetése Adott műanyag termék gyártásához anyag, gép és szerszám választása, majd a gyártástechnológia

Részletesebben

Termikus analízis alkalmazhatósága a polimerek anyagvizsgálatában és jellemzésében

Termikus analízis alkalmazhatósága a polimerek anyagvizsgálatában és jellemzésében Termikus analízis alkalmazhatósága a polimerek anyagvizsgálatában és jellemzésében Menyhárd Alfréd BME Fizikai Kémia és Anyagtudományi Tanszék PerkinElmer szeminárium Budapest, 2015. október 20. Vázlat

Részletesebben

2. tétel. 1. Nemfémes szerkezeti anyagok: szerves ( polimer ) szervetlen ( kerámiák ) természetes, mesterséges ( műanyag )

2. tétel. 1. Nemfémes szerkezeti anyagok: szerves ( polimer ) szervetlen ( kerámiák ) természetes, mesterséges ( műanyag ) 2. tétel - A nemfémes szerkezeti anyagok tulajdonságai, felhasználásuk. - Vasfémek és ötvözeteik, tulajdonságaik, alkalmazásuk. - A könnyűfémek fajtái és jellemzői, ötvözése, alkalmazása. - A színesfémek

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka Polimerek / Műanyagok monomer egységekből,

Részletesebben

Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor

Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor 2015. november 18. Előadásvázlat 2 / 32 Fröccsöntés (szálas) Ciklus (kiemelve a száltöltés szerepét) Anyagok (mátrix, szál, adhézió) Rövidszálas

Részletesebben

A MÛANYAGOK FELHASZNÁLÁSA. az orvostechnikában A PEEK

A MÛANYAGOK FELHASZNÁLÁSA. az orvostechnikában A PEEK A MÛANYAGOK FELHASZNÁLÁSA 4.4 1.3 A PEEK és más high-tech műanyagok az orvostechnikában Tárgyszavak: hőálló műszaki műanyag; PEEK; összehasonlítás más polimerekkel; tulajdonságok; feldolgozhatóság; sterilizálhatóság;

Részletesebben

Lépcsős polimerizáció, térhálósodás; anyagismeret

Lépcsős polimerizáció, térhálósodás; anyagismeret Lépcsős polimerizáció, térhálósodás; anyagismeret Bevezetés Lineáris polimerek jellemzők reakciók kinetika sztöchiometria és x n Térhálósodás Anyagismeret hőre lágyuló műanyagok térhálós gyanták elasztomerek

Részletesebben

Biopolimerek 1. Dr. Tábi Tamás Tudományos Munkatárs

Biopolimerek 1. Dr. Tábi Tamás Tudományos Munkatárs Biopolimerek 1 Dr. Tábi Tamás Tudományos Munkatárs MTA BME Kompozittechnológiai Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki kar, Polimertechnika Tanszék 2016. Május 3. Mi

Részletesebben

MŰANYAGOK TULAJDONSÁGAI

MŰANYAGOK TULAJDONSÁGAI MŰANYAGOK TULAJDONSÁGAI Funkcionális ásványi töltőanyagok alkalmazása a műanyagok tulajdonságainak javítására Viszonylag kevés adat áll rendelkezésre a csillám és a wollastonit műanyagokban kifejtett hatásáról.

Részletesebben

(11) Lajstromszám: E 006 674 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 006 674 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000006674T2! (19) HU (11) Lajstromszám: E 006 674 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 03 7326 (22) A bejelentés napja:

Részletesebben

1 ábra a) Kompaundálás kétcsigás extruderben, előtermék: granulátum, b) extrudált lemez vákuumformázásának technológiai lépései, c) fröccsöntés

1 ábra a) Kompaundálás kétcsigás extruderben, előtermék: granulátum, b) extrudált lemez vákuumformázásának technológiai lépései, c) fröccsöntés 1. Hőre lágyuló kompozitok előállítása és feldolgozása Tevékenység: A lecke áttanulmányozása után, a követelményekben meghatározottak alapján rögzítse, majd foglalja össze a lecke tartalmát, készítsen

Részletesebben

AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA

AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA Bevezető AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA A műanyagok felhasználási területe egyre bővül, így mennyiségük is rohamosan növekszik. Elhasználódás után csekély hányaduk kerül csak újrahasznosításra,

Részletesebben

Műszaki alkatrészek fém helyett PEEK-ből

Műszaki alkatrészek fém helyett PEEK-ből MÛANYAGFAJTÁK Műszaki alkatrészek fém helyett PEEK-ből Tárgyszavak: poli(éter-éter-keton); Victrex; csapágyelemek; tribológia; kopásállóság; áramlásmérő; rögzítőcsavar; CFM eljárás; hangszóró. A részlegesen

Részletesebben

OTKA KUTATÁS ZÁRÓJELENTÉSE Égésgátló szereket tartalmazó műanyagok hőbomlása T047377

OTKA KUTATÁS ZÁRÓJELENTÉSE Égésgátló szereket tartalmazó műanyagok hőbomlása T047377 OTKA KUTATÁS ZÁRÓJELENTÉSE Égésgátló szereket tartalmazó műanyagok hőbomlása T047377 A kutatás célja Égésgátló szerekkel társított műanyagok hőbomlását tanulmányoztuk abból a célból, hogy feltárjuk az

Részletesebben

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer

Részletesebben

Műanyagok galvanizálása

Műanyagok galvanizálása BAJOR ANDRÁS Dr. FARKAS SÁNDOR ORION Műanyagok galvanizálása ETO 678.029.665 A műanyagok az ipari termelés legkülönbözőbb területein speciális tulajdonságaik révén kiszorították az egyéb anyagokat. A hőre

Részletesebben

KEMÉNYÍTŐBŐL ÉS POLITEJSAVBÓL ELŐÁLLÍTOTT

KEMÉNYÍTŐBŐL ÉS POLITEJSAVBÓL ELŐÁLLÍTOTT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK KEMÉNYÍTŐBŐL ÉS POLITEJSAVBÓL ELŐÁLLÍTOTT FRÖCCSÖNTÖTT LEBOMLÓ POLIMEREK FELDOLGOZÁSÁNAK ÉS FELHASZNÁLHATÓSÁGÁNAK

Részletesebben

Szilárd anyagok. Műszaki kémia, Anyagtan I. 7. előadás. Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék

Szilárd anyagok. Műszaki kémia, Anyagtan I. 7. előadás. Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Szilárd anyagok Műszaki kémia, Anyagtan I. 7. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Szilárd anyagok felosztása Szilárd anyagok Kristályos szerkezetűek Üvegszerű anyagok

Részletesebben

Erősítőszálak választéka és tulajdonságaik

Erősítőszálak választéka és tulajdonságaik MŰANYAGFAJTÁK Erősítőszálak választéka és tulajdonságaik Néhány éve a szálerősítés szinte kizárólag az üvegszálak bevitelét jelentette a műanyagmátrixba. Napjainkban azonban a felhasználható szálak választéka

Részletesebben

Poli(etilén-tereftalát) (PET) újrafeldolgozása a tulajdonságok javításával

Poli(etilén-tereftalát) (PET) újrafeldolgozása a tulajdonságok javításával MÛANYAGOK ÉS A KÖRNYEZET Poli(etilén-tereftalát) (PET) újrafeldolgozása a tulajdonságok javításával Tárgyszavak: PET; újrafeldolgozás; kémiai bontás; molekulatömeg; lánchosszabbítás; reaktív extrúzió;

Részletesebben

31 544 03 0010 31 02 Külfejtéses bányaművelő Külszíni bányász 2/54

31 544 03 0010 31 02 Külfejtéses bányaművelő Külszíni bányász 2/54 A /2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

A4. Hőre lágyuló műanyagok melegalakítása

A4. Hőre lágyuló műanyagok melegalakítása LABORGYAKORLATOK - SEGÉDLET Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar POLIMERTECHNIKA TANSZÉK A4. Hőre lágyuló műanyagok melegalakítása A jegyzet érvényességét a tanszéki Weboldalon

Részletesebben

MŰANYAGOK ÉS A KÖRNYEZET

MŰANYAGOK ÉS A KÖRNYEZET MŰANYAGOK ÉS A KÖRNYEZET Bioműanyagok: immár az EU iparpolitikájának részét képezik Az EU új iparpolitikája megteremtheti a biopolimereket gyártó európai vállalatok növekedése számára. A klasszikus, általában

Részletesebben

Lebomló polietilén csomagolófóliák kifejlesztése

Lebomló polietilén csomagolófóliák kifejlesztése Dr. Deák György *, Holup Péter **, Ferroni Liz Priscila **, Dr. Zsuga Miklós ***, Dr. Kéki Sándor *** Lebomló polietilén csomagolófóliák kifejlesztése Célul tűztük ki egy biológiailag lebomló polietilén

Részletesebben

MŰANYAGOK ALKALMAZÁSA, UTÓMŰVELETEK

MŰANYAGOK ALKALMAZÁSA, UTÓMŰVELETEK MŰANYAGOK ALKALMAZÁSA, UTÓMŰVELETEK Hibrid szerkezetek szerves bádoggal A hibrid szerkezetek tömege jelentősen csökkenthető, ha a fémkomponens helyett is műanyagot, ún. szerves bádogot használnak. A szerves

Részletesebben

Műszaki műanyagok tribológiai kutatása különböző rendszerekben

Műszaki műanyagok tribológiai kutatása különböző rendszerekben FIATALOK FÓRUMA Műszaki műanyagok tribológiai kutatása különböző rendszerekben Zsidai László Szent István Egyetem, Gépészmérnöki Kar, Gépgyártás és Javítástechnológia Tanszék, Gödöllő Tárgyszavak: súrlódás;

Részletesebben

A természetes kaucsuk

A természetes kaucsuk A természetes kaucsuk A gumiipar legfontosabb nyersanyaga. Sok olyan növény ismeretes, amelyek sejtjei latexet termelnek. A latex 50-60 % kaucsukot tartalmaz. Latex feldolgozása ún.(füstölt) eljárásnál

Részletesebben

Szerkezet és tulajdonságok

Szerkezet és tulajdonságok Szerkezet és tulajdonságok Bevezetés Molekulaszerkezet és tulajdonságok Kristályos polimerek a kristályosodás feltétele, szabályos lánc kristályos szerkezet kristályosodás, gócképződés kristályosodás,

Részletesebben

Tárgyszavak: alakmemória-polimerek; elektromosan vezető adalékok; nanokompozitok; elektronika; dópolás.

Tárgyszavak: alakmemória-polimerek; elektromosan vezető adalékok; nanokompozitok; elektronika; dópolás. MŰANYAGFAJTÁK Elektroaktív polimerek Nikkel és vas-oxid tartalmú keverékek előállítását és tulajdonságait vizsgálták a vezetőképesség növelése és alakmemóriával rendelkező polimerek előállítása céljából.

Részletesebben

Tárgyszavak: polilaktid; biológiai lebomlás; komposztálhatóság; megújuló nyersanyagforrás; feldolgozás; tulajdonságok.

Tárgyszavak: polilaktid; biológiai lebomlás; komposztálhatóság; megújuló nyersanyagforrás; feldolgozás; tulajdonságok. MÛANYAGOK ÉS A KÖRNYEZET Hőformázott csomagolóeszközök politejsavból Tárgyszavak: polilaktid; biológiai lebomlás; komposztálhatóság; megújuló nyersanyagforrás; feldolgozás; tulajdonságok. A politejsav

Részletesebben

MŰANYAGFAJTÁK. Új olefin blokk-kopolimerek előállítása posztmetallocén technológiával

MŰANYAGFAJTÁK. Új olefin blokk-kopolimerek előállítása posztmetallocén technológiával MŰANYAGFAJTÁK Új olefin blokk-kopolimerek előállítása posztmetallocén technológiával A Dow cég, a poliolefinpolimerizációt forradalmasító metallocénes technológia egyik úttörője, a posztmetallocén katalizátorok

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Műanyagok a hagyományos, az elektromos és a hibrid hajtású gépkocsikban Németországban a műanyagipar növekedése meghaladja a BIP általános növekedését, ezen belül a járműgyártás műanyag-felhasználása

Részletesebben

Fröccsöntés során kialakuló szerkezet hatása eredeti és reciklált PET mechanikai tulajdonságaira

Fröccsöntés során kialakuló szerkezet hatása eredeti és reciklált PET mechanikai tulajdonságaira Molnár Béla *, Dr. Ronkay Ferenc ** Fröccsöntés során kialakuló szerkezet hatása eredeti és reciklált PET mechanikai tulajdonságaira Különböző molekulatömegű anyagokból különböző falvastagságú termékeket

Részletesebben

Hódmarket Kft. 1988. Székhelye: H-6771 Szeged, Szerb u. 59. Telefon/fax: 36 62 406-012 Telefon: 36 62 406-011, 36 62 655-873 Adószám: 10224409-2-06

Hódmarket Kft. 1988. Székhelye: H-6771 Szeged, Szerb u. 59. Telefon/fax: 36 62 406-012 Telefon: 36 62 406-011, 36 62 655-873 Adószám: 10224409-2-06 Lumihod 1007G foszforeszkáló fólia A Lumihod fóliák és lemezek speciális hosszú utánvílágítási idejű foszforeszkáló pigmentet tartalmaznak átlátszó, időjárásálló kemény PVC fóliába ágyazva. Az alkalmazott

Részletesebben

Félvezető és mágneses polimerek és kompozitok

Félvezető és mágneses polimerek és kompozitok A MÛANYAGOK ALKALMAZÁSA 3.3 Félvezető és mágneses polimerek és kompozitok Tárgyszavak: polimerkeverék; magnetit töltőanyag; poli(ferrocenil-szilán); szintézis; félvezető; mágneses kerámiák; mikrogömb;

Részletesebben

Polimerek anyagszerkezettana és technológiája

Polimerek anyagszerkezettana és technológiája Polimerek anyagszerkezettana és technológiája -Javított változat- 2014/2015/2 félév vizsgakérdések kidolgozása Készítette: Mr. GMA Sziasztok! Ez az előző feltöltött polimerek kidolgozás javítása, volt

Részletesebben

Mérnöki anyagismeret. Szerkezeti anyagok

Mérnöki anyagismeret. Szerkezeti anyagok Mérnöki anyagismeret Szerkezeti anyagok 1 Szerkezeti anyagok Fémek Vas, acél, réz és ötvözetei, könnyűfémek és ötvözeteik Műanyagok Hőre lágyuló és hőre keményedő műanyagok, elasztomerek Kerámiák Kristályos,

Részletesebben

MULTICLEAR TM ÜREGKAMRÁS POLIKARBONÁT LEMEZEK. Müszaki Adatlap

MULTICLEAR TM ÜREGKAMRÁS POLIKARBONÁT LEMEZEK. Müszaki Adatlap MULTICLEAR TM ÜREGKAMRÁS POLIKARBONÁT LEMEZEK Müszaki Adatlap A polikarbonát tulajdonságai Tulajdonság a) Érték/Osztály Egység Szabvány Müszaki tulajdonságok Sürüség 1,2 g/cm3 ISO 1183 Fényáteresztés (Fényforrás

Részletesebben

Kompromisszum. Levegőtisztaság-védelem. Lehetséges tisztítási módszerek. Légszennyezettség csökkentésére ismert alternatív lehetőségek

Kompromisszum. Levegőtisztaság-védelem. Lehetséges tisztítási módszerek. Légszennyezettség csökkentésére ismert alternatív lehetőségek Kompromisszum Levegőtisztaság-védelem A levegőszennyezés elleni védekezés lehetőségei Az emissziók szabályozásának mértéke: A környezet minőségére vonatkozó társadalmi igény Az ország gazdasági lehetőségei

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Műanyag felületek módosítása különleges bevonatokkal A műanyagok felületét bevonatokkal, fóliázással, adalékolással és technológiai módszerekkel is lehet változtatni a felhasználási

Részletesebben

MŰANYAGOK TULAJDONSÁGAI

MŰANYAGOK TULAJDONSÁGAI MŰANYAGOK TULAJDONSÁGAI Különleges poliamidok tulajdonságai A következőkben bemutatunk egy olyan poliamidot, amelynek alappolimerje a jól ismert PA6, de 65% erősítő- és töltőanyagot, továbbá halogén-,

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Lézeres felületkezelés a műanyag-feldolgozásban A lézerrel működő berendezések és technológiák ma már sokoldalú felhasználást tesznek lehetővé. A műanyagfelületek feliratozása már

Részletesebben

Etalon a műanyagfeldolgozásban.

Etalon a műanyagfeldolgozásban. Etalon a műanyagfeldolgozásban. Kopáscsökkentő bevonatainkkal nagyobb termelékenységet és hatékonyságot érhet el a fröccsöntés és az etrudálás területén. Műanyagfeldolgozás Fröccsöntés és etrudálás a legjobb

Részletesebben

Tárgyszavak: természetes szálak; kompaundok; farost; szálkeverékek; fröccsöntés; műszaki műanyagok; autóipar; bútoripar.

Tárgyszavak: természetes szálak; kompaundok; farost; szálkeverékek; fröccsöntés; műszaki műanyagok; autóipar; bútoripar. MŰANYAGFAJTÁK Természetes szálakkal erősített műanyagok A természetes eredetű anyagok társítása műanyagokkal nem csak környezetvédelmi okokból egyre népszerűbb, hiszen ezek a kompaundok valódi műszaki/gazdasági

Részletesebben

CSOMAGOLÁS. Csomagolás és csomagolóanyagok. Gyógyszertechnológiai és Biofarmáciai Intézet

CSOMAGOLÁS. Csomagolás és csomagolóanyagok. Gyógyszertechnológiai és Biofarmáciai Intézet CSOMAGOLÁS Csomagolás és csomagolóanyagok Gyógyszertechnológiai és Biofarmáciai Intézet Csomagolás Cél: a termék mennyiségének és minőségének megóvása a gyártás a szállítás a felhasználás alatti (többadagos

Részletesebben

Poliészterszövet ragasztása fólia alakú poliuretán ömledékragasztóval

Poliészterszövet ragasztása fólia alakú poliuretán ömledékragasztóval MÛANYAGFAJTÁK 1.3 1.5 3.18 Poliészterszövet ragasztása fólia alakú poliuretán ömledékragasztóval Tárgyszavak: poliészterszövet; poliuretán; ömledékragasztó; ragasztás; felületkezelés; ragasztási szilárdság.

Részletesebben

Érdekes újdonságok az erősített hőre keményedő és hőre lágyuló műanyagok területén

Érdekes újdonságok az erősített hőre keményedő és hőre lágyuló műanyagok területén MÛANYAGFAJTÁK 1.5 1.1 1.2 Érdekes újdonságok az erősített hőre keményedő és hőre lágyuló műanyagok területén Tárgyszavak: erősített műanyagok; hőre keményedés; epoxigyanta; üvegszál; felületkezelés; rétegelválás;

Részletesebben

Kerámiák és kompozitok a munkavédelemben

Kerámiák és kompozitok a munkavédelemben ALKALMAZÁSOK 1. Kerámiák és kompozitok a munkavédelemben Kerámia erősítő szálak: - Ezek a leginkább elterjedtek -Elsőként tűzálló kemencék szigetelésénél alkalmazták - Könnyen beintegrálható más anyagok

Részletesebben

Hallgatói Tájékoztató 2012 Kutatás, témák, TDK lehetőségek. Menyhárd Alfréd Fizikai Kémia és Anyagtudományi Tanszék. Budapest 2012. április 25.

Hallgatói Tájékoztató 2012 Kutatás, témák, TDK lehetőségek. Menyhárd Alfréd Fizikai Kémia és Anyagtudományi Tanszék. Budapest 2012. április 25. Hallgatói Tájékoztató 2012 Kutatás, témák, TDK lehetőségek Menyhárd Alfréd Fizikai Kémia és Anyagtudományi Tanszék Budapest 2012. április 25. 1 Vázlat Felületkémia Csoport Kolloidkémia Csoport és Szol-gél

Részletesebben

MŰANYAGFAJTÁK ÉS KOMPOZITOK

MŰANYAGFAJTÁK ÉS KOMPOZITOK MŰANYAGFAJTÁK ÉS KOMPOZITOK Polikarbonátok a világítástechnikában Az egyik legfontosabb műszaki műanyag, a polikarbonát, a világítástechnikában is egyre fontosabb szerephez jut. Ezt a folyamatot segíti,

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Lézertechnika a műanyagok megmunkálásában A lézertechnika egyre nagyobb szerepet kap a műanyagok formaadás utáni megmunkálásában; hegesztéshez, vágáshoz, a felület strukturálásához,

Részletesebben

MŰGYANTA FELHASZNÁLÁSÁVAL KAPCSOLATOS INFORMÁCIÓK

MŰGYANTA FELHASZNÁLÁSÁVAL KAPCSOLATOS INFORMÁCIÓK MŰGYANTA FELHASZNÁLÁSÁVAL KAPCSOLATOS INFORMÁCIÓK Általános tudnivalók Kötési mechanizmus: A műgyanta a hagyományos ragasztókkal illetve kötőanyagokkal szemben nem az oldószer elpárologtatásával köt meg,

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Extrúziós fúvásra alkalmas poliészterek fejlesztése Az átlátszó, füles poliészterpalackok alapanyagával szemben támasztott három legfontosabb igény (könnyű feldolgozhatóság, palack

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Korszerű tömítések A tömítések közül a poliuretánból készülteket alig ismerik, pedig vannak speciális célokra alkalmazható, kiemelkedően jó változataik. Bizonyos alkalmazásokra a

Részletesebben

Nem vas fémek és ötvözetek

Nem vas fémek és ötvözetek Nem vas fémek és ötvözetek Anyagtudományi és Technológiai Tanszék Nem vas fémek és ötvözetek Áruk jóval magasabb, mint a vasötvözeteké, nagyon sok ipari területen alkalmazzák. Tulajdonságaik alacsony fajsúly,

Részletesebben

(11) Lajstromszám: E 007 888 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 007 888 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000007888T2! (19) HU (11) Lajstromszám: E 007 888 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 04 763701 (22) A bejelentés napja:

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Újfajta vízgőzzáró és -szabályozó csomagolófóliák Az áruk főképpen az élelmiszerek csomagolásával szemben egyre nagyobbak az igények, egyúttal elvárják, hogy ehhez egyre kevesebb

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Sokféle alkalmazás sokféle polietilénfólia A polietilénfóliákat sokféle célra alkalmazzák a csomagolásoktól a mezőgazdaságig. A fóliák alkalmazástól függő tulajdonságait többek között

Részletesebben

Kötő- és rögzítőtechnológiák

Kötő- és rögzítőtechnológiák Kötő- és rögzítőtechnológiák Szilárd anyagok illeszkedő felületük mentén külső (fizikai eredetű) vagy belső (kémiai eredetű) erővel köthetők össze. Külső erőnek az anyagok darabjait összefogó, összeszorító

Részletesebben

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje) lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,

Részletesebben

Székhelye: H-6771 Szeged, Szerb u. 59. Telefon/fax: 36 62 406-012 Telefon: 36 62 406-011, 36 62 655-873 Adószám: 10224409-2-06

Székhelye: H-6771 Szeged, Szerb u. 59. Telefon/fax: 36 62 406-012 Telefon: 36 62 406-011, 36 62 655-873 Adószám: 10224409-2-06 The Green Company LUMI-HOD 107-B fólia Javaslatok az alkalmazásokra LUMI-HOD 107-B fólia Az LN egy új osztálya az újonnan kifejlesztett foszforeszkáló (sötétben világító) pigmenteknek, nagymértékben különböznek

Részletesebben

POLIÉSZTER ALAPÚ ABLONCZY MŰGYANTA

POLIÉSZTER ALAPÚ ABLONCZY MŰGYANTA POLIÉSZTER ALAPÚ ABLONCZY MŰGYANTA ÁLTALÁNOS TUDNIVALÓK Kötési mechanizmus: A műgyanta a hagyományos ragasztókkal, illetve kötőanyagokkal szemben nem az oldószer elpárologtatásával köt meg, hanem a B komponens

Részletesebben

A víz fizikai, kémiai tulajdonságai, felhasználhatóságának korlátai

A víz fizikai, kémiai tulajdonságai, felhasználhatóságának korlátai Kuti Rajmund Szakál Tamás Szakál Pál A víz fizikai, kémiai tulajdonságai, felhasználhatóságának korlátai Bevezetés Az utóbbi tíz évben a klímaváltozás és a globális civilizációs hatások következtében Földünk

Részletesebben

MŰANYAGOK TULAJDONSÁGAI

MŰANYAGOK TULAJDONSÁGAI MŰANYAGOK TULAJDONSÁGAI A sokoldalú kalcium-karbonát töltőanyag A kalcium-karbonátot mind a hőre keményedő, mind a hőre lágyuló műanyagokban elterjedten használják. A töltőanyag hatékonyságának növelésére

Részletesebben

Kerámia, üveg és fém-kerámia implantátumok. BME Anyagtudomány és Technológia Tsz.

Kerámia, üveg és fém-kerámia implantátumok. BME Anyagtudomány és Technológia Tsz. Kerámia, üveg és fém-kerámia implantátumok BME Anyagtudomány és Technológia Tsz. Bevezetés A kerámiákat régóta használja az orvostechnika implantátumanyagként, elsõsorban bioinert tulajdonságaik, kopásállóságuk

Részletesebben

Légszennyezés. Légkör kialakulása. Őslégkör. Csekély gravitáció. Gázok elszöktek Föld légkör nélkül maradt 2014.11.13.

Légszennyezés. Légkör kialakulása. Őslégkör. Csekély gravitáció. Gázok elszöktek Föld légkör nélkül maradt 2014.11.13. BME -Vízi Közmű és Környezetmérnöki Tanszék Légszennyezés VÁROSI KÖRNYEZETVÉDELEM 2012 Horváth Adrienn Légkör kialakulása Őslégkör Hidrogén + Hélium Csekély gravitáció Gázok elszöktek Föld légkör nélkül

Részletesebben

Átlátszó műanyagtermékek előállítása fröccsöntéssel és fóliahúzással

Átlátszó műanyagtermékek előállítása fröccsöntéssel és fóliahúzással A MÛANYAGOK FELDOLGOZÁSA 2.1 2.2 1.1 Átlátszó műanyagtermékek előállítása fröccsöntéssel és fóliahúzással Tárgyszavak: átlátszó műanyag; fröccsöntés; dombornyomás; hibalehetőségek; új technológiák; extrudálás;

Részletesebben

MŰANYAGOK TULAJDONSÁGAI

MŰANYAGOK TULAJDONSÁGAI MŰANYAGOK TULAJDONSÁGAI Nyújtáskor mindkét irányban méretüket növelő polimerek Vannak olyan különleges anyagok, amelyek mérete nyújtáskor mindkét irányban megnő. Ezeket kezdetben antigumi -nak nevezték,

Részletesebben

Kerámiák és kompozitok (gyakorlati elokész

Kerámiák és kompozitok (gyakorlati elokész Kerámiák MEHANIKAI TEHNOLÓGIA ÉS ANYAGSZERKEZETTANI TANSZÉK Kerámiák és kompozitok (gyakorlati elokész szíto) dr. Németh Árpád arpinem@eik.bme.hu A k e r ám i a a g örö g ( k iég e t e t t ) s zóból e

Részletesebben

Fejlesztési irányvonalak az élelmiszeripari műanyag csomagolások területén

Fejlesztési irányvonalak az élelmiszeripari műanyag csomagolások területén A Miskolci Egyetemen működő tudományos képzési műhelyek összehangolt minőségi fejlesztése TÁMOP-4.2.2/B-10/1-2010-0008 Tehetségeket gondozunk! Fejlesztési irányvonalak az élelmiszeripari műanyag csomagolások

Részletesebben

SZERVÍZTECHNIKA ÉS ÜZEMFENNTARTÁS. Dr. Szabó József Zoltán Egyetemi docens Óbudai Egyetem BDGBMK Mechatronika és Autótechnika Intézet

SZERVÍZTECHNIKA ÉS ÜZEMFENNTARTÁS. Dr. Szabó József Zoltán Egyetemi docens Óbudai Egyetem BDGBMK Mechatronika és Autótechnika Intézet SZERVÍZTECHNIKA ÉS ÜZEMFENNTARTÁS Dr. Szabó József Zoltán Egyetemi docens Óbudai Egyetem BDGBMK Mechatronika és Autótechnika Intézet ALKATRÉSZFELÚJÍTÁS I. Termikus szórások Termikus szórás A termikus szórásokról

Részletesebben

MUNKAANYAG. Dabi Ágnes. A villamos ívhegesztés fajtái, berendezései, anyagai, segédanyagai, berendezésének alkalmazása

MUNKAANYAG. Dabi Ágnes. A villamos ívhegesztés fajtái, berendezései, anyagai, segédanyagai, berendezésének alkalmazása Dabi Ágnes A villamos ívhegesztés fajtái, berendezései, anyagai, segédanyagai, berendezésének alkalmazása A követelménymodul megnevezése: Gépészeti kötési feladatok A követelménymodul száma: 0220-06 A

Részletesebben

MUNKAANYAG. Dr. Samay Géza. Termékek felhasználási tulajdonságai. A követelménymodul megnevezése: Gumiipari technikusi feladatok

MUNKAANYAG. Dr. Samay Géza. Termékek felhasználási tulajdonságai. A követelménymodul megnevezése: Gumiipari technikusi feladatok Dr. Samay Géza Termékek felhasználási tulajdonságai A követelménymodul megnevezése: Gumiipari technikusi feladatok A követelménymodul száma: 7007-08 A tartalomelem azonosító száma és célcsoportja: SzT-028-50

Részletesebben

CLEARSAFE GRP RÁCS ISMERTETŐ

CLEARSAFE GRP RÁCS ISMERTETŐ CLEARSAFE GRP RÁCS ISMERTETŐ Üvegszállal erősített, poliészter gyantából öntött ipari, balesetvédelmi rács A GRP rács egy speciálisan ipari igényekhez fejlesztett, R13-as csúszásmentesített felületet adó

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Töltőanyagot tartalmazó kompaundok gyártásáról A különböző töltőanyagok egyenletes bekeverése a polimerekbe még ma is járhat nehézségekkel, különösen, ha nagyon nagy részarányban

Részletesebben

Épületgépészeti csőanyagok kiválasztási szempontjai és szereléstechnikája. Épületgépészeti kivitelezési ismeretek 2012. szeptember 6.

Épületgépészeti csőanyagok kiválasztási szempontjai és szereléstechnikája. Épületgépészeti kivitelezési ismeretek 2012. szeptember 6. Épületgépészeti csőanyagok kiválasztási szempontjai és szereléstechnikája Épületgépészeti kivitelezési ismeretek 2012. szeptember 6. 1 Az anyagválasztás szempontjai: Rendszerkövetelmények: hőmérséklet

Részletesebben

Köszönetnyilvánítás I. Bevezetés II. A szakirodalom áttekintése III. Kísérleti körülmények

Köszönetnyilvánítás I. Bevezetés II. A szakirodalom áttekintése III. Kísérleti körülmények Tartalomjegyzék: Köszönetnyilvánítás...3 I. Bevezetés 4 II. A szakirodalom áttekintése 6 1. A polikarbonátok.6 1.1. A polikarbonátok kémiai felépítése..6 1.2. A polikarbonátok felhasználása 6 1.3. A polikarbonátok

Részletesebben

Műanyag- és elasztomer ragasztási útmutató

Műanyag- és elasztomer ragasztási útmutató Műanyag- és elasztomer ragasztási útmutató 3 Miért használjunk Loctite és Teroson ragasztóanyagot más kötési eljárások helyett? Ez az útmutató alapvető iránymutatásokkal ismerteti meg a felhasználókat,

Részletesebben

Tárgyszavak: öntött poliamid; prototípus; kis sorozatok gyártása; NylonMold eljárás; Forma1 modell; K2004; vízmelegítő fűtőblokkja; új PA-típusok.

Tárgyszavak: öntött poliamid; prototípus; kis sorozatok gyártása; NylonMold eljárás; Forma1 modell; K2004; vízmelegítő fűtőblokkja; új PA-típusok. MÛANYAGFAJTÁK Újdonságok a poliamidtermékek és a poliamidtípusok gyártásában Tárgyszavak: öntött poliamid; prototípus; kis sorozatok gyártása; NylonMold eljárás; Forma1 modell; K2004; vízmelegítő fűtőblokkja;

Részletesebben

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel Környezetvédelmi mérések fotoakusztikus FTIR műszerrel A légszennyezés mérése nem könnyű méréstechnikai feladat. Az eszközök széles skáláját fejlesztették ki, hagyományosan az emissziómérésre, ezen belül

Részletesebben

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés.

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés. 9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. ktivitás mérés. MÉRÉS CÉLJ: Megismerkedni a radioaktív sugárzás jellemzésére szolgáló mértékegységekkel, és a sugárzás

Részletesebben

ÖSSZEFOGLALÓ. A BREF alkalmazási területe

ÖSSZEFOGLALÓ. A BREF alkalmazási területe ÖSSZEFOGLALÓ A kovácsüzemek és öntödék BREF (elérhető legjobb technika referencia dokumentum) a 96/61/EK tanácsi irányelv 16. cikke (2) bekezdése szerint végzett információcserét tükrözi. Az összefoglalót

Részletesebben

A 2007/2008. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja. KÉMIÁBÓL I. kategóriában ÚTMUTATÓ

A 2007/2008. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja. KÉMIÁBÓL I. kategóriában ÚTMUTATÓ Oktatási ivatal A versenyző kódszáma: A 2007/2008. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja Munkaidő: 300 perc Elérhető pontszám: 100 pont KÉMIÁBÓL I. kategóriában

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Önerősítő hőre lágyuló műanyag szövettermékek Műanyag fóliák nyújtásával jelentős mértékű anizotrópiát lehet elérni a mechanikai és más tulajdonságokban, és ezáltal a kiválasztott

Részletesebben

Egyoldalas speciális ipari ragasztószalagok Választékkatalógus. A legjobb válaszok. a terméktervezés, a gyártás és a minôség kihívásaira

Egyoldalas speciális ipari ragasztószalagok Választékkatalógus. A legjobb válaszok. a terméktervezés, a gyártás és a minôség kihívásaira Egyoldalas speciális ipari ragasztószalagok Választékkatalógus A legjobb válaszok a terméktervezés, a gyártás és a minôség kihívásaira Bármit csinálunk is, csinálhatjuk jobban a 3M egyoldalas ragasztószalagokkal...

Részletesebben

Kuti Rajmund. A víz tűzoltói felhasználhatóságának lehetőségei, korlátai

Kuti Rajmund. A víz tűzoltói felhasználhatóságának lehetőségei, korlátai Kuti Rajmund A víz tűzoltói felhasználhatóságának lehetőségei, korlátai A tűzoltóság a bevetések 90%-ban ivóvizet használ tűzoltásra, s a legtöbb esetben a kiépített vezetékes hálózatból kerül a tűzoltó

Részletesebben

3/3.5. Műanyag-feldolgozás munkavédelmi kérdései

3/3.5. Műanyag-feldolgozás munkavédelmi kérdései 3/3.5. A műanyag termékek alkalmazása, felhasználása az elmúlt évtizedekben rohamosan fejlődött. Kedvező tulajdonságaik alapján az élet szinte minden területén alkalmazhatók, az iparban pl. maró anyagok

Részletesebben

Nemcsak más, hanem jobb! MdA. mágneses dinamikus finomiszapleválasztó TERVEZÉSI SEGÉDLET

Nemcsak más, hanem jobb! MdA. mágneses dinamikus finomiszapleválasztó TERVEZÉSI SEGÉDLET Nemcsak más, hanem jobb! MdA mágneses dinamikus finomiszapleválasztó TERVEZÉSI SEGÉDLET Rólunk A Industria-Technik egy épületgépészeti-, energiatechnikai- és környezetvédelmi mérnöki irodából jött létre.

Részletesebben

MAGYAR RÉZPIACI KÖZPONT. 1241 Budapest, Pf. 62 Telefon 317-2421, Fax 266-6794 e-mail: hcpc.bp@euroweb.hu

MAGYAR RÉZPIACI KÖZPONT. 1241 Budapest, Pf. 62 Telefon 317-2421, Fax 266-6794 e-mail: hcpc.bp@euroweb.hu MAGYAR RÉZPIACI KÖZPONT 1241 Budapest, Pf. 62 Telefon 317-2421, Fax 266-6794 e-mail: hcpc.bp@euroweb.hu Tartalom 1. A villamos csatlakozások és érintkezôk fajtái............................5 2. Az érintkezések

Részletesebben

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését!

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! Az atom az anyagok legkisebb, kémiai módszerekkel tovább már nem bontható része. Az atomok atommagból és

Részletesebben

Merő András. A tűz oltása. A követelménymodul megnevezése: Általános gépészeti munka-, baleset-, tűz- és környezetvédelmi feladatok

Merő András. A tűz oltása. A követelménymodul megnevezése: Általános gépészeti munka-, baleset-, tűz- és környezetvédelmi feladatok Merő András A tűz oltása A követelménymodul megnevezése: Általános gépészeti munka-, baleset-, tűz- és környezetvédelmi feladatok A követelménymodul száma: 0110-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

Tárgyszavak: autógyártás; műszaki követelmények; permeáció; üzemanyag-emisszió; mérési módszer; áteresztés csökkentése.

Tárgyszavak: autógyártás; műszaki követelmények; permeáció; üzemanyag-emisszió; mérési módszer; áteresztés csökkentése. A MÛANYAGOK TULAJDONSÁGAI Tömítések áteresztőképessége Tárgyszavak: autógyártás; műszaki követelmények; permeáció; üzemanyag-emisszió; mérési módszer; áteresztés csökkentése. Szigorodó előírások Áteresztésnek

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA A polipropilén és az ütésálló polisztirol préslég-formázhatóságát befolyásoló tényezők Speciális nukleáló adalékok bekeverésével drasztikusan megnövelhető a polipropilén béta kristálymódosulatának

Részletesebben

A feladatsor első részében található 1 20-ig számozott vizsgakérdéseket ki kell nyomtatni, majd pontosan kettévágni. Ezek lesznek a húzótételek.

A feladatsor első részében található 1 20-ig számozott vizsgakérdéseket ki kell nyomtatni, majd pontosan kettévágni. Ezek lesznek a húzótételek. A vizsgafeladat ismertetése: A központilag összeállított szóbeli vizsga kérdései a következő témaköröket tartalmazzák: Növényi eredetű természetes szálasanyagok ismertetése, jellemző tulajdonságai, felhasználási

Részletesebben

Szén nanoszerkezetekkel adalékolt szilícium-nitrid. nanokompozitok. Tapasztó Orsolya MTA TTK Műszaki Fizikai és Anyagtudományi Intézet

Szén nanoszerkezetekkel adalékolt szilícium-nitrid. nanokompozitok. Tapasztó Orsolya MTA TTK Műszaki Fizikai és Anyagtudományi Intézet Szén nanoszerkezetekkel adalékolt szilícium-nitrid nanokompozitok PhD értekezés Tapasztó Orsolya MTA TTK Műszaki Fizikai és Anyagtudományi Intézet Témavezető: Dr. Balázsi Csaba MTA TTK Műszaki Fizikai

Részletesebben

Széchenyi István Egyetem. Mőszaki Tudományi Kar. Anyagvizsgálat II. Mőszaki Menedzser Szak, Minıségbiztosítási szakirány.

Széchenyi István Egyetem. Mőszaki Tudományi Kar. Anyagvizsgálat II. Mőszaki Menedzser Szak, Minıségbiztosítási szakirány. Széchenyi István Egyetem Mőszaki Tudományi Kar Anyagismereti és Jármőgyártási Tanszék Anyagvizsgálat II. Tantárgy kódja: T_AJ44 MM T_AJ57 GE Szak, szakirányok: Mőszaki Menedzser Szak, Minıségbiztosítási

Részletesebben

MŰANYAGOK TULAJDONSÁGAI

MŰANYAGOK TULAJDONSÁGAI MŰANYAGOK TULAJDONSÁGAI Különleges polimerek igényes alkalmazásokban A poli(éter-éter-keton) hőállósága mellett egy sor előnyös tulajdonsággal rendelkezik, amelyek alkalmassá teszik a földgáz- és kőolajiparban

Részletesebben

HULLADÉKGAZDÁLKODÁS IV. A vegyipar hulladékai, kezelésük és hasznosításuk

HULLADÉKGAZDÁLKODÁS IV. A vegyipar hulladékai, kezelésük és hasznosításuk HULLADÉKGAZDÁLKODÁS IV. A vegyipar hulladékai, kezelésük és hasznosításuk Előadás anyag nappali tagozatos Környezetmérnöki MSc szakos hallgatóknak Készítette: Dr. Bodnár Ildikó, főiskolai tanár 2013. 1

Részletesebben