Számítógépes Hálózatok
|
|
- Sarolta Budai
- 6 évvel ezelőtt
- Látták:
Átírás
1 Számítógépes Hálózatok 9. Előadás: Hálózati réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring 2016 by S. Laki
2 HÁLÓZATI RÉTEG FORGALOMIRÁNYÍTÁS
3 Hierarchikus forgalomirányítás 3 MOTIVÁCIÓ A hálózat méretének növekedésével a router-ek forgalomirányító táblázatai is arányosan nőnek. A memória, a CPU és a sávszélesség igény is megnövekszik a router-eknél. 1A 1B 1C TARTOMÁNYOK 2A 2B 2D 2C Ötlet: telefonhálózatokhoz hasonlóan hierarchikus forgalomirányítás alkalmazása. 3A 3B 4B 4A 4C 5A 5B 5E 5C 5D
4 Hierarchikus forgalomirányítás 4 JELLEMZŐK A router-eket tartományokra osztjuk. A saját tartományát az összes router ismeri, de a többi belső szerkezetéről nincs tudomása. Nagy hálózatok esetén többszintű hierarchia lehet szükséges. N darab router-ből álló alhálózathoz az optimális szintek száma ln N, amely router-enként e ln N bejegyzést igényel. (Kamoun és Kleinrock, 1979) 1A 3A 1B 3B 1C TARTOMÁNYOK 4A 4B 4C 2A 2B 2D 2C 5A 5B 5C 5E 5D
5 Adatszóró forgalomirányítás 5 Adatszórás ( vagy angolul broadcasting) egy csomag mindenhová történő egyidejű küldése. Több féle megvalósítás lehetséges: 1. Külön csomag küldése minden egyes rendeltetési helyre sávszélesség pazarlása, lista szükséges hozzá 2. Elárasztás. kétpontos kommunikációhoz nem megfelelő
6 Adatszóró forgalomirányítás 6 3. Többcélú forgalomirányítás ( vagy angolul multidestination routing). Csomagban van egy lista a rendeltetési helyekről, amely alapján a router-ek eldöntik a vonalak használatát, mindegyik vonalhoz készít egy másolatot és belerakja a megfelelő célcím listát. 4. A forrás router-hez tartozó nyelőfa használata. A feszítőfa (vagy angolul spanning tree) az alhálózat részhalmaza, amelyben minden router benne van, de nem tartalmaz köröket. Ha minden router ismeri, hogy mely vonalai tartoznak a feszítőfához, akkor azokon továbbítja az adatszóró csomagot, kivéve azon a vonalon, amelyen érkezett. nem mindig ismert a feszítőfa
7 Adatszóró forgalomirányítás 2/ Visszairányú továbbítás (vagy angolul reverse path forwarding). Amikor egy adatszórásos csomag megérkezik egy routerhez, a router ellenőrzi, hogy azon a vonalon kapta-e meg, amelyen rendszerint ő szokott az adatszórás forrásához küldeni. Ha igen, akkor nagy esély van rá, hogy az adatszórásos csomag a legjobb utat követte a router-től, és ezért ez az első másolat, amely megérkezett a router-hez. Ha ez az eset, a router kimásolja minden vonalra, kivéve arra, amelyiken érkezett. Viszont, ha az adatszórásos csomag más vonalon érkezett, mint amit a forrás eléréséhez előnyben részesítünk, a csomagot eldobják, mint valószínű másodpéldányt.
8 Többes-küldéses forgalomirányítás 8 Többes-küldés ( vagy angolul multicasting) egy csomag meghatározott csoporthoz történő egyidejű küldése. MULTICAST ROUTING Csoport kezelés is szükséges hozzá: létrehozás, megszüntetés, csatlakozási lehetőség és leválasztási lehetőség. (Ez nem a forgalomirányító algoritmus része!) Minden router kiszámít egy az alhálózatban az összes többi routert lefedő feszítőfát. Többes-küldéses csomag esetén az első router levágja a feszítőfa azon ágait, amelyek nem csoporton belüli hoszthoz vezetnek. A csomagot csak a csonkolt feszítőfa mentén továbbítják.
9 Hierarchikus forgalomirányítás IP 9 Hierarchikus (2 szintű) AS-ek közötti: EGP Exterior Gateway Protocols Tartományok közötti AS-en belüli IGP Interior Gateway Protocols Tartományon belüli Inter ior Rout ers AS-1 AS Autonom System Autonóm Rendszer AS-2 AS-3 BGP Rout ers
10 Hálózati réteg az Interneten 10 A hálózati réteg szintjén az internet autonóm rendszerek összekapcsolt együttesének tekinthető. Nincs igazi szerkezete, de számos főbb gerinchálózata létezik. A gerinchálózatokhoz csatlakoznak a területi illetve regionális hálózatok. A regionális és területi hálózatokhoz csatlakoznak az egyetemeken, vállalatoknál és az internet szolgáltatóknál lévő LAN-ok. Az internet protokollja, az IP.
11 Hálózati réteg az Interneten 11 Az Interneten a kommunikáció az alábbi módon működik: 1. A szállítási réteg viszi az adatfolyamokat és datagramokra tördeli azokat. 2. Minden datagram átvitelre kerül az Interneten, esetleg menet közben kisebb egységekre darabolva. 3. A célgép hálózati rétege összeállítja az eredeti datagramot, majd átadja a szállítási rétegének. 4. A célgép szállítási rétege beilleszti a datagramot a vételi folyamat bemeneti adatfolyamába.
12 HÁLÓZATI RÉTEG CÍMZÉS
13 Az IPv4 fejrésze bit szolgálat verzió IHL teljes hossz típusa élettartam azonosítás protokoll D F forrás címe cél címe opciók M F darabeltolás fejrész ellenőrző összege
14 Az IP fejrésze 14 verzió: IP melyik verzióját használja (jelenleg 4 és 6 közötti átmenet zajlik) IHL: a fejléc hosszát határozza meg 32-bites szavakban mérve, legkisebb értéke 5. szolgálat típusa: szolgálati osztályt jelöl (3-bites precedencia, 3 jelzőbit [D,T,R]) teljes hossz: fejléc és adatrész együttes hossza bájtokban azonosítás: egy datagram minden darabja ugyanazt az azonosítás értéket hordozza. DF: ne darabold flag a router-eknek MF: több darab flag minden darabban be kell legyen állítva, kivéve az utolsót. darabeltolás: a darab helyét mutatja a datagramon belül. (elemi darab méret 8 bájt)
15 Az IP fejrésze 15 élettartam: másodpercenként kellene csökkenteni a mező értékét, minden ugrásnál csökkentik eggyel az értékét protokoll: szállítási réteg protokolljának azonosítóját tartalmazza ellenőrző összeg: a router-eken belüli rossz memóriaszavak által előállított hibák kezelésére használt ellenőrző összeg a fejrészre, amelyet minden ugrásnál újra kell számolni forrás cím és cél cím: IP cím (később tárgyaljuk részletesen) opciók: következő verzió bővíthetősége miatt hagyták benne. Eredetileg 5 opció volt. (router-ek általában figyelmen kívül hagyják)
16 IP cím 16 Minden hoszt és minden router az Interneten rendelkezik egy IP-címmel, amely a hálózat számát és a hoszt számát kódolja. (egyedi kombináció) 4 bájton ábrázolják az IP-címet. Több évtizeden keresztül 5 osztályos címzést használtak: A,B, C, D és E. 32 bit A B C D E 0 Hálózat hoszt 1 0 Hálózat hoszt Hálózat hoszt többesküldéses cím jövőbeni felhasználásra
17 IP cím 17 Az IP-t pontokkal elválasztott decimális rendszerben írják. Például: Van pár speciális cím. Lásd az alábbiakban hoszt Hálózat (bármi) Ez egy hoszt. Ez egy hoszt ezen hálózaton. Adatszórás a helyi hálózaton. Adatszórás egy távoli hálózaton. Visszacsatolás.
18 IP cím alhálózatok 18 FORRÁS: TANENBAUM Az azonos hálózatban lévő hosztok ugyanazzal a hálózatszámmal rendelkeznek. Egy hálózat belső felhasználás szempontjából több részre osztódhat, de a külvilág számára egyetlen hálózatként jelenik meg. Alhálózat (avagy angolul subnet)
19 IP cím alhálózatok 19 AZONOSÍTÁS alhálózati maszk (avagy angolul subnet mask) ismerete kell a routernek Két féle jelölés IP-cím jellegű vagy a fix pozíciók száma. A forgalomirányító táblázatba a router-eknél (hálózat,0) és (saját hálózat, hoszt) alakú bejegyzések. Ha nincs találat, akkor az alapértelmezett router felé továbbítják a csomagot. FORRÁS: TANENBAUM
20 IP cím CIDR 20 IP címek gyorsan fogytak ban kötötték be a edik hálózatot. Az osztályok használata sok címet elpazarolt. (B osztályú címek népszerűsége) Megoldás: osztályok nélküli környezetek közötti forgalomirányítás (CIDR). Például 2000 cím igénylése esetén 2048 méretű blokk kiadása. Forgalomirányítás megbonyolódik: Minden bejegyzés egy 32-bites maszkkal egészül ki. Egy bejegyzés innentől egy hármassal jellemezhető: (ip-cím, alhálózati maszk, kimeneti vonal) Új csomag esetén a cél címből kimaszkolják az alhálózati címet, és találat esetén a leghosszabb illeszkedés felé továbbítják. Túl sok bejegyzés keletkezik. Csoportos bejegyzések használata.
21 CIDR címzés példa 21 Mi történik, ha a router egy IP cím felé tartó csomagot kap? /22-ES CÍM ESETÉN AND /23-ES CÍM ESETÉN AND Vagyis /22-as vagy /23-as bejegyzést kell találni, azaz jelen esetben a 0.interface felé történik a továbbítás. Kimaszkolás eredménye Cím/maszk Következő ugrás /22 0.interface /23 1.interface /23 1.router Alapértelmezett 2.router
22 CIDR bejegyzés aggregálás példa 22 Lehet-e csoportosítani a következő bejegyzéseket, ha feltesszük, hogy a következő ugrás mindegyiknél az 1.router: /21, /21, /21, /21? Azaz az ( /19, 1.router) bejegyzés megfelelően csoportba fogja a 4 bejegyzést.
23 Forgalomirányítási tábla példa 23 Network Destination Netmask Gateway Interface Metric
24 NAT 24 Gyors javítás az IP címek elfogyásának problémájára. (hálózati címfordítás) ALAPELVEK Az internet forgalomhoz minden cégnek egy vagy legalábbis kevés IP-címet adnak. A vállalaton belül minden számítógéphez egyedi IP-címet használnak a belső forgalomirányításra. A vállalaton kívüli csomagokban a címfordítást végzünk. 3 IP-címtartományt használunk: /8, azaz lehetséges hoszt; /12, azaz lehetséges hoszt; /16, azaz lehetséges hoszt; NAT box végzi a címfordítást
25 NAT 25 Hogyan fogadja a választ? A port mezők használata, ami mind a TCP, mind az UDP fejlécben van Kimenő csomagnál egy mutatót tárolunk le, amit beírunk a forrás port mezőbe bejegyzésből álló fordítási táblázatot kell a NAT box-nak kezelni. A fordítási táblázatban benne van az eredeti IP és forrás port. Ellenérvek: sérti az IP architekturális modelljét, összeköttetés alapú hálózatot képez, rétegmodell alapelveit sérti, kötöttség a TCP és UDP fejléchez, szöveg törzsében is lehet az IP, szűkös port tartomány N A T b o x
26 IP Fragmentation IP Fragmentáció (darabolás) 26 MTU = 4000 MTU = 2000 MTU = 1500 Datagram Dgram1 Dgram Probléma: minden hálózatnak megvan a maga MTU-ja MTU: Maximum Transmission Unit lényegében a maximális használható csomag méret egy hálózatban DARPA/Internet alapelv: hálózatok heterogének lehetnek A minimális MTU nem ismert egy adott útvonalhoz IP esetén: fragmentáció Vágjuk szét az IP csomagot, amikor az MTU csökken Állítsuk helyre a darabokból a csomagot a fogadó állomásnál
27 IP fejléc: 2. szó 27 Identifier (azonosító): egyedi azonosító minden IP datagramhoz (csomaghoz) Flags (jelölő bitek): M flag, értéke 0, ha ez az utolsó darab/fragment, különben 1 Offset (eltolás): A darab/fragment első bájtjának pozíciója Version HLen TOS Datagram Length Identifier Flags Offset TTL Protocol Checksum Source IP Address Destination IP Address Options (if any, usually not) Data
28 Példa 28 MTU = 4000 MTU = 2000 MTU = 1500 Hossz = 3820, M = 0 IP Hdr Data Hossz = 2000, M = 1 Offset = 0 IP 20 IP Data 1980 Hossz = 1840, M = 0 Offset = Data = 3800
29 Példa 29 MTU = 2000 MTU = 1500 Hossz = 2000, M = 1 Offset = 0 IP 20 IP Data 1980 Hossz = 1840, M = 0 Offset = Data 1820 Hossz = 1500, M = 1 Offset = 0 IP IP 20 Data Hossz = 520, M = 1 Offset = 1480 Data 500 Hossz = 1500, M = 1 Offset = 1980 IP Data = 1980 Hossz = 360, M = 0 Offset = 3460 IP 20 Data 340
30 IP csomag helyreállítása 30 Hossz = 1500, M = 1, Offset = 0 IP Data Hossz = 520, M = 1, Offset = 1480 IP Data Hossz = 1500, M = 1, Offset = 1980 IP Data Hossz = 360, M = 0, Offset = 3460 IP Data A végponton történik M = 0, akkor ebből a darabból tudjuk a teljes adatmennyiséget Hossz IPHDR_hossz + Offset = 3800 Kihívások: Nem sorrendben beérkező darabok Duplikátumok Hiányzó darabok Memória kezelés szempontjából egy rémálom
31 Fragmentáció 31 Az Internet esetén Elosztott és heterogén Minden hálózat maga választ MTU-t Kapcsolat nélküli datagram/csomag alapú protokoll Minden darab tartalmazza a továbbításhoz szükséges összes információt A darabok függetlenül kerülnek leszállításra, akár különböző útvonalon keresztül Legjobb szándék elve szerint (best effort) A router-ek és a fogadó is eldobhat darabokat Nem követelmény a küldő értesítése a hibáról A legtöbb feladat a végpontra hárul Csomag helyreállítása a darabokból
32 Fregmantáció a valóságban 32 A fragmentáció költséges Memória és CPU költés a csomag visszaállításához Ha lehetséges, el kell kerülni MTU felderítő protokoll Csomagküldés a don t fragment flag bittel Folyamatosan csökkentjük a csomag méretét, amíg egy meg nem érkezik Lehetséges can t fragment hiba egy routertől, ami közvetlenül tartalmazza az adott hálózatban használt MTU-t Darabok kezelését végző router Gyors, specializált hardver megoldás Dedikált erőforrás a darabok kezeléséhez
33 33 IPv6
34 Fogyó IPv4 címek 34 Probléma: az IPv4 címtartomány túl kicsi 2 32 = 4,294,967,296 lehetséges cím Ez kevesebb mint egy emberenként A világ egy részén már nincs kiosztható IP blokk IANA az utolsó /8 blokkot 2011-ben osztotta ki Régió Regional Internet Registry (RIR) Utolsó IP blokk kiosztása Asia/Pacific APNIC April 19, 2011 Europe/Middle East RIPE September 14, 2012 North America ARIN 13 Jan 2015 (Projected) South America LACNIC 13 Jan 2015 (Projected) Africa AFRINIC 17 Jan 2022(Projected)
35 IPv6 35 IPv6, 1998(!)-ban mutatták be 128 bites címek 4.8 * cím/ember Cím formátum 16 bites értékek 8 csoportba sorolva ( : -tal elválasztva) Minden csoport elején szereplő nulla sorozatok elhagyhatók Csupa nulla csoportok elhagyhatók, ekkor :: 2001:0db8:0000:0000:0000:ff00:0042: :db8:0:0:0:ff00:42: :db8::ff00:42:8329
36 IPv6 36 Ki tudja a localhost IPv4 címét? Mi ez az IPv6 esetén? ::1
37 IPv6 Fejléc 37 Az IPv4-nél látott kétszerese (320 bit vs. 160 bit) Version DSCP/ECN Flow Label Datagram Length Next Header Hop Limit Version = 6Ld. IPv4 Ld. IPv4 Groups Ld. packets Protocol into Ld. TTL az IPv4- mező flows, az used for nél IPv4-nél QoS Source IP Address Destination IP Address
38 Különbségek az IPv4-hez képest 38 Számos mező hiányzik az IPv6 fejlécből Fejléc hossza beépült a Next Header mezőbe Checksum nem igazán használták már korábban se Identifier, Flags, Offset IPv6 routerek nem támogatják a fragmentációt Az állomások MTU felderítést alkalmaznak Az Internet felhasználás súlypontjainak megváltozása Napjaink hálózatai sokkal homogénebbek, mint azt kezdetben gondolták Azonban a routing költsége és bonyolultsága domináns
39 Teljesítmény növekmény 39 Nincsenek ellenőrizendő kontrollösszegek (checksum) Nem szükséges a fragmentáció kezelése a routerekben Egyszerű routing tábla szerkezet A cím tér nagy Nincs szükség CIDR-re (de aggregáció szükséges) A szabványos alhálózat méret 2 64 cím Egyszerű auto-konfiguráció Neighbor Discovery Protocol
40 További IPv6 lehetőségek 40 Forrás Routing Az állomás meghatározhatja azt az útvonalat, amelyen a csomagjait továbbítani szeretné Mobil IP Az állomások magukkal vihetik az IP címüket más hálózatokba Forrás routing használata a csomagok irányításához Privacy kiterjesztések Véletlenszerűen generált állomás azonosítók Megnehezíti egy IP egy adott állomáshoz való kapcsolását Jumbograms 4Gb-es datagramok küldése
41 Bevezetési nehézségek 41 HTTP, FTP, SMTP, RTP, IMAP, TCP, UDP, ICMP IPv4 Ethernet, x, DOCSIS, Fiber, Coax, Twisted Pair, Radio, IPv6 bevezetése a teljes Internet frissítését jelentené Minden router, minden hoszt ICMPv6, DHCPv6, DNSv6 2013: 0.94%-a a Google forgalmának volt IPv6 feletti 2015: ez 2.5%
42 42 IPv6 Adoption
43 Átmenet IPv6-ra 43 Hogyan történhet az átmenet IPv4-ről IPv6-ra? Napjainkban a legtöbb végpont a hálózat széleken támogatja az IPv6-ot Windows/OSX/iOS/Android mind tartalmaz IPv6 támogatást Az itteni vezetéknélküli access point-ok is valószínűleg IPv6 képesek Az Internet magja a probléma IPv4 mag nem routolja az IPv6 forgalmat Otthoni hálózat IPv6 képes Csak IPv4 :( IPv6 Csomagok Mag Internet IPv6 képes Üzleti hálózat
44 Átmeneti megoldások 44 Azaz hogyan routoljunk IPv6 forgalmaz IPv4 hálózat felett? Megoldás Használjunk tunneleket az IPv6 csomagok becsomagolására és IPv4 hálózaton való továbbítására Számos különböző implementáció 6to4 IPv6 Rapid Deployment (6rd) Teredo
45 45 Routing 2. felvonás
46 Újra: Internet forgalom irányítás 46 Az Internet egy két szintű hierarchiába van szervezve Első szint autonóm rendszerek (AS-ek) AS egy adminisztratív tartomány alatti hálózat Pl.: ELTE, Comcast, AT&T, Verizon, Sprint,... AS-en belül ún. intra-domain routing protokollokat használunk Distance Vector, pl.: Routing Information Protocol (RIP) Link State, pl.: Open Shortest Path First (OSPF) AS-ek között ún. inter-domain routing protokollokat Border Gateway Routing (BGP) Napjainkban: BGP-4
47 AS példa 47 AS-1 AS-3 Belső Routerek AS-2 BGP Routerek
48 Miért van szükség AS-ekre? 48 A routing algoritmusok nem elég hatékonyak ahhoz, hogy a teljes Internet topológián működjenek Különböző szervezetek más-más politika mentén akarnak forgalom irányítást (policy) Lehetőség, hogy a szervezetek elrejtsék a belső hálózatuk szerkezetét Lehetőség, hogy a szervezetek eldöntsék, hogy mely más szervezeteken keresztül forgalmazzanak Egyszerűbb az útvonalak számítása Nagyobb rugalmasság Nagyobb autonómia/függetlenség
49 AS számok 49 Minden AS-t egy AS szám (ASN) azonosít 16 bites érték (a legújabb protokollok már 32 bites azonosítókat is támogatnak) más célra foglalt Jelenleg kb AS szám létezik AT&T: 5074, 6341, 7018, Sprint: 1239, 1240, 6211, 6242, ELTE: 2012 Google 15169, (formerly YT), + others Facebook Észak-amerkiai AS-ek ftp://ftp.arin.net/info/asn.txt
50 Inter-Domain Routing 50 A globális összeköttetéshez szükséges!!! Azaz minden AS-nek ugyanazt a protokollt kell használnia Szemben az intra-domain routing-gal Milyen követelmények vannak? Skálázódás Rugalmas útvonal választás Költség Forgalom irányítás egy hiba kikerülésére Milyen protokollt válasszunk? link state vagy distance vector? Válasz: A BGP egy path vector (útvonal vektor) protokoll
51 Border Gateway Protocol 51 ÁLTALÁNOS AS-ek közötti (exterior gateway protocol). Eltérő célok vannak forgalomirányítási szempontból, mint az AS-eken belüli protokollnál. Politikai szempontok szerepet játszathatnak a forgalomirányítási döntésben. NÉHÁNY PÉLDA FORGALOMIRÁNYÍTÁSI KORLÁTOZÁSRA Ne legyen átmenő forgalom bizonyos AS-eken keresztül. Csak akkor haladjunk át Albánián, ha nincs más út a célhoz. Az IBM-nél kezdődő illetve végződő forgalom ne menjen át a Microsofton. A politikai jellegű szabályokat kézzel konfigurálják a BGP-routeren. A BGP router szempontjából a világ AS-ekből és a közöttük átmenő vonalakból áll. DEFINÍCIÓ Két AS összekötött, ha van köztük a BGP-router-eiket összekötő él.
52 Border Gateway Protocol 52 HÁLÓZATOK CSOPORTOSÍTÁSA AZ ÁTMENŐ FORGALOM SZEMPONTJÁBÓL 1. Csonka hálózatok, amelyeknek csak egyetlen összeköttetésük van a BGP gráffal. 2. Többszörösen bekötött hálózatok, amelyeket használhatna az átmenő forgalom, de ezek ezt megtagadják. 3. Tranzit hálózatok, amelyek némi megkötéssel, illetve általában fizetség ellenében, készek kezelni harmadik fél csomagjait. JELLEMZŐK A BGP router-ek páronként TCP-összeköttetést létrehozva kommunikálnak egymással. A BGP alapvetően távolságvektor protokoll, viszont a router nyomon követi a használt útvonalat, és az útvonalat mondja meg a szomszédjainak.
53 BGP egyszerűsített működése 53 Munkamenet létrehozása a TCP 179-es portján AS-1 Aktív útvonalak kicserélése Folyamatos frissítések cseréje AS-2
54 Border Gateway Protocol 54 B C E A F I G J D H A F által a szomszédjaitól kapott D-re vonatkozó információ az alábbi: B-től: Én a BCD-t használom G-től: Én a GCD-t használom I-től: Én a IFGCD-t használom E-től: Én a EFGCD-t használom
55 BGP kapcsolatok 55 Provider Peer 2 has no incentive to Peers do not route 1 3 pay each other Customer Peer 1 Provider Peer 2 Customer Peer 3 $ Customer Customer pays provider
56 Tier-1 ISP Peering 56 Inteliquent Centurylink AT&T Verizon Business Level 3 Sprint XO Communications
57 Tier-1 ISP Peering 57 Inteliquent Centurylink AT&T Level 3 Sprint Verizon Business Azaz egy tier 1 hálózat üzemelteltése nem is olyan egyszerű Csak annyi dolgod van, hogy minden tier 1 hálózat üzemeltetőt rávegyél, hogy legyen a peer-ed! (nem túl könnyű ) XO Communications
58
59 Útvonalvektor protokoll 59 Path Vector Protocol AS-útvonal: AS-ek sorozata melyeken áthalad az útvonal Hasonló a távolságvektorhoz, de további információt is tartalmaz Hurkok, körök detektálása és külnböző továbbítási politikák alkalmazása Pl. válaszd a legolcsóbb/legrövidebb utat Routing a leghosszabb prefix egyezés alapján AS 2 AS /16 AS /16 AS /16 AS /16: AS 2 AS 3 AS /16: AS 2 AS /16: AS 2 AS 5
60 Útvonalvektor protokoll Path Vector Protocol A távolságvektor protokoll kiterjesztése Rugalmas továbbítási politikák Megoldja a végtelenig számolás problémáját Útvonalvektor: Célállomás, következő ugrás (nh), AS útvonal Ötlet: a teljes útvonalat meghirdeti Távolságvektor: távolság metrika küldése célállomásonként Útvonalvektor: a teljes útvonal küldése célállomásonként 3 d: path (2,1) d: path (1) data traffic data traffic d
61 Rugalmas forgalomirányítás Minden állomás hely/saját útválasztási politikát alkalmaz Útvonal kiválasztás: Melyik útvonalat használjuk? Útvonal export: Melyik útvonalat hirdessük meg? Példák A 2. állomás által preferált útvonal: 2, 3, 1 (nem a 2, 1 ) Az 1. állomás nem hagyja, hogy a 3. állomás értesüljön az 1, 2 útvonalról
62 BGP 62 IGP A határ-routerek is beszélik az IGP-t ebgp ibgp ibgp ebgp
63 IGB ibgp ebgp 63 ebgp: Routing információk cseréje autonóm rendszerek között 1. ebgp A megismeri az útvonal a célhoz, ehhez ebgp-t használunk IGP: útválasztás egy AS-en belül belső célállomáshoz 2. ibgp A-ban levő router megtanulja a célhoz vezető utat az ibgp segítségével (a köv. ugrás a határ router) ibgp: útválasztás egy AS-en belül egy külső célállomáshoz 3. IGP IGP segítségével eljuttatja a csomagot az A határrouteréig Cél állomás 1. ebgp 3. IGP AS A AS B 2. ibgp
64 Forrás: wikipedia 64
65 65 További protokollok
66 Internet Control Message Protocol 66 FELADATA Váratlan események jelentése HASZNÁLAT Többféle ICMP-üzenetet definiáltak: Elérhetetlen cél; Időtúllépés; Paraméter probléma; Forráslefojtás; Visszhang kérés; Visszhang válasz;...
67 Internet Control Message Protocol 67 Elérhetetlen cél esetén a csomag kézbesítése sikertelen volt. Esemény lehetséges oka: Egy nem darabolható csomag továbbításának útvonalán egy kis csomagos hálózat van. Időtúllépés esetén az IP csomag élettartam mezője elérte a 0- át. Esemény lehetséges oka: Torlódás miatt hurok alakult ki vagy a számláló értéke túl alacsony volt. Paraméter probléma esetén a fejrészben érvénytelen mezőt észleltünk. Esemény lehetséges oka: Egy az útvonalon szereplő router vagy a hoszt IP szoftverének hibáját jelezheti.
68 Internet Control Message Protocol 68 Forráslefojtás esetén lefojtó csomagot küldünk. Esemény hatása: A fogadó állomásnak a forgalmazását lassítania kellett. Visszhang kérés esetén egy hálózati állomás jelenlétét lehet ellenőrizni. Esemény hatása: A fogadónak vissza kell küldeni egy visszhang választ. Átirányítás esetén a csomag rosszul irányítottságát jelzik. Esemény kiváltó oka: Router észleli, hogy a csomag nem az optimális útvonall.
69 Address Resolution Protocol 69 IP 1 IP 2 IP E 1 E 2 E 3 F3 F2 F1 E 4 E 5 E 6 E 7 R1 R2 IP 7 IP 8 IP 9 W A N IP E 8 IP 4 IP 5 IP 6
70 Address Resolution Protocol 70 FELADATA Az IP cím megfeleltetése egy fizikai címnek. HOZZÁRENDELÉS Adatszóró csomag kiküldése az Ethernetre Ki-é a es IP-cím? kérdéssel az alhálózaton, és mindenegyes hoszt ellenőrzi, hogy övé-e a kérdéses IP-cím. Ha egyezik az IP a hoszt saját IP-jével, akkor a saját Ethernet címével válaszol. Erre szolgál az ARP. Opcionális javítási lehetőségek: a fizikai cím IP hozzárendelések tárolása (cache használata); Leképezések megváltoztathatósága (időhatály bevezetése); Mi történik távoli hálózaton lévő hoszt esetén? A router is válaszoljon az ARP-re a hoszt alhálózatán. (proxy ARP) Alapértelmezett Ethernet-cím használata az összes távoli forgalomhoz
71 Reverse Address Resolution Protocol 71 Új állomás DHCP közvetítő DHCP felfedezés csomag Más hálózatok router DHCP szerver Egyes küldéses csomag
72 Reverse Address Resolution Protocol FELADATA A fizikai cím megfeleltetése egy IP címnek HOZZÁRENDELÉS Az újonnan indított állomás adatszórással csomagot küld ki az Ethernetre A 48-bites Ethernet-címem Tudja valaki az IP címemet? kérdéssel az alhálózaton. Az RARP-szerver pedig válaszol a megfelelő IP címmel, mikor meglátja a kérést Opcionális javítási lehetőségek: BOOTP protokoll használata. UDP csomagok használata. Manuálisan kell a hozzárendelési táblázatot karbantartani. (statikus címkiosztás) DHCP protokoll használata. Itt is külön kiszolgáló osztja ki a címeket a kérések alapján. A kiszolgáló és a kérő állomások nem kell hogy ugyanazon a LAN-on legyenek, ezért LAN-onként kell egy DHCP relay agent. (statikus és dinamikus címkiosztás)
73 DHCP: DYNAMIC HOST CONFIGURATION PROTOCOL 73
74 DHCP 74 Lényegében ez már az Alkalmazási réteg de logikailag ide tartozik Segítségével a hosztok automatikusan juthatnak hozzá a kommunikációjukhoz szükséges hálózati azonosítókhoz: IP cím, hálózati maszk, alapértelmezett átjáró, stb. Eredetileg az RFC 1531 a BOOTP kiterjesztéseként definiálta. Újabb RFC-k: 1541, 2131 (aktuális)
75 DHCP lehetőségei 75 IP címek osztása MAC cím alapján DHCP szerverrel Szükség esetén (a DHCP szerveren előre beállított módon) egyes kliensek számára azok MAC címéhez fix IP cím rendelhető IP címek osztása dinamikusan A DHCP szerveren beállított tartományból érkezési sorrendben kapják a kliensek az IP címeket Elegendő annyi IP cím, ahány gép egyidejűleg működik Az IP címeken kívül további szükséges hálózati paraméterek is kioszthatók Hálózati maszk Alapértelmezett átjáró Névkiszolgáló Domain név Hálózati rendszerbetöltéshez szerver és fájlnév
76 DHCP Címek bérlése 76 A DHCP szerver a klienseknek az IP-címeket bizonyos bérleti időtartamra (lease time) adja bérbe Az időtartam hosszánál a szerver figyelembe veszi a kliens esetleges ilyen irányú kérését Az időtartam hosszát a szerver beállításai korlátozzák A bérleti időtartam lejárta előtt a bérlet meghosszabbítható Az IP-cím explicit módon vissza is adható
77 Virtuális magánhálózatok alapok FŐ JELLEMZŐI Mint közeli hálózat fut az interneten keresztül. IPSEC-et használ az üzenetek titkosítására. Azaz informálisan megfogalmazva fizikailag távol lévő hosztok egy közös logikai egységet alkotnak. Például távollévő telephelyek rendszerei. ALAPELV Bérelt vonalak helyett használjuk a publikusan hozzáférhető Internet-et. Így az Internettől logikailag elkülöníthető hálózatot kapunk. Ezek a virtuális magánhálózatok avagy VPN-ek. A célok közé kell felvenni a külső támadó kizárását.
78 Virtuális magánhálózatok alapok A virtuális linkeket alagutak képzésével valósítjuk meg. ALAGÚTAK Egy magánhálózaton belül a hosztok egymásnak normál módon küldhetnek üzenetet. Virtuális linken a végpontok beágyazzák a csomagokat. IP az IP-be mechanizmus. Az alagutak képzése önmagában kevés a védelemhez. Mik a hiányosságok? Bizalmasság, authentikáció Egy támadó olvashat, küldhet üzeneteket. Válasz: Kriptográfia használata.
79 Virtuális magánhálózatok alapok IPSEC Hosszú távú célja az IP réteg biztonságossá tétele. (bizalmasság, autentikáció) Műveletei: Hoszt párok kommunikációjához kulcsokat állít be. A kommunikáció kapcsolatorientáltabbá tétele. Fejlécek és láblécek hozzáadása az IP csomagok védelme érdekében. Több módot is támogat, amelyek közül az egyik az alagút mód.
80 Vége Köszönöm a figyelmet!
Számítógépes Hálózatok
Számítógépes Hálózatok 9. Előadás: Hálózati réteg II. Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring 2016 by S. Laki Hálózati
Számítógépes hálózatok
Számítógépes hálózatok NYOLCADIK ELŐADÁS Hálózati réteg, forgalomirányítási protokollok, címzés KÉSZÍTETTE: ÁCS ZOLTÁN KIEGÉSZÍTETTE: LAKI SÁNDOR Hálózati réteg szerepkörei FŐ FELADATA A csomagok továbbítása
Számítógépes hálózatok
Számítógépes hálózatok HATODIK ELŐADÁS Hálózati réteg, forgalomirányítási protokollok, címzés ELŐADÓ: ÁCS ZOLTÁN Hálózati réteg szerepkörei FŐ FELADATA A csomagok továbbítása a forrás és a cél között.
Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT október 29. HSNLab SINCE 1992
Hálózati Technológiák és Alkalmazások Vida Rolland, BME TMIT 2018. október 29. Link-state protokollok OSPF Open Shortest Path First Első szabvány RFC 1131 ( 89) OSPFv2 RFC 2178 ( 97) OSPFv3 RFC 2740 (
Internet Protokoll 6-os verzió. Varga Tamás
Internet Protokoll 6-os verzió Motiváció Internet szédületes fejlődése címtartomány kimerül routing táblák mérete nő adatvédelem hiánya a hálózati rétegen gépek konfigurációja bonyolódik A TCP/IPkét évtizede
Az adott eszköz IP címét viszont az adott hálózat üzemeltetői határozzákmeg.
IPV4, IPV6 IP CÍMZÉS Egy IP alapú hálózat minden aktív elemének, (hálózati kártya, router, gateway, nyomtató, stb) egyedi azonosítóval kell rendelkeznie! Ez az IP cím Egy IP cím 32 bitből, azaz 4 byte-ból
Számítógépes Hálózatok ősz Hálózati réteg IP címzés, ARP, Circuit Switching, Packet Switching
Számítógépes Hálózatok ősz 2006 10. Hálózati réteg IP címzés, ARP, Circuit Switching, Packet Switching 1 Inter-AS-Routing Inter-AS routing Inter-AS-Routing nehéz... between A and B C.b Gateway B Szervezetek
Hálózati Technológiák és Alkalmazások
Hálózati Technológiák és Alkalmazások Vida Rolland BME TMIT 2016. október 28. Internet topológia IGP-EGP hierarchia előnyei Skálázhatóság nagy hálózatokra Kevesebb prefix terjesztése Gyorsabb konvergencia
Számítógépes hálózatok
Számítógépes hálózatok NYOLCADIK ELŐADÁS Hálózati réteg, forgalomirányítási protokollok, címzés KÉSZÍTETTE: ÁCS ZOLTÁN KIEGÉSZÍTETTE: LAKI SÁNDOR Hálózati réteg szerepkörei FŐ FELADATA A csomagok továbbítása
Routing. Számítógép-hálózatok. Dr. Lencse Gábor. egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék
Routing Számítógép-hálózatok Dr. Lencse Gábor egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék lencse@sze.hu Út(vonal)választás - bevezetés A csomagok továbbítása általában a tanult módon,
Routing IPv4 és IPv6 környezetben. Professzionális hálózati feladatok RouterOS-el
Routing IPv4 és IPv6 környezetben Professzionális hálózati feladatok RouterOS-el Tartalom 1. Hálózatok osztályozása Collosion/Broadcast domain Switchelt hálózat Routolt hálózat 1. Útválasztási eljárások
A kapcsolás alapjai, és haladó szintű forgalomirányítás. 1. Ismerkedés az osztály nélküli forgalomirányítással
A Cisco kapcsolás Networking alapjai Academy Program és haladó szintű forgalomirányítás A kapcsolás alapjai, és haladó szintű forgalomirányítás 1. Ismerkedés az osztály nélküli forgalomirányítással Mártha
Számítógépes Hálózatok
Számítógépes Hálózatok 7a. Előadás: Hálózati réteg ased on slides from Zoltán Ács ELTE and. hoffnes Northeastern U., Philippa Gill from Stonyrook University, Revised Spring 06 by S. Laki Legrövidebb út
Számítógép-hálózatok. Gyakorló feladatok a 2. ZH témakörének egyes részeihez
Számítógép-hálózatok Gyakorló feladatok a 2. ZH témakörének egyes részeihez IPV4 FELADATOK Dr. Lencse Gábor, SZE Távközlési Tanszék 2 IP címekkel kapcsolatos feladatok 1. Milyen osztályba tartoznak a következő
Hálózati architektúrák laborgyakorlat
Hálózati architektúrák laborgyakorlat 4. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Hálózati réteg (L3) Kettős címrendszer Interfész konfigurációja IP címzés: címosztályok, alhálózatok, szuperhálózatok,
Számítógépes Hálózatok 2011
Számítógépes Hálózatok 2011 10. Hálózati réteg IP címzés, IPv6, ARP, DNS, Circuit Switching, Packet Switching 1 IPv4-Header (RFC 791) Version: 4 = IPv4 IHL: fejléc hossz 32 bites szavakban (>5) Type of
Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont
Hálózati réteg Hálózati réteg Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont közötti átvitellel foglalkozik. Ismernie kell a topológiát Útvonalválasztás,
Hálózati réteg - áttekintés
Hálózati réteg - áttekintés Moldován István BME TMIT Rétegződés Az IP Lehetővé teszi hogy bármely két Internetre kötött gép kommunikáljon egymással Feladata a csomag eljuttatása a célállomáshoz semmi garancia
IV. - Hálózati réteg. Az IP hálózati protokoll
IV. - Hálózati réteg IV / 1 Az IP hálózati protokoll IP (Internet Protocol) RFC 791 A TCP/IP referenciamodell hálózati réteg protokollja. Széles körben használt, az Internet alapeleme. Legfontosabb jellemzői:
Beállítások 1. Töltse be a Planet_NET.pkt állományt a szimulációs programba! A teszthálózat már tartalmazza a vállalat
Planet-NET Egy terjeszkedés alatt álló vállalat hálózatának tervezésével bízták meg. A vállalat jelenleg három telephellyel rendelkezik. Feladata, hogy a megadott tervek alapján szimulációs programmal
Dinamikus routing - alapismeretek -
Router működési vázlata Dinamikus routing - alapismeretek - admin Static vs Dynamic Static vs Dynamic Csoportosítás Csoportosítás Belső átjáró protokollok Interior Gateway Protocol (IGP) Külső átjáró protokollok
Routing update: IPv6 unicast. Jákó András BME EISzK
Routing update: IPv6 unicast Jákó András goya@eik.bme.hu BME EISzK Változatlan alapelvek: IPv4 IPv6 prefixek a routing table-ben különféle attribútumokkal a leghosszabb illeszkedő prefix használata kétszintű
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Kelenföldi Szilárd
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása 3. óra Kocsis Gergely, Kelenföldi Szilárd 2015.03.05. Routing Route tábla kiratása: route PRINT Route tábla Illesztéses algoritmus:
routing packet forwarding node routerek routing table
Az útválasztás, hálózati forgalomirányítás vagy routing (még mint: routeing, route-olás, routolás) az informatikában annak kiválasztását jelenti, hogy a hálózatban milyen útvonalon haladjon a hálózati
Tartalom. Router és routing. A 2. réteg és a 3. réteg működése. Forgalomirányító (router) A forgalomirányító összetevői
Tartalom Router és routing Forgalomirányító (router) felépítésük működésük távolságvektor elv esetén Irányító protokollok autonóm rendszerek RIP IGRP DHCP 1 2 A 2. réteg és a 3. réteg működése Forgalomirányító
Gyakorló feladatok a 2. ZH témakörének egyes részeihez. Számítógép-hálózatok. Dr. Lencse Gábor
Gyakorló feladatok a 2. ZH témakörének egyes részeihez Számítógép-hálózatok Dr. Lencse Gábor egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék lencse@sze.hu IPV4 FELADATOK Dr. Lencse Gábor,
Hálózati alapismeretek
Hálózati alapismeretek 10. Alhálózatok és forgalomirányítási alapismeretek 1. Irányított protokollok 2. IP alapú irányító protokollok 3. Az alhálózatok működése Irányított protokollok Irányított protokoll
Számítógépes Hálózatok
Számítógépes Hálózatok 9. Előadás: ICMP-ARP-DHCP-VPN + Szállítói réteg I. Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring
FORGALOMIRÁNYÍTÓK. 6. Forgalomirányítás és irányító protokollok CISCO HÁLÓZATI AKADÉMIA PROGRAM IRINYI JÁNOS SZAKKÖZÉPISKOLA
FORGALOMIRÁNYÍTÓK 6. Forgalomirányítás és irányító protokollok 1. Statikus forgalomirányítás 2. Dinamikus forgalomirányítás 3. Irányító protokollok Áttekintés Forgalomirányítás Az a folyamat, amely révén
Forgalomirányítás (Routing)
Forgalomirányítás (Routing) Tartalom Forgalomirányítás (Routing) Készítette: (BMF) Forgalomirányítás (Routing) Autonóm körzet Irányított - irányító protokollok Irányítóprotokollok mőködési elve Távolságvektor
Két típusú összeköttetés PVC Permanent Virtual Circuits Szolgáltató hozza létre Operátor manuálisan hozza létre a végpontok között (PVI,PCI)
lab Adathálózatok ATM-en Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Megvalósítások Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577)
Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577) - IETF LAN Emulation (LANE) - ATM Forum Multiprotocol over ATM (MPOA) -
lab Adathálózatok ATM-en Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Megvalósítások Multiprotocol encapsulation (RFC1483) - IETF Classical IP over ATM (RFC1577)
IP alapú kommunikáció. 5. Előadás Routing 2 Kovács Ákos
IP alapú kommunikáció 5. Előadás Routing 2 Kovács Ákos Az internet ~84000 (2018 )különböző hálózatból épül fel, ezeket domainnek nevezzük Minden domain több routerből és hostból áll, amelyet egy szervezt
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. Kocsis Gergely, Supák Zoltán
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása Kocsis Gergely, Supák Zoltán 2016.02.23. TCP/IP alapok A Microsoft Windows alapú hálózati környezetben (csakúgy, mint más hasonló
Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP kapcsolás hálózati réteg
Dr. Wührl Tibor Ph.D. MsC 04 Ea IP kapcsolás hálózati réteg IP kapcsolás Az IP címek kezelése, valamint a csomagok IP cím alapján történő irányítása az OSI rétegmodell szerint a 3. rétegben (hálózati network
Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban
Hoszt kommunikáció Statikus routing Két lehetőség Partnerek azonos hálózatban (A) Partnerek különböző hálózatban (B) Döntéshez AND Címzett IP címe Feladó netmaszk Hálózati cím AND A esetben = B esetben
Internet használata (internetworking) Készítette: Schubert Tamás
Internet használata (internetworking) Készítette: (BMF) Internet/1 Internet használata (internetworking) Az együttműködő számítógépek kapcsolódhatnak: kizárólag LAN-hoz, kizárólag WAN-hoz, vagy LAN-ok
A TCP/IP modell hálózati rétege (Network Layer) Protokoll-készlet: a csomagok továbbítása. Legjobb szándékú kézbesítés
A hálózati réteg feladatai A TCP/ modell hálózati rétege (Network Layer) A csomagok szállítása a forrásállomástól a cél-állomásig A hálózati réteg protokollja minden állomáson és forgalomirányítón fut
Számítógépes Hálózatok
Számítógépes Hálózatok 8. Előadás: Adatkapcsolati réteg & Hálózati réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring 2016
Hálózati architektúrák és Protokollok Levelező II. Kocsis Gergely
Hálózati architektúrák és Protokollok Levelező II Kocsis Gergely 2016.04.29. Route tábla Lekérdezése: $ route -n $ netstat -rn Eredmény: célhálózat átjáró netmaszk interfész Route tábla Útválasztás: -
Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés
Dr. Wührl Tibor Ph.D. MsC 04 Ea IP P címzés Csomagirányítás elve A csomagkapcsolt hálózatok esetén a kapcsolás a csomaghoz fűzött irányítási információk szerint megy végbe. Az Internet Protokoll (IP) alapú
Kommunikációs rendszerek programozása. Routing Information Protocol (RIP)
Kommunikációs rendszerek programozása Routing Information Protocol (RIP) Távolságvektor alapú útválasztás Routing Information Protocol (RIP) TCP/IP előttről származik (Xerox Network Services) Tovább fejlesztve
IP anycast. Jákó András BME TIO
IP anycast Jákó András jako.andras@eik.bme.hu BME TIO Tematika Mi az IP anycast? Hogy működik? Mire használható? Alkalmazási példa Networkshop 2011. IP anycast 2 IP...cast IP csomagtovábbítási módok a
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása. 3. óra. Kocsis Gergely, Supák Zoltán
Windows rendszeradminisztráció és Microsoft szerveralkalmazások támogatása 3. óra Kocsis Gergely, Supák Zoltán 2017.03.08. TCP/IP alapok IPv4 IP cím: 32 bites hierarchikus logikai azonosító. A hálózaton
A TCP/IP számos adatkapcsolati réteggel együtt tud működni:
lab Vezetékes átvitel Adatkapcsolati réteg Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Adatkapcsolati réteg Feladata: IP datagrammokat küld és fogad az IP modulnak
Adatkapcsolati réteg. A TCP/IP számos adatkapcsolati réteggel együtt tud működni: Ethernet, token ring, FDDI, RS-232 soros vonal, stb.
lab Vezetékes átvitel Adatkapcsolati réteg Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Adatkapcsolati réteg Feladata: IP datagrammokat küld és fogad az IP modulnak
Alhálózatok. Bevezetés. IP protokoll. IP címek. IP címre egy gyakorlati példa. Rétegek kommunikáció a hálózatban
Rétegek kommunikáció a hálózatban Alhálózatok kommunikációs alhálózat Alk Sz H Ak F Hol? PDU? Bevezetés IP protokoll Internet hálózati rétege IP (Internet Protocol) Feladat: csomagok (datagramok) forrásgéptől
* Rendelje a PPP protokollt az TCP/IP rétegmodell megfelelő rétegéhez. Kapcsolati réteg
ét * Rendelje a PPP protokollt az TCP/IP rétegmodell megfelelő Kapcsolati réteg A Pont-pont protokoll (általánosan használt rövidítéssel: PPP az angol Point-to-Point Protocol kifejezésből) egy magas szintű
Az internet ökoszisztémája és evolúciója. Gyakorlat 4
Az internet ökoszisztémája és evolúciója Gyakorlat 4 Tartományok közti útválasztás konfigurálása: alapok Emlékeztető: interfészkonfiguráció R1 R2 link konfigurációja R1 routeren root@openwrt:/# vtysh OpenWrt#
6. Forgalomirányítás
6. Forgalomirányítás Tartalom 6.1 Az irányító protokollok konfigurálása 6.2 Külső forgalomirányító protokollok Az irányító protokollok konfigurálása 6.1 Vissza a tartalomjegyzékre A forgalomirányítás alapjai
Internet Protokoll 4 verzió
Internet Protokoll 4 verzió Vajda Tamás elérhetőség: vajdat@ms.sapientia.ro Tankönyv: Andrew S. Tanenbaum Számítógép hálózatok Az előadás tartalma Ocionális fe IPv4 fejrész ismétlés Az opciók szerkezete:
Tájékoztató. Használható segédeszköz: -
A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 52 481 02 Irodai informatikus Tájékoztató A vizsgázó az első lapra írja fel a nevét!
Tartalom. Hálózati kapcsolatok felépítése és tesztelése. Rétegek használata az adatok továbbításának leírására. OSI modell. Az OSI modell rétegei
Tartalom Hálózati kapcsolatok felépítése és tesztelése Bevezetés: az OSI és a Általános tájékoztató parancs: 7. réteg: DNS, telnet 4. réteg: TCP, UDP 3. réteg: IP, ICMP, ping, tracert 2. réteg: ARP Rétegek
Hálózati architektúrák laborgyakorlat
Hálózati architektúrák laborgyakorlat 5. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Hálózati réteg (L3) Kettős címrendszer: ARP Útválasztás: route IP útvonal: traceroute Parancsok: ifconfig, arp,
1/13. RL osztály Hálózati alapismeretek I. gyakorlat c. tantárgy Osztályozóvizsga tematika
1/13. RL osztály Hálózati alapismeretek I. gyakorlat c. tantárgy Osztályozóvizsga tematika A vizsga leírása: A vizsga anyaga a Cisco Routing and Switching Bevezetés a hálózatok világába (1)és a Cisco R&S:
IPv6 Elmélet és gyakorlat
IPv6 Elmélet és gyakorlat Kunszt Árpád Andrews IT Engineering Kft. Tematika Bevezetés Emlékeztető Egy elképzelt projekt Mikrotik konfiguráció IPv6 IPv4 kapcsolatok, lehetőségek
Hálózati Technológiák és Alkalmazások
Hálózati Technológiák és Alkalmazások Vida Rolland BME TMIT 016. március 9. Routing - Router Routing (útválasztás) Folyamat, mely során a hálózati protokollok csomagjai a célállomáshoz jutnak A routing
20 bájt 8 bájt. IP fejléc UDP fejléc RIP üzenet. IP csomag UDP csomag
lab Routing protokollok Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem IP forgalomirányítás általában Hierarchikus (2 szintű) AS-ek közötti: EGP Exterior Gateway
Unicast. Broadcast. Multicast. A célállomás egy hoszt. A célállomás az összes hoszt egy adott hálózaton
lab Broadcasting-multicasting Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Unicast A célállomás egy hoszt IP cím típusok Broadcast A célállomás az összes hoszt
Unicast A célállomás egy hoszt. Broadcast A célállomás az összes hoszt egy adott hálózaton
lab Broadcasting-multicasting Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem IP cím típusok Unicast A célállomás egy hoszt Broadcast A célállomás az összes hoszt
IP multicast routing napjainkban. Jákó András BME EISzK
IP multicast routing napjainkban Jákó András goya@eik.bme.hu BME EISzK Tartalomjegyzék IP multicast Multicast routing Interdomain kiegészítések A multicast routing jövője Networkshop 2001. IP multicast
Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT november 5. HSNLab SINCE 1992
Hálózati Technológiák és Alkalmazások Vida Rolland, BME TMIT 2018. november 5. Adatátviteli feltételek Pont-pont kommunikáció megbízható vagy best-effort (garanciák nélkül) A cél ellenőrzi a kapott csomagot:
Médiakommunikációs hálózatok (VIHIM161) évi fóliái alapján készült
IPV4 Médiakommunikációs hálózatok (VIHIM161) 2013. évi fóliái alapján készült 2017. március 2., Budapest Dr. Lencse Gábor tudományos főmunkatárs BME Hálózati Rendszerek és Szolgáltatások Tanszék lencse@hit.bme.hu
4. előadás. Internet alapelvek. Internet címzés. Miért nem elegendő 2. rétegbeli címeket (elnevezéseket) használni a hálózatokban?
4. előadás Internet alapelvek. Internet címzés Miért nem elegendő 2. rétegbeli címeket (elnevezéseket) használni a hálózatokban? A hálózati réteg fontos szerepet tölt be a hálózaton keresztüli adatmozgatásban,
Számítógépes Hálózatok 2013
Számítógépes Hálózatok 2013 9. Hálózati réteg Packet Forwarding, Link-State-Routing, Distance- Vector-Routing, RIP, OSPF, IGRP 1 Distance Vector Routing Protokoll ellman-ford algoritmusnak az elosztott
Az Ethernet példája. Számítógépes Hálózatok 2012. Az Ethernet fizikai rétege. Ethernet Vezetékek
Az Ethernet példája Számítógépes Hálózatok 2012 7. Adatkapcsolati réteg, MAC Ethernet; LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Routing Gyakorlati példa: Ethernet IEEE 802.3 standard A
Az internet ökoszisztémája és evolúciója. Gyakorlat 2
Az internet ökoszisztémája és evolúciója Gyakorlat 2 IP címzés IP subnetting Valós (hosztok azonos linken) vagy logikai alhálózat (operátor által routing célokra kreált ) Aggregáció: sok hoszt azonos prefixen
Hálózati rendszerek adminisztrációja JunOS OS alapokon
Hálózati rendszerek adminisztrációja JunOS OS alapokon - áttekintés és példák - Varga Pál pvarga@tmit.bme.hu Áttekintés Általános laborismeretek Junos OS bevezető Routing - alapok Tűzfalbeállítás alapok
ARP ÉS DHCP. Médiakommunikációs hálózatok (VIHIM161) évi fóliái alapján készült. Dr. Lencse Gábor
ARP ÉS DHCP Médiakommunikációs hálózatok (VIHIM161) 2013. évi fóliái alapján készült 2017. március 16., Budapest Dr. Lencse Gábor tudományos főmunkatárs BME Hálózati Rendszerek és Szolgáltatások Tanszék
Az IPv6 a gyakorlatban
Szendrői József, CCIE#5496 November 18, 2003 Az IPv6 a gyakorlatban Tartalom Miért van szükség a változásra? IPv6 címzés Helyi és távoli elérés Forgalomirányítás Biztonság IPv4 és IPv6 Összefoglalás 2
Hálózatok építése és üzemeltetése
Hálózatok építése és üzemeltetése OSPF gyakorlat 1 Ismétlés 2 Routing protokollok Feladatuk optimális útvonal (next hop) kiszámítása bármely csomópontok között aktuális állapot információ gyűjtés a hálózatról
Hálózati Technológiák és Alkalmazások
Hálózati Technológiák és Alkalmazások Vida Rolland Moldován István BME TMIT 2016. október 21. Routing - Router Routing (útválasztás) Folyamat, mely során a hálózati protokollok csomagjai a célállomáshoz
Hálózati architektúrák és Protokollok GI 8. Kocsis Gergely
Hálózati architektúrák és Protokollok GI 8 Kocsis Gergely 2018.11.12. Knoppix alapok Virtuális gép létrehozása VirtualBox-ban (hálózatelérés: bridge módban) Rendszerindítás DVD-ről vagy ISO állományból
2016 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED
Tavasz 2016 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 10. gyakorlat IP-címzés Somogyi Viktor, Jánki Zoltán Richárd S z e g e d i
Department of Software Engineering
Tavasz 2017 UNIVERSITAS SCIENTIARUM SZEGEDIENSIS UNIVERSITY OF SZEGED Department of Software Engineering Számítógép-hálózatok 8. gyakorlat IP címzés Somogyi Viktor, Bordé Sándor S z e g e d i T u d o m
Médiakommunikációs hálózatok (VIHIM161) évi fóliái alapján készült
IPV4 Médiakommunikációs hálózatok (VIHIM161) 2013. évi fóliái alapján készült 2018. február 27., Budapest Dr. Lencse Gábor tudományos főmunkatárs BME Hálózati Rendszerek és Szolgáltatások Tanszék lencse@hit.bme.hu
UTP vezeték. Helyi hálózatok tervezése és üzemeltetése 1
UTP vezeték A kábeleket kategóriákba sorolják és CAT+szám típusú jelzéssel látják el. A 10Base-T és 100Base-TX kábelek átvitelkor csak az 1, 2 (küldésre) és a 3, 6 (fogadásra) érpárokat alkalmazzák. 1000Base-TX
IP alapú kommunikáció. 4. Előadás Routing 1 Kovács Ákos
IP alapú kommunikáció 4. Előadás Routing 1 Kovács Ákos Routing Útvonalválasztási processz, mely utat keres két hálózat között Nem csak az IP-s világ része PSTN telefonoknál is volt útvonalválasztás A switch-elt
1. A számítógép-hálózatok ISO-OSI hivatkozási modelljének hálózati rétege 1.a Funkciói, szervezése
Forgalomirányítás: Követelmények, forgalomirányítási módszerek, információgyűjtési és döntési módszerek, egyutas, többutas és táblázat nélküli módszerek. A hálózatközi együttműködés heterogén hálózatok
8. Hálózati réteg. 8.1. Összeköttetés nélküli szolgálat megvalósítása
8. Hálózati réteg A hálózati réteg feladata, hogy a csomagokat a forrástól egészen a célig eljuttassa. Ehhez esetleg több routeren is keresztül kell a csomagnak haladnia, ill. előfordulhat, hogy egy másik
Hálózati architektúrák és Protokollok GI 7. Kocsis Gergely
Hálózati architektúrák és Protokollok GI 7 Kocsis Gergely 2017.05.08. Knoppix alapok Virtuális gép létrehozása VirtualBox-ban (hálózatelérés: bridge módban) Rendszerindítás DVD-ről vagy ISO állományból
Ethernet/IP címzés - gyakorlat
Ethernet/IP címzés - gyakorlat Moldován István moldovan@tmit.bme.hu BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM TÁVKÖZLÉSI ÉS MÉDIAINFORMATIKAI TANSZÉK Áttekintés Ethernet Multicast IP címzés (subnet)
BajaWebNet hálózatfeladat Egy kisvállalat hálózatának tervezésével bízták meg. A kisvállalatnak jelenleg Baján, Egerben és Szolnokon vannak irodaépületei, ahol vezetékes, illetve vezeték nélküli hálózati
Forgalomirányítás, irányító protokollok (segédlet az internet technológiák 1 laborgyakorlathoz) Készítette: Kolluti Tamás RZI3QZ
Forgalomirányítás, irányító protokollok (segédlet az internet technológiák 1 laborgyakorlathoz) Készítette: Kolluti Tamás RZI3QZ A routerek elsődleges célja a hálózatok közti kapcsolt megteremtése, és
21. fejezet Az IPv4 protokoll 1
21. fejezet Az IPv4 protokoll 1 Hálózati réteg az Interneten Az Internet, ami mára már az életünk részévé vált, többek közt annak köszönheti sikerét, hogy tervezőinek sikerült megfelelő elvek mentén építkezniük.
4. Vállalati hálózatok címzése
4. Vállalati hálózatok címzése Tartalom 4.1 IP-hálózatok hierarchikus címzési sémája 4.2 A VLSM használata 4.3 Az osztály nélküli forgalomirányítás és a CIDR alkalmazása 4.4 NAT és PAT használata IP-hálózatok
Mobil Internet 2 3. előadás IPv6 alapok
Mobil Internet 2 3. előadás IPv6 alapok Jeney Gábor jeneyg@hit.bme.hu BME Híradástechnikai Tanszék 2007/2008 II. félév Kivonat Miért nem elég az IPv4? Az IPv6-os fejléc kiegészítő fejlécek IPv6 címzés
Hálózati architektúrák és Protokollok PTI 5. Kocsis Gergely
Hálózati architektúrák és Protokollok PTI 5 Kocsis Gergely 2013.03.28. Knoppix alapok Virtuális gép létrehozása VirtualBox-ban (hálózatelérés: bridge módban) Rendszerindítás DVD-ről vagy ISO állományból
Újdonságok Nexus Platformon
Újdonságok Nexus Platformon Balla Attila balla.attila@synergon.hu CCIE #7264 Napirend Nexus 7000 architektúra STP kiküszöbölése Layer2 Multipathing MAC Pinning MultiChassis EtherChannel FabricPath Nexus
Előnyei. Helyi hálózatok tervezése és üzemeltetése 2
VPN Virtual Private Network A virtuális magánhálózat az Interneten keresztül kiépített titkosított csatorna. http://computer.howstuffworks.com/vpn.htm Helyi hálózatok tervezése és üzemeltetése 1 Előnyei
IP Internet Protocol. IP címzés, routing, IPv6, IP mobilitás. Dr. Simon Vilmos
IP Internet Protocol IP címzés, routing, IPv6, IP mobilitás 2014.Március 27. Dr. Simon Vilmos docens BME Hálózati Rendszerek és Szolgáltatások Tanszék svilmos@hit.bme.hu IP - Áttekintés Bevezetés A TCP/IP
Számítógépes Hálózatok
Számítógépes Hálózatok 6. Előadás: Adatkapcsolati réteg IV. & Hálózati réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring
Számítógép hálózatok
Számítógép hálózatok Számítógép hálózat fogalma A számítógép-hálózatok alatt az egymással kapcsolatban lévő önálló számítógépek rendszerét értjük. Miért építünk hálózatot? Információ csere lehetősége Központosított
Az alábbi állítások közül melyek a forgalomirányító feladatai és előnyei?
ck_01 Az alábbi állítások közül melyek a forgalomirányító feladatai és előnyei? ck_02 a) Csomagkapcsolás b) Ütközés megelőzése egy LAN szegmensen c) Csomagszűrés d) Szórási tartomány megnövelése e) Szórások
Hálózati architektúrák és Protokollok PTI 6. Kocsis Gergely
Hálózati architektúrák és Protokollok PTI 6 Kocsis Gergely 2018.04.11. Hálózati konfiguráció $ ifconfig Kapcsoló nélkül kiíratja a csomópont aktuális hálózati interfész beállításait. Kapcsolókkal alkalmas
III. előadás. Kovács Róbert
III. előadás Kovács Róbert VLAN Virtual Local Area Network Virtuális LAN Logikai üzenetszórási tartomány VLAN A VLAN egy logikai üzenetszórási tartomány, mely több fizikai LAN szegmensre is kiterjedhet.
Hálózatok építése és üzemeltetése
Hálózatok építése és üzemeltetése Routing protokollok 1 Mai téma Eddig hálózati funkciók (NAT, Firewall, DHCP, DNS) Tulajdonképpen switch / bridge (Layer 2) router (Layer 3) is alap hálózati funkciók Mai
Felhő alapú hálózatok (VITMMA02) Hálózati megoldások a felhőben
Felhő alapú hálózatok (VITMMA02) Hálózati megoldások a felhőben Dr. Maliosz Markosz Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék
Számítógép hálózatok gyakorlat
Számítógép hálózatok gyakorlat 5. Gyakorlat Ethernet alapok Ethernet Helyi hálózatokat leíró de facto szabvány A hálózati szabványokat az IEEE bizottságok kezelik Ezekről nevezik el őket Az Ethernet így
17. IPv6 áttérési technikák
Minőségbiztosítás IP hálózatokon (vitt9181) 17. IPv6 áttérési technikák Lukovszki Csaba, lukovszki@tmit.bme.hu TÁVKÖZLÉSI ÉS MÉDIAINFORMATIKAI TANSZÉK BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM 2005.