( ) dc dt. Mitől függ és hogyan a telítési oxigén koncentráció, C*? Mitől függ és hogyan a K L? Mitől függ és hogyan az a?
|
|
- Léna Kozma
- 6 évvel ezelőtt
- Látták:
Átírás
1 dc dt levegőztetés * ( ) = K a C C xq L Mitől függ és hogyan a telítési oxigén koncentráció, C*? Mitől függ és hogyan a K L? Mitől függ és hogyan az a? Mitől függ és hogyan a K l a? KEVERÕMÛ Nem kevert reaktorok LEVEGÕELOSZTÓ d 0 z dc dt = D O C z z= 0 Fick-törvény a diffúzióra dc/dt= k L (C*- C). Oxigén fluxus egységnyi felületre
2 dc dt = D O C z z= 0 dc/dt= k L (C*- C). Dimenziómentes forma dimenziómentes tömegátadási koefficiens Sherwood-szám D C C k L = * O kld C Sh = = D C z O C z C C = C * és z = z d z= 0 z= 0 ( ) C = f z, Sh, Sc, Gr Sh = g(sc,gr) d uorék átmérő megoldás Definíció, értelmezés Általános Oxigénátadáshoz összefüggés használt alak REYNOLDS-SZÁM tehetetlenségi erõk dvρ d Re = v ρ l elsõ súrlódási (viszkózus) erõk µ µ l PECLET-SZÁM konvektív komponenesáram dv dv Pe = konduktív komponensáram D DO SCHMIDT-SZÁM momentum diffuzivitás µ µ l Sc = tömeg diffuzivitás ρd ρld O FROUDE-SZÁM centrifugális erõ v Fr = gravitációs erõ gl GRASHOF-SZÁM (Archimédesz-szám) SHERWOOD-SZÁM (dimenziómentes anyagátadási tényezõ) Sh = felhajtóerõ Gr = elsõ súrlódási erõ uorékátmérõ filmátmérõ d ρg ρ µ kd D ( ) d ρg ρ ρ µ l l g l k l d D O
3 Példák k l ecslésére. Különállóan felszálló, merev határfelületű (nem forgó) gázuorékok (igen kicsiny uorékok, felületaktív anyagok, léguorékok felszállási seessége igen kicsi) Re< és Pe>> vd Sh = 0,. Pe = 0,. DO Pe= vd D O v ρ d µ l l =Re µ l ρ D l O = Sc ν=0 - cm /s 0-5 cm /s vd Sh = 0,. Pe = 0,. DO Hagen-Poiseuille-egyenlet v t = d ρg 8µ d ρg Sh = 0, 8 µ D O dρ ρg Sh = Gr Sc µ 0, D = 09, 8 µ ρ O Sh = 0, Pe = 09, Gr Sc = 09, Ra
4 . CALDERBANK és MOO-YOUNG A legtö laoratóriumi és ipari levegőztetett reaktoran a uorékok csoportokan, fürtöken mozognak fel vagy/és le, a uorékok egymással is kölcsönhatásan vannak (hatnak egymás mozgására. ((egyenként, egymástól függetlenül felszálló uorékok esete a valóságan ritka)) d <,5 mm d >,5 mm kld k Sh = = 0, Gr Sc Ld Sh = = 04, Gr Sc D D O hidrofil anyagok kicsiny kyukak (szinterezett, uorékkolonnák) O tiszta víz szitatányér felhajtóerõ viszkózus visszatartó erõ u o r é k á t m é r õ n õ d 4
5 k Ld Sh = D Ha álló uorék van Sh=0 k l = 0 MÓDOSÍTÁS O = + 0,Gr Sc Nem igaz, mert van hajtóerő ROSSZ A 40 EGYENLET!!! k L D O = 0 d KÉTFILMELMÉLET L D d O k Az anyagátadási felület a ecslése =d O d A uorék születésekor egyensúly van a felhajtóerõ és a lyukkerületen a felületi feszültség által okozott visszatartó erõ között: σ d π ρg 6 a felületi feszültség. = πd σ o levegõ d d o = d 6σ f egy uorék = π g ρ Mennyi uorék van egyidejűleg rendszeren? 5
6 Mennyi uorék van egyidejűleg rendszeren? Függ a tartózkodási időtől t H = v L H L - folyadék magasság v - uorék seesség. v nem állandó, változik, miközen a uorék a lyuktól a felszín felé halad. Jó közelítésként a uorék végseességet ( a folyadék felszínen történõ szétpattanáskor) szokás figyeleme venni. egy uorék felülete a V nqt πd nqt = = πd V 6 teljes uoréktérfogat a reaktoran 6 d egy uorék térfogata a = H 6 0 d egy uorék fajlagos felülete GÁZVISSZATARTÁS= Hold up = GÁZTÉRFOGAT ÖSSZTÉRFOGAT Hogyan lehet növelni? 6
7 kl = DO / δ K o r r e l á c i ó k Analitikus összefüggések k L = D O / δ M e g j e g y z é s e k kétfilm elmélet (Lewis és Whitman,94) k L DO = πθ k = D s L O Folyadék-ehatolási elmélet(higie,95) Felület megújulási elmélet (Danckwerts,95) Buorékok stagnáló környezeten Re = Gr = 0 merev vagy mozgó Sh = uorékfelület (Frossling, 98) Sh = 0, Re4 Sc K o r r e l á c i ó k M e g j e g y z é s e k Merev felületû mozgó uorékok, szaadon fel- vagy leszálló uorékok, csepegtetõ test, töltött oszlopok Sh = 099, Re Sc Sh = 0, Pe = 09, Gr Sc Re <,kúszó áramlás(levich, 96) Re <,Pe>> (Levich, 96) Sh = 0, Re4 Sc Kevert reaktorra,turulens áramlási viszonyokra(calderank és Moo-Young,96) 7
8 K o r r e l á c i ó k M e g j e g y z é s e k v lg = ρ d 8µ l Merev felületû kis uorékok, Re< v lg = ρ d 6µ l Mozgó felületû uorékok elasztikus folyadékan 6σ 048, 0, d = 09, do Reo g ( ρl ρg) K o r r e l á c i ó k d d = g 6σd o ( ρl ρg) 048, 0, = 09, do Reo M e g j e g y z é s e k Kis gázáramlási seesség, cp viszkozitás Mérsékelten nagy gázáramlási seesség, vizes oldatok,evegõztetõ lyukátmérõ do = 0,- cm Re o : lyukra vonatkozó Re-szám ahol Q gáztérfogatáram 8
9 Oxigénátadás kevert reaktoran steril tömítés hatörõ hûtõvíz spirál törõlap flat lade turinakeverõ 9
10 MSG, JAPÁN HOFU 640 GALLON 00 FEET A keverés szerepe, funkciói: -energiaevitel a folyadéka MOZGATÁS HŐ P/V K L a -a levegőztető gáz diszpergálása a folyadékan BUBORÉKKÉPZÉS, ANYAGÁTADÁS -a gáz- és folyadékfázis elválasztása FORDÍTOTT A.ÁTADÁS CO -a fermentlé oldott és nem oldott komponenseinek jó elkeverése ÁLTALÁNOS KEVEREDÉSI FUNKCIÓ szusztrátok, termékek... 0
11 d w h r propellerkeverõ d s d i egyenes lapátú nyitott turinakeverõ (flat lade) lapátkeverõ w keverõtípus D i / D t H L / D t W i / D i H / D i W / D t flat lade 0,,0 0,,0 0, lapát 0,,0 0,5,0 0, propeller 0,,0,0 0, H L 0 l m L i w i H D i D t
12 Tö keverő elem H D i V m H L / D t D i / D t H L /D i n* n BIOTEC(svéd) 6 0,6,54,59,6 0, 0, 0, 4,6 4,79 4,8 CHEMAP (Svájc) 7, 5-4 NBS (USA) 0,06 0,5,65,5 0,5 0,5 4,7 4, VEGYTERV 5 0,44 4,54 H L H i H i keverő elemek közötti távolság: D i < H i < D i keverő elemek száma: H L H L n D D i i
13
14 4
15 5
16 6
17 7
18 keverõ primer folyadék áramlás szekunder folyadék áramlás uorékmozgás kis gázseességnél uorékmozgás nagy gázseességnél 8
19 9
20 0
21 A keverő teljesítmény felvétele W m n D H i T L P= AD N Fr i D D 5 ρre... D Keverési Re-szám i α β γ D i.ndiρ NDi ρ dvρ Re = = ált.: Re = µ µ µ NDπ = keverő kerületi seesség Keverési Fr-szám i i ρ -sűrűség N - keverő fordulatszáma. ( DN) i Fr = = gd i DN i g vö.: Fr = v gl
22 állandó geometriájú ioreaktorra 5 m P = A D N ρ Re Fr i n teljesítményszám (Ne=Newton-szám vagy Eu=Euler-szám) : N P P = = A Re DN 5 i ρ m Fr n TELJESITMÉNYSZÁM P/N D i 5 ρ 0 törõlemez nélkül propeller keverõ 6 lapátos turina 6 lapátos lapát keverõ törõlemezzel 4 lapátos lapátkeverõ 0, REYNOLDS SZÁM ND i ρ/µ LAMINÁRIS TRANZIENS TURBULENS 0 <Re< x*0 x*0 <Re< ~x*0 0 <Re N P =A Re - P = A µ D i N N P =A 5 P = A D i N ρ
23 LEVEGŐZTETÉSSEL P csökken F m / s Di π m látszólagos felületi(lineáris) légseesség 4 F Na = = = keverő ker ületi seessége ND π m / s ND i i Jó g/f diszperzió rossz g/f diszperzió Pg = fna ( ) P 0,5-0,4 P g /P flooding elárasztás LEVEGÕZTETÉSI SZÁM*0 Q/ND i
24 Oxigén aszorpciós koefficiens kevert reaktoran (K L a) ecslése : Vízhez közeli anyagi tulajdonságú (ρ, µ, D O ) fermentlevekre 06, σ 05, d = 45, H 04, + 0, 0009 Calderank összefüggése Pg 0, ρ V [ m] σ flé felületi feszültsége, ρ sûrûsége H o gáz holdup átlagos uorék átmérõ d H O a = 6 felhasználásával és a 0,0009[m] elhagyásával d 04, Pg 0, ρ V 05, a = 44, H 06, [ m - ] σ Pg a V 04, v 05, s 4
25 Pg a V 04, v 05, s v s F. 4 = D π T [ m / ms] Turulens áramlási viszonyokra (lásd nagy tálázatot) Látszólagos felületi lineáris légseesség Sh = 0, Sc Re 4 kl N4 Pg KLa V 04, v 04, 05, s N laor fermentorokra Pg KLa V α β 05, s v N általánosan α β mérettől függő állandók, 0, 0,95 0,
26 Mitől függ és hogyan a K l a? K L a függése a környezeti paraméterektõl (ρ, µ, σ, D O ) mindenen szerepel!!!! Hőmérséklet hatása ( KLa) ( K a) L T o 0 o = 04, o ( T 0 ) növeli K L a értékét DE! C* csökken a hőrmérséklet növekedésével OTR Oldott tápanyag komponensek ( KLa) t ( K a) L ápoldat víz =α k Sók hatása az ionerõsségel ecsülhetõ ( KLa) t ( K a) L ápoldat víz = α = 78,. I 6
27 hazás hazásgátlás felületaktív anyagokkal DE: δ k l FAA csökken σ d a Fermentlevek reológiai viselkedése 7
28 8
OXIGÉNIGÉNY ÉS LEVEG ZTETÉS
CO 2 OXIGÉNIGÉNY ÉS LEVEG ZTETÉS glükóz (6 C-atom) G-6-P F-6-P F-1,6-diP Gliceraldehid-P (3C-atom) PEP Pyr Ac-CoA ATP ADP ATP ADP 1,3-diP-glicerát ADP ATP ATP 3-P-glicerát ADP 2-P-glicerát 2H 2H BIM SB
Energiaforrás Oxidáns Respiráció Példa (redukáló=oxi- (terminális elekt- termékei dálódó vegyület) ron akceptor) H 2 O+S 2-
3.4. Fermentációs rendszerek levegoellátása 3.4.. Bevezetés, az oxigén szerepe Sejtbiológiai illetve biokémiai stúdiumok alapján ismert, hogy az élovilág organizmusai az életmuködésükhöz elengedhetetlenül
A keverés fogalma és csoportosítása
A keverés A keverés fogalma és csoportosítása olyan vegyipari művelet, melynek célja a homogenizálás (koncentráció-, hőmérséklet-, sűrűség-, viszkozitás kiegyenlítése) vagy a részecskék közvetlenebb érintkezésének
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET Keverő ellenállás tényezőjének meghatározása Készítette: Hégely László, átdolgozta
Hidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
A szennyvíztisztítás üzemeltetési költségeinek csökkentése - oxigén beviteli hatékonyság értékelésének módszere
A szennyvíztisztítás üzemeltetési költségeinek csökkentése - oxigén beviteli hatékonyság értékelésének módszere Gilián Zoltán üzemmérnökség vezető FEJÉRVÍZ Zrt. 1 Áttekintő 1. Alapjellemzés (Székesfehérvár
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
Az úszás biomechanikája
Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható
Reológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
AEROB BIOREAKTOROK BIM BIM2 2002
Az erjesztő készülékbe, a gőzzel való sterilizálása után a sterilizátorból tápanyag szoríttatik be, a mely tápanyag laboratóriumban készült tiszta élesztővel van keverve. Ha az erjedés bevégződött, akkor
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok
Propeller és axiális keverő működési elve
Propeller és axiális keverő működési elve A propeller egy axiális átömlésű járókerék, amit tolóerő létesítésére használnak repülőgépek, hajók hajtására. A propeller nyugvó folyadékban halad előre, a propellerhez
Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
Kollár Veronika A biofizika fizikai alapjai
Kollár Veronika A biofizika fizikai alajai 013. 10. 14. Folyadékok alatulajdonságai folyadék: anyag, amely folyni kées térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának
Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai
016.11.18. Vizsgatétel Mechanika IV.: Hidrosztatika és hidrodinamika Hidrosztatika és hidrodinamika: hidrosztatikai nyomás, Pascaltörvény. Newtoni- és nem-newtoni folyadékok, áramlástípusok, viszkozitás.
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István
Szent István Egyetem (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége:
Diffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
Transzportjelenségek
Transzportjelenségek Fizikai kémia előadások 8. Turányi Tamás ELTE Kémiai Intézet lamináris (réteges) áramlás: minden réteget a falhoz közelebbi szomszédja fékez, a faltól távolabbi szomszédja gyorsít
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati
ϕ t + j ϕ = 0 mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati sűrűsége j ϕ - a ϕ-hez tartozó áramsűrűség j ϕ = vϕ + j rev + j irr vϕ - advekció j rev - egyéb reverzibilis áram
3. Gyakorlat Áramlástani feladatok és megoldásuk
3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T
Molekulák mozgásban a kémiai kinetika a környezetben
Energiatartalék Molekulák mozgásban a kémiai kinetika a környezetben A termodinamika és a kinetika A termodinamika a lehetőség θ θ θ G = H T S A kinetika a valóság: 1. A fizikai rész: - a reaktánsoknak
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Szűrés. Gyógyszertechnológiai alapműveletek. Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet
Szűrés Gyógyszertechnológiai alapműveletek Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet Szűrés Szűrésnek nevezzük azt a műveletet, amelynek során egy heterogén keverék, különböző
4. FERMENTÁCIÓK LEVEGŐZTETÉSE. A mikrobák oxigénigénye. Az oxigén felhasználása. Pécs Miklós: Vebi Biomérnöki műveletek. 4. előadás: Levegőztetés
4. FERMENTÁIÓK EVEGŐZTETÉSE 1 A mikrobák oxigénigénye Az oxigénigény szempontjából a mikrobákat több csoportba sorolhatjuk: Aerob mikroorganizmusok anyagcseréjükhöz szükségük van oxigénre Anaerob mikroorganizmusok
Az oxigén mint szubsztrát 4. FERMENTÁCIÓK LEVEGŐZTETÉSE. A mikrobák oxigénigénye. Az oxigén mint szubsztrát. Az oxigén felhasználása
4. előadás: evegőztetés 4. FERMENTÁIÓK EVEGŐZTETÉSE Az oxigén mint szubsztrát Az oxigén a mikroba számára egy szubsztrát, tehát érvényesek rá az ott bevezetett összefüggések. Mikroba fajlagos szaporodási
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
A nyomás. IV. fejezet Összefoglalás
A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
DINAMIKA ALAPJAI. Tömeg és az erő
DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban
F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,
F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási
Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.
Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok
DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST
DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST Előszó a Fizika című tankönyvsorozathoz Előszó a Fizika I. (Klasszikus
A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p
Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós
SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport Transzportjelenségek az élő szervezetben I. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.om RENDSZER
Reakciókinetika és katalízis
Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.
Számítástudományi Tanszék Eszterházy Károly Főiskola.
Networkshop 2005 k Geda,, GáborG Számítástudományi Tanszék Eszterházy Károly Főiskola gedag@aries.ektf.hu 1 k A mérés szempontjából a számítógép aktív: mintavételezés, kiértékelés passzív: szerepe megjelenítés
SZAKDOLGOZAT VIRÁG DÁVID
SZAKDOLGOZAT VIRÁG DÁVID 2010 Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék SZÁRNY KÖRÜLI TURBULENS ÁRAMLÁS NUMERIKUS SZIMULÁCIÓJA NYÍLT FORRÁSKÓDÚ SZOFTVERREL VIRÁG
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Hidrosztatika, Hidrodinamika
0/4/0 Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
VÍZÉPÍTÉS ALAPJAI Dr. Csoma Rózsa egy. doc. BME Vízépítési és Vízgazdálkodási Tanszék ww.vit.bme.hu Kmf. 16 T:463-2249 csoma@vit.bme.hu Vízgazdálkodás: akkor ott annyi olyan víz legyen amikor ahol amennyi
Transzportfolyamatok
ranszportfolyamatok (transzport = szállítás, fuvarozás) Jelentősége: élőlények anyagcsere pl. légzés, vérkeringés, sejtek közötti és sejten belüli anyagáramlás Korábban szerzett felhasználható ismeretek:
Transzportfolyamatok. összefoglalás, általánosítás Onsager egyenlet I V J V. (m/s) áramvonal. turbulens áramlás = kaotikusan gomolygó áramlás
1 Transzportfolyamatok Térfogattranszport () - alapfogalmak térfogattranszport () Hagen Poiseuille-törény (elektromos) töltéstranszport (elektr. áram) Ohm-törény anyagtranszport (diffúzió) ick 1. törénye
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István
(Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége: Pascal (Pa) 1 Pascal
Ó Ó ó ö ó
É ó ö É Á ó ó ü ó Ü ó ö ú ű ö ö ö ü ó Ó Ó ó ö ó Ó Ó ö ö ö ü Ó Ó ö ö ü ö ó ó ü ü Ó Ó Ó Ó ó ö ó ö ó ö ó ö ü ö ö ü ö ó ü ö ü ö ö ö ü ü ö ü É ü ö ü ü ö ó ü ü ü ü Ó Ó ü ö ö ü ö ó ö ö ü ó ü ó ö ü ö ü ö ü ö ó
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
Pécsi Tudományegyetem Gyógyszertechnológiai és Biofarmáciai Intézet
Pécsi Tudományegyetem Gyógyszertechnológiai és Biofarmáciai Intézet Keverés A keverés definíciója - mechanikai művelet - egy rendszerben, az anyag áramlásának elősegítése céljából mozgást idézünk elő.
Pécsi Tudományegyetem Gyógyszertechnológiai és Biofarmáciai Intézet
Pécsi Tudományegyetem Gyógyszertechnológiai és Biofarmáciai Intézet A keverés definíciója Keverés - mechanikai művelet - egy rendszerben, az anyag áramlásának elősegítése céljából mozgást idézünk elő.
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó
É ó ú ó ú ó Á ó ó ú ó ó ó ú ó ó ó ó ú ó ó ó ó ó ó ú ó ó ú ó ó ó ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó Ö ó ó ó ó ó ó ó ó ó ó ó ó Ü ó ű ú ú ó ó ó ó ó ó ó É ó É ó É ó ó ó ó ó ó É ó ú ó ó É ó ó ó ó É ó
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS 2013. Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet DIFFÚZIÓ 1. KÍSÉRLET Fizika-Biofizika I. - DIFFÚZIÓ 1. kísérlet: cseppentsünk tintát egy üveg vízbe 1. megfigyelés:
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É
Ü ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É É ű Ö Ö Á É ű Ö Ö Á Ü Á ű ű Ó Ó Á Á É Ü É ű Ó Á Ó Á ű Ö ű ű É Ü Ö ű É Ö ű ű Ó ű ű Ú ű ű ű ű ű É ű É Ú Ö Á É ű ű Ó ű ű ű ű ű ű Ó ű Ü ű ű ű É ű ű Ü Ü ű ű Ő Á Á Á ű ű ű Ó Ó Ó ű
ű Ö ű Ú ű ű ű Á ű
ű ű Ó É É ű Ó ű Ü ű ű Ö ű Ú ű ű ű Á ű É ű Á ű ű ű ű ű ű ű ű ű ű ű Á ű ű Ö Ü Ö É ű ű Ü Ü ű É Á Ú É É ű ű ű Ö É ű É Ó É Á Á É ű ű Á ű ű ű Á É ű Ö Á ű ű ű Á ű Á É Ö Ó Ö ű ű ű ű ű ű ű Á É Á Á ű ű ű Á ű ű ű
Á Ó ű ű Á É ű ű ű ű Ú Ú
Ö ű ű Ö Ü ű ű ű ű ű Ó ű Ü ű Á Ó ű ű Á É ű ű ű ű Ú Ú ű ű Á Á Á É ű ű ű ű ű ű ű ű ű ű É ű Ö Ó Ú ű ű ű ű Ü Ó Ú ű É É Ó É É Ó É É É É Ó ű ű ű ű ű Ü ű Á ű ű ű ű ű Ü ű ű ű ű ű ű Á ű Ú Á Á Ö É Á Á Ö É Ü ű ű Ü
Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö
ű É É Á Á Á É Ó É É Á ö ő ő ö ő ő ő Ó ő ö ő ö ő ú ő ü ö ő ü ö Á É ű Á É É É Ö ö Á É É ő ő ö Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö É É Á Ö ő ú ő ű Ö ü Ő É Ó É É Á Ó É Á É Ü É Á Ó É ő ő ö ö ő ö ö ö
ű Ú ű ű É Ú ű ű
ű ű ű ű Ú Á É Ú ű Ú ű ű É Ú ű ű ű Á ű ű ű ű ű Ü ű Á ű ű ű Á Á ű ű ű É ű ű ű Ú É ű ű ű ű ű ű ű ű Á É Á Ö Ü ű É ű ű Ö É Ü Ú ű Ó ű É Ó Ó Ó ű É Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű É ű ű Á Á ű Ú ű Ú ű ű Ó ű ű Ü Ü
Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö
Ó ú ú ú ú ű ű ű ú Á Ö ű Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö Ú ű ú É Á Ó Ó É Ó Ó ú ű ű ű ú Ö Ó Ö ú ú Ö ú Ü ú Ü É Ö Á Á Á Á ú Ó Ö ú ú ú Ü Ö ú ú ú ú ú ú Ö ú Ö Ó ű
Ó é é Ó Ó ő ű Ó Ö ü Ó é Ó ő Ó Á Ö é Ö Ó Ó é Ó Ó Ó Ó ú Ó Ó Ó Ó ű Ö Ó Ó Ó é Ó Ó ö Ö Ó Ö Ö Ó Ó Ó é ö Ö é é Ü Ó Ö Ó é Ó é ö Ó Ú Ó ő Ö Ó é é Ö ú Ó Ö ö ű ő
É Ó Ű Á Ó É Ó Á É Ó Á ő ű Ó ú Ö ú é Ö Ó Ö ú Ó Ö ú Ó Ó Ó Ó ű é ű ű Ó Ó ú ű ű é é Ö ö Ö Ö Ó ű Ó Ö ü ű Ö Ó ő Ó ő Ó ú Ó ő Ó é Ó ű Ó Ó Ó Ó ú Ó Ó Ó Ó Ö Ó Ó ö ő ü é ü Ö é é é Á é Ó Ó ú ú ű é Ö é é é Ó é é Ó Ó
ó ő ő ó ő ö ő ő ó ó ó ö ő ó ó ó ö ő ó ő ő ö Ö ő ö ó ő ö ő ő ú ö ö ü ö ó ö ö ö ő ö ö Ö ú ü ó ü ő ő ő ő ó ő ü ó ü ö ő ö ó ő ö ő ö ü ö ü ő ö ö ó ö ő ő ö
ü ö ő ö ő ó ö ő ü ü ö ő ó ó ü ő ö ő ö ő ö ü ö ő ö ő ó ö ü ü ö ő ő ő ö ő ö ü ö ő ó ő ö ü ö ő ő ű ő ö ö ő ű ő ü ö Ő ó ö ö ő ü ó ü ú ű ú ő ó ó ó ő ö ő ő ö ó ö ö ő ő ö ö ó ú ő ő ö ó ö ó ö ü ó ő ő ö ó ő ő ó
Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö
É Ó ö É Á ű Ü Ü ö Ú ö ö ö ö ö ö ö ú ö ö ö ö ö ú ú ú ú ú ú ü ú ú ö ö ű ö ü ú ö Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö Á Ó ú ö Á ö Á ö ú ú ö ö ö ö ü ü Ü ú
ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü
ü ü É ű ű É É ű ü ű ü ü ü Á ü ü ü ü ü ű É ü ű É ű ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü ü Á ü ü ü ü ü Ú ü ü ű É ü ü ű ü ü ű ü ü ü ü É ü ü ü ü ü ü ü ü É ű ü Á ü ü ü ü ü Á Ö É ü ü ű Ú ü ü ü ű
Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű
Ú ű ű ű ű ű ű ű ű Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű É ű Ú Ú Ú Ú Ú ű Á Ú Ú Ú Ú ű Ú Ú ű É ű Ú Ú Ú Ú Ú Á ű Ó ű Ú É É Ú Ú ű É ű ű ű ű É ű Ő ű Ő ű ű ű ű ű É ű É Á ű ű Ü Á Ó ű ű ű Ú ű ű É ű ű Ú
É Á Á Ö Á
É Á Á Ö Á Á É Á Ü ű Á É Ü ű Ú ű ű É É ű ű Á ű ű ű ű ű É ű ű ű Á É É É ű Á É É Á É Á É Ü Ü ű Á Á Á ű Á Á Á Á Á Á Á Á Ü ű Á ű Ü É É Á Á Á É ű ű ű ű ű ű ű ű ű ű ű ű ű Á Á É É ű É ű Ő ű É Ő Á É É ű ű Ú Á
ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á
ú ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á Á ú á ú á Á ö á ö ö ö ú á á ö ö ö ö á ű Ü ú ö Ü ű ö ú ű á á á ú á ú ú á ö ö ú ö ú ú ö ö ú ö ö ö á ö ö ö á á ö ú ö á á Ú á ö ö ö Ü ú Á á ű ö Ü ö ú Á á ö á ö
é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü é é é ü é é ó é ü ó ö é
Ó Ö é ü ó ö é é ü é é ó ö é ü ü é é ó é é é é é é ö é é é é é é é ó ö ü é é é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü
Szakmai fizika Gázos feladatok
Szakmai fizika Gázos feladatok 1. *Gázpalack kivezető csövére gumicsövet erősítünk, és a gumicső szabad végét víz alá nyomjuk. Mennyi a palackban a nyomás, ha a buborékolás 0,5 m mélyen szűnik meg és a
ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú
ő ű ű ő ö ö Á ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú ő ö Á Ó ő ő ü ú ő ő ő ő Á ő ú ű ő ő ő ü ú ő ő ő ő ő ő ő ő ö ü ú ő ő ő ő ű ű ő ő ö ű ü ő ő ő ö ö
Vízminőség, vízvédelem. Felszín alatti vizek
Vízminőség, vízvédelem Felszín alatti vizek A felszín alatti víz osztályozása (Juhász J. 1987) 1. A vizet tartó rétegek anyaga porózus kőzet (jól, kevéssé áteresztő, vízzáró) hasadékos kőzet (karsztos,
ü ú ú ü ú ú ú ú
ú ú ú ü Ü ú ú ű ú ú ü ú ü ü ú ú ü ú ú ú ú ü ú Ö ü ü ü ú ü ú Ó ü ü ű ü Á Ü ü ű ü ű ü ű ű ü Ó ű ú ú ű ú ü ü ú ű ű ú ű ü ú ű ű ü ü ü ű ü ű ü ü ű ü ü ü ü ü ü ü ü ü ú ű ü ű Ó ü ü ü ú Á Ü ú ü ű ü Á Ü Ö Ú Á Á
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop
FELADATOK A DINAMIKUS METEOROLÓGIÁBÓL 1. A 2 m-es szinten végzett standard meteorológiai mérések szerint a Földön valaha mért második legmagasabb hőmérséklet 57,8 C. Ezt San Luis-ban (Mexikó) 1933 augusztus
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q
1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. TRANSZPORTFOLYAMATOK biológiai rendszerekben.
SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport TRANSZPORTFOLYAMATOK biológiai rendszerekben Zrínyi Miklós egyetemi tanár, az MTA rendes tagja mikloszrinyi@gmail.om " Hol
Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai
Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Mona Tamás Időjárás előrejelzés speci 3. előadás 2014 Differenciál, differencia Mi a különbség f x és df dx között??? Differenciál, differencia
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek A talajszennyezés csökkenése/csökkentése bekövetkezhet Természetes úton Mesterséges úton (kármentesítés,
TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242M)
TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242M) ANYAGMÉRNÖK MESTERKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2012/13. 1 Tartalomjegyzék
Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék
Fűtési rendszerek hidraulikai méretezése Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Hidraulikai méretezés lépései 1. A hálózat kialakítása, alaprajzok, függőleges
Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia
Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek 1 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474, 168 169. / határfelületi jelenségek
Folyadékok. Molekulák: Gázok Folyadékok Szilárd anyagok. másodrendű kölcsönhatás növekszik. cseppfolyósíthatók hűtéssel és/vagy nyomással
Folyadékok Molekulák: másodrendű kölcsönhatás növekszik Gázok Folyadékok Szilárd anyagok cseppfolyósíthatók hűtéssel és/vagy nyomással Folyadékok Molekulák közti összetartó erők: Másodlagos kötőerők: apoláris
Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;
Folyadékáramlás vérkeringés
olyadékáramlás vérkeringés olyadékok fizikájának jelentősége I. Hemodinamika Kellermayer Miklós Milyenek a véráramlási viszonyok az érrendszerben? olyadékok fizikájának jelentősége II. olyadékban történő
Hatvani István fizikaverseny forduló megoldások. 1. kategória
. kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m
Folyadékáramlás vérkeringés
olyadékáramlás érkeringés Kellermayer Miklós olyadékok fizikájának jelentősége I. Hemodinamika Milyenek a éráramlási iszonyok az érrendszerben? olyadékok fizikájának jelentősége II. olyadékban történő
Dinamika. p = mυ = F t vagy. = t
Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus