Addíció + + π2* megfigyelés: memo: MO 9 ( ) (LUMO) MO 8 ( ) (HOMO)
|
|
- Liliána Gál
- 6 évvel ezelőtt
- Látták:
Átírás
1 Addíció megfigyelés: Mind az elektrofil (E + ), mind a nukleofil (Nu ) addíció elektronban gazdag molekularészen következik be. a π-kötés (sp 2 hibridállapotú atomok s+p x +p y [p z hibridizálatlan]): A reaktivitás szempontjából a lazábban kötött és delokalizált 2db π-elektron számít, pl. etén: π2* M 9 ( ) (LUM) π1 M 8 ( ) (M)
2 EPS töltés TD ρ= a.u. δ+ δ EPS töltés Az oxigén jobban viseli a negatív parciális töltést, mint a szén az azonos nagyságú, de ellentétes előjelű parciális töltést. A szénatom így válik a molekula gyenge láncszemévé. E+ Nu- E+
3 a π-kötés támad az elektrofilra Elektrofil addíció E E + E a nukleofil támad a karbokationra E Nuc Nuc db üres π-pálya E + = +, Nuc - = - Nukleofil addíció Nuc Nuc Nuc Nuc + Nuc -Nuc = -
4 IV. Elektrofil addíció kérdés: Szerves molekulákban a kettős kötés kimutatására ismert analitikai módszer a 2 -os vagy a KMn 4 -os reakció. Vajon a 2 addíciója az alábbi egyszerű lépéssel magyarázható-e? válasz: nem! magyarázat: nem ilyen egyszerű a mechanizmus, ha ugyanis a reakciósorán a brómból lehasadó bromid anion mellett további nukleofilt is tartalmaz a reakcióelegy (pl. l vagy N 3 ), akkor az alábbi vegyes terméket kapjuk: l 2 / l N 2 2 / N Tehát nem egyetlen lépés az addíció, s a 2 heterolitikusan bomlik. két lépéses mechanizmus? Elvileg ugyan elképzelhető volna az alábbi kísérőlépés N 2 N 3 de nem ez az eset áll fenn, nem ez a magyarázat!
5 kérdés: Miért nem ez a helyzet, hogy először a dibrómalkán keletkezik, majd kialakul a vegyes termék? (két lépéses mechanizmus) A but-2-én molekulának két izomerje lehetséges: a cisz és a transz formák. Tekintsük a transz-but-2-ént. Tegyük fel hogy a 2 egy lépésben addíciónálódik. a ezt a mechanizmust feltételezzük, akkor mindkét brómatom a szénhidrogén egyazon oldalára kell kerüljön. (Egy ilyen sztereokémiájú reakciót szin-addíciónak hívunk.) szin addíció cisz a várt termék konfigurációja: (2S,3S)-2,3-dibrómbután (vagy (2,3)- 2,3-dibrómbután), ahol a két -csoport a molekula átellenes felén található. tapasztalat: Nem a várt (2S,3S) hanem a (2,3S) terméket kapjuk! A kapott termékben, ha a két brómatomot fedőállásba hozzuk, akkor a feltételezéstől eltérő a két -csoportot a molekula egyazon térfelén találjuk. transz a kapott, de nem várt termék 2,3S a várt, de nem kapott termékek 2,3 és 2S,3S következtetés: Tehát nem a feltételezett két lépéses szin-addíció mechanizmus szerint megy a reakció!
6 Létezik ugyan anti-addíció is, amely során kaphatnánk a (2S,3)- konfigurációjú terméket. De ez a mechanizmus a jelen esetben nem lehetséges ugyanis ekkor egyazon brómmolekulának egyszerre az alkén mindkét oldalán kellene támadnia. kérdés: válasz: anti addíció Mi történik tehát a brómmolekula addíciója során? δ δ+ ciklusos bromónium ion intermedier belsõ szimmetriasíkkal rendelkezõ termék 1. A 2 molekula külső (N-) héján összesen 14 közös elektron van, ezért az elektronhiányosnak tekintendő. 2. Koordinálódik a π-elektronhoz, ami polarizálja a 2 molekulát. 3. A 2 heterolitikusan hasad, s így kialakul a bróm kation, amely mint elektrofil addíciónálódik a π-rendszerre, létrehozva a ciklusos bromónium köztiterméket. 4. Erre támad a bromid anion (vagy más) nukleofil. 5. A hátoldali támadás oka a bromónium híd által lefedett térrész árnyékoló hatásában rejlik (sztérikus gátlás). 2 2 ez egy valódi S N 2 lépés azaz hátoldali támadás 2 2 ( Y ) Y 2 2 Y
7 kérdés: válasz: Lehet-e bizonyítani a ciklusos bromónium kation (köztitermék) létét? igen 1. spektroszkópiai módszerrel bizonyítható a 2,3 dimetilbut-2-én kiindulási molekula esetében, 2. valamint izolálták az alábbi addició köztitermékét: δ δ+ 1,2-diadamantiletén kérdés: válasz: Lehet-e más halogéneket is addíciónálni? igen, de - F 2 esetén túl heves a reakció! - l 2 esetén a ciklusos klorónium vegyület nem alakul ki, mert a klór elektronnegativitása nagyobb mint a brómé és ezért nem osztozik az elektonpáron a szénnel: l l nyíltláncú karbokation ciklusos karbokation ezért a klór addíció mind szin- mind anti- mechanizmussal megy. - I 2 esetén olyan a mechanizmus mint a brómnál megfigyelt csak a reakció lomhább. Lewis-savak segítik az addíciót, δ+ δ mivel polarizálják a halogénmolekulát. Fe 3
8 kérdés: ogyan befolyásolja az alkén konstitúciója a halogénaddíció sebességét? tapasztalat: a relatív sebességi együtthatók (k) a következő módon alakulnak: - elektronküldő csoportok fokozzák, - elektronvonzó csoportok csökkentik a reakciósebességet. kérdés: A sztirolban a fenilcsoport hogyan lehet hogy gyorsítja a reakciót? magyarázat: a reakció első lépését követően kialakuló karbokation intermedier a fenilcsoport révén delokalzálódni tud, s ezáltal csökkenti a köztitermék aktiválási szabadentalpiáját! l l l l l l 2 l
9 kérdés: Lehet-e egy szimmetrikus alkénre pl egy hidrogén-halogenideket (-X ahol X = F, l, és I ) addícionálni? válasz: igen tapasztalat: A reagens savierőssége (I > > l > F) határozza meg az addíció sebességét. Így vélhetőleg a protonálási lépés a sebességmeghatározó. X 2 2 lassú 2 2 gyors 2 2 X X Mivel a hidrogénnek nincs elektronpárja így a köztitermék a nyílt és nem a ciklusos karbokation. A szimmetrikus konstitúciójú szubsztrátra történő X addíció szabadentalpia változása: X δ- G δ+ δ+ A második lépés aktiválási szabadentalpiája G # (2) Solomons X Az első lépés aktiválási szabadentalpiája G # (1) + X X reakciókoordináta
10 kérdés: tapasztalat: ogyan addícionálódik a X egy nem szimmetrikus konstitúciójú szubsztrátra? tekintsük a propént mint szubsztrátot: 2 primer karbokation 2 1-brómpropán 2 propén 2 szekunder karbokation A két lehetséges izomer közül csak a 2-brómpropán keletkezik. kérdés: mi lehet a szelektivitás molekuláris háttere? Aszimmetrikus konstitúciójú szubsztrátra történő X addíció szabadentalpia változása: δ- 2 2-brómpropán δ+ G δ+ + δ+ δ- δ G # (1) G # (2) Solomons 328 reakciókoordináta
11 magyarázat: az első esetben szekunder-, míg a második esetben primerkarbokation köztiterméken keresztül megy az addíció. Ismerve hogy a rendűséggel fokozatosan nő a karbokationok stabilitása rendűség nő, reaktivitás nő érthető, hogy miért nem képződik 1-brómpropán. Ez a Markovnyikov-szabály: - poláros közegben aszimmetrikus reagens és szubsztrát reakciója esetén arra az sp 2 szénre megy a nukleofil, amelyiken több elektronküldő szubsztituens található, - más szóval a a -ban gazdagabb szénre megy. (A nukleofil arra a telítettlen szénre támad, amelyhez több elektronküldő csoport kapcsolódik.) kérdés: gyökös mechanizmusú addíció ellenkező konstitúciójú terméket eredményez (ez az anti-markovnyikov-addíció), ugyanis a --ből lehasadó bromid gyök a szélen támad, hogy a kialakuló alkilbromid gyök stabilabb legyen. butén Milyen a X addició sztereokémiája? X akirális szekunder karbokation tapasztalat: Az akirális köztitermék X trigonális planáris szerkezetű, így a halogenid ()-2-halobután egyenlő eséllyel lép be mind az (a) mind a (b) úton racemátot eredményezve. válasz: az addició nem sztereoszelektív. X (a) (b) 2 5 (S)-2-halobután X 3
12 kérdés: tapasztalat: Lehet-e 2 -t addícionálni? ha olyan sav van jelen, amelynek anionja gyenge nukleofil (pl. 2 S 4 S 4 ) akkor a vízaddíció eredményes és a következő módon megy: 2 S magyarázat: a víz a sav anionjánál erősebb, de legalább is eredményesebb nukleofil. Ez egy savkatalizált addíció. TD ρ= a.u. EPS töltés töltés töltés töltés. 0.07
13 kérdés: hogy lehetne mind a két sp 2 szénre csoportot bevinni? ez a reakció a hidroxilezés tapasztalat: az alábbi reakció jól megy: a Mn 4 sója a 3 Mn 4 észtere +7 Mn KMn 4 lúgos +7 Mn +5 Mn 2 leírás: cisz-but-2-én ciklusos köztitermék oxido-redukciós folyamat: a Mn +7 -ből lesz Mn +5 (redukálódik) azaz a Mn +7 az elektrofil és 1-es -ből 0-as lesz: oxidálódik. bután-2,3s-diol a kálium-permanganát aspecifikus oxidálószer, ezért nem használható ez a reakció bármely telítetlen molekula hidroxilezésére. kérdés: lehet a ciklusos köztiterméket izolálni? válasz: igen +8 s cisz-but-2-én s 4 +6 s ciklusos ozmát diészter s bután-2,3-diol - a reakciókban a Mn +7 és az s +8 mint elektroncsapdák szerepelnek - mindkét reakció szin-mechanizmusú addíció, - az s 4 felettébb drága és igen toxikus.
14 kérdés: Lehet-e anti-mechanizmussal addíciót kivitelezni? válasz: igen, peroxisavakkal: Ph = 6 5 Ph transz but-2-én Ph 2 tapasztalat: epoxid képződésen keresztül megy a reakció, amely vegyület bár stabilis, azért felnyitható : 1. bázis hatására: Ph 2 (1) (2) (1) (2) (1) (2) 2. sav hatására: 2 2 minden esetben ugyanazt a terméket kapjuk (1) 2 2 (1) (2) 2 (2) - (1) (2) konklúzió: mind a négy esetben anti mechanizmusú az addíció, amely ugyanazt a bután-2,3-diol-t eredményezi. -
15 Az ilyen típusú addíciós reakció felhasználható a polimer kémiában tapasztalat: a kettős kötés a 2-metilpropén molekulában protonálódik és egy karbokationt ( t Bu kationt) eredményez (láncreakció első lépése). Ez a molekula elektrofil, ahogy a folyamatot iniciáló + is az volt. gfelelő feltételek mellett egy következő 2-metilpropénre addicionálódva (Ad E ) létrejön a dimer (2,2,4-trimetilpentil kation), amely szintén egy karbokation és így hatékony elektrofil tercier karbokation "monomer" tercier karbokation tercier karbokation "trimer" 3 "dimer" 2 2 polimer 3...
16 kérdés: Konjugált kettős kötéseket tartalmazó molekula hogyan vesz részt Ad E -reakcióban? válasz: hasonlóan mint az egyszeres kettős kötésű molekula, de egy konjugált dién (pl. buta-1,3-dién) általában reaktívabb szubsztrát. köztitermékek tapasztalat: etén 2 2 buta-1,3-dién a két köztitermék eltérő módon stabilizálódik: - izolált kettős kötés esetén ciklusos kation formájában, - konjugált kettős kötés esetén delokalizáció révén (lásd allilkation). eredmény: egy keverék: a 3,4-dibrómbut-1-én és a 1,4-dibómbut-2-én 2 2 1,2-addíció 2 2 1,4-addíció a termékarány befolyásolható pl. a hőmérséklettel
17 kérdés: Mit eredményez egy nem szimmetrikus konjugált kettős kötéseket tartalmazó molekula Ad E -reakciója egy nem szimmetrikus reagenssel? válasz: tapasztalat: használjunk hidrogén-bromidot és penta-1,3-diént: labilisabb határszerkezetek 2 szekunder karbokation 2 primer karbokation 2 penta-1,3-dién szekunder karbokation szekunder karbokation 2 2 stabilabb határszerkezetek ,2-addíció ugyanaz a 4--pent-2-én 1,4-addíció A stabilabb köztitermék az amelynek a képződését magyarázó határszerkezetben a karbokation rendűsége magasabb. A Markovnyikov-szabály itt is érvényes: a + oda megy ahol több a.
18 TD ρ= a.u. EPS töltés szekunder karbokation 2 primer karbokation [F/3-21G] +12,3 kcal/mol 2 penta-1,3-dién szekunder karbokation szekunder karbokation 2 2 az alacsonyabb energiájú köztitermék képződik csupán 2 1,2-addíció 2 1,4-addíció
19 kérdés: gfigyelhetünk-e Ad E -reakciót alkin szubsztrátok esetén? válasz: igen, bár látszólag furcsa módon a reakció lomhább mint az alkének esetében. Miért? tapasztalat: - egyrészt viszonylag erős savak pl: + N 2 + N 3 - másrészt a keletkező karbokation (pl. vinil kation 2 = + ) sokkal kevésbé stabilis mint telített analógja: alkenil karbokation (labilis) 2 2 alkil karbokation (kevésbé labilis) - a addíció akár félúton leállítható, mivel a második addíciója elektronszerkezeti és térbeli okok miatt lassabb. Markovnyikov
20 IV. Nukleofil addíció Addíció = kettős kötésre a = rendszerek jellegzetesen Ad E reakcióban vesznek részt. kérdés: gfigyelhetünk-e Ad N -reakciót alkének esetében? válasz: igen, ha például a = rendszer tartalmaz konjugált helyzetben egy elektronszívó csoportot, pl: N Az így kapott, cianoetilén illetve karboniletilén szerkezetek pozitív polaritású etilén része Ad N reakcióban vehet részt. 1. példa: akrilnitril alkoholízise: más nukleofilekkel is megy az addíció ( 2, 2 S, N 2 ) δ+ δ- 2 N megjegyzés: 2 N 2 proton vándorlás 2 a keletkező bipoláris köztitermék egy N vagy N intramolekuláris protontranszferrel stabilizálódik. -a nukleofil a pozitívabb (a szubsztituálatlan sp 2 -es) szénatomra támad. -a nitrilcsoport látszólag nem vesz részt a reakcióban. -ha bázis van jelen akkor a reakció gyorsabb, mivel az -ból a lényegesen jobb nukleofil képződik. N proton vándorlás N
21 2. példa: karboniletilén rendszer Ad N -reakciói : a karbonil csoport közvetlenül is reagál nukleofilekkel (lásd később) most viszont mint elektronszívó csoportot tárgyaljuk. több nukleofil is szóba jöhet (pl. -ból a bromidion, Grignard-reagensből az alkil- vagy aril-rész: 2.1. példa alkil-alkenil-keton reakciója hidrogén-bromiddal: 4-metilpent-3-én-2-on δ+ δ A B stabilabb B 2 enol 2 megjegyzés: a nyitó protonálódási lépés során (amely tekinthető akár Ad E -nak is) kialakul az alkenil-enol kation. A kation két felírt határszerkezete közül a B a stabilisabb a két -csoport elektronküldő hatása miatt. Ezért az utóbbin mutatjuk be a nukleofil ( ) hatását. A záró lépés egy keto-enol tautomerizáció. a nukleofil a karbonil szénre is támadhat, de az így kapott termék labilisabb és visszaalakul keton kérdés: mi a helyzet ha a kiindulási keton helyett aldehid vagy karbonsav szerepel? válasz: a reakció így is megy, de karbonsav esetén lomhább a reakció (uckner I/1. 653)
22 2.2. példa alkil-alkenil-keton reakciója Grignard reagenssel: más fémorganikus reagenssel is megy az addíció (Li, 2 uli,..) - + PhMg metil-2-f enilpent-3-én-2-olát anion Ph 2 Mg [F/3-21G] +5,56 kcal/mol 2 Ph 2 Mg 1,2-addicó (karboniladdició) - + PhMg Ph 2 Mg 4-metil-4-f enilpent-2-én-2-olát anion 2 Ph 2 Ph Mg + 2 1,4-addicó(alkénaddició) ami f ormailag egy 1,2-addició megjegyzés: két termék lehetséges: az 1,2 addició és az 1,4 addició termékei leírás: a nukleofil (Ph δ- ) vagy a karbonil-szénen vagy az alkén ( stabilisabb ) szenén támad. A kapott ionos termékek (1,2 vagy 1,4 adduktok) protikus közegben enolt eredményez, amely 1,4 addukt esetében tautomerizálódhat. fontos eredmény: egy - kötést hoztunk kíméletesen létre!
23 kérdés: gfigyelhetünk-e Ad N -reakciót = szubsztrát esetén? válasz: igen és ez a nukleofil addíció igen fontos (lásd később)! kérdés: gfigyelhetünk Ad E -reakciót = szubsztrát esetén, ugyanis a kettős kötés polarizált: δ+ δ lehetőségek: δ+ δ E δ+ δ Nu E elektrofil támadás marginális jelentõségû E Nu nukleofil támadás nagyon fontos Nu egy fontos példa: nukleofil addíció savkatalízis esetén: itt az első lépés az egy elektrofil addíció avagy protonálás: δ+ δ - még egy fontos példa: nukleofil addíció enyhén savanyú közegben (optimális p-n) : itt már az első lépés a nukleofil addíció δ+ δ
24 Addíció = (karbonil) csoportra kérdés: milyen szerepe van az 1 2 = molekulában 1 és 2 méretének? 1. válasz: az elektronikus hatás jelentősen befolyásolja a reakciót δ+ δ- δ+ δ- δ+ δ- 2. válasz: a sztérikus hatás jelentősen befolyásolja a reakciót EPS töltés δ+ δ- Nu Nu Nu planáris tetraéderes következmény: több és nagyobb alkilcsoport nehezíti a nukleofil hozzáférését valamint csökkenti a karbonil szén pozitivitását, azaz nehezedik a reakció. 1. példa: víz addíciója formaldehidre, acetaldehidre, dimetil-ketonra (aceton) δ+ δ
25 megjegyzés: a aromás, akkor tovább lassul a reakció pl: benzaldehid lomhább mint az acetaldehid magyarázat: az aromás csoport további delokalizációs lehetőséget biztosít a karbonil szén pozitív töltésének (nehezítve ezzel a Nu helyzetét): 2,4- helyzetben elektronszívó csoport tovább fokozza a delokalizációt, s így tovább lassítja az eredeti reakciót. kérdés: hogyan bizonyítható hogy még az aceton esetében is egy egyensúlyi reakcióról van szó, noha látszólag nem is történik reakció? módszer: ban vizsgáljuk az egyensúlyt δ+ δ válasz: a geminális diol (hidrát) bomlása során közel azonos valószínűséggel távozik az vagy az szubsztituens. Lévén hogy molárisan sokkal több víz, mint aceton van a rendszerben a 2 = 18 feldúsul, amely az egyensúly bizonyítéka. a dúsulás p=7 esetén lassú, ám savas p-n pillanatszerű.
26 kérdés: hogyan bizonyítjuk a hidrát formát? válasz: tipikusan I spektroszkópiával (pl. acetaldehid) speciális esetben akár izolálható is a hidrát forma: δ- δ+ δ+ Ph δ- δ+ Ph δ- 1,3-difenilpropán-1,2,3-trion l l l triklóracetaldehid klorál (olaj) + 2 magyarázat: az extra stabilitás szerkezeti magyarázata a hidrogén kötésben rejlik kloralhidrát konformációs tulajdonságai: + 2 δ+ δ+ δ- l δ+ Ph δ- l l δ- δ- δ+ Ph δ+ δ+ triklóracetaldehid-hidrát klorálhidrát (kristályos anyag) [F/3-21G] +0,3 kcal/mol bifurkációs -híd két független -híd
27 2. példa: alkoholok addíciója = karbonilra δ+ δ- Et mivel az alkoholok gyengébb nukleofilek (bázisok) mint a víz, ezért lomhább a reakció: Et Et Et félacetál pk b 2 15,7 16,0 Et 16,4 gyűrűs félacetálok (aldózok és ketózok piranóz és furanóz gyűrűi) 2 D-glükóz o fent D-glükóz lent 2 D-glükóz 2 β D-glükóz 5 -körüli elf orgatás gyûrûs alak pref ormálása intramolekuláris f élacetál képződés gyűrűs és a nyílt forma egyensúlyáról van szó: mutarotáció 2 β D-glükóz piranóz forma 2 D-glükóz aldehido f orma 2 α D-glükóz piranóz forma a β-d-glükóz piranóz gyűrűs szerkezetének különböző ábrázolása 2 2 aworth Böeseken képlet síkalkat impresszió eeves képlet
28 kérdés: csak egy molekula alkohol tud a = csoportra addícionálódni? válasz: nem, savas (l gáz) és vízmentes közegben a félacetálból acetál lesz: Et félacetál l gáz - 2 Et Et Et Et Et Et Et - Et Et acetál Et megjegyzés: ugyanez a reakció ketonok esetében lassabb mint aldehideknél. magyarázat: a kulcsfontosságú határszerkezetben a karbokation ketonok esetében kevésbé pozitív az alkil csoportok elektronküldő hatása miatt. összefoglaló egyenlet: + 2 Et (Et) aldehid vagy keton acetál az egyensúly eltolható az acetál irányba ha nagy moláris feleslegben használjuk az alkoholt (pl. oldószerként), vagy kidesztilláljuk a vizet. kérdés: mire használható az acetál képződés reverzibilis volta? válasz: védőcsoportként való alkalmazásra. egy aldehid érzékeny pl. oxidációra redukcióra, míg az acetál nem! (Et) Et sok víz megoldás: elkészítjük az acetált, majd elhidrolizáljuk enyhén savas közegben. az acetálok bázisos közegben stabilak.
29 3. példa: tiolok addíciója = csoportra mivel a tiol erősebb nukleofil mint a megfelelő alkohol a tiofélacetál és tioacetál képződés gyorsabb + 2 EtS (SEt) megjegyzés: a jobb nukleofil jelleg miatt jól megy ketonokkal is a reakció 2. megjegyzés: nehezebben hidrolizálnak a tioacetálok mint az acetálok megoldás: nem egyensúlyi reakcióval távolítjuk el a védőcsoportot: (SEt) /gl 2 + g(set) l tioacetál higany-klorid aldehid vagy keton higany-bisz(etil-szulfid) 4. példa: hidrogén addíciója = csoportra hidridion ( ) -on keresztül megy a reakció. ( a 2 heterolitikus bomlásából levezethető anion, amely jó nukleofil. Egyszerű hirdidek [pl. Na + ] túl reaktívak ezért helyettük komplex hidridek [pl. Li + Al 4, Na + B 4 ] használandók.) δ+ δ- Al 3 Al 4 Al 3 2 A Li + Al 4 mind a négy hidrogénje aktívan redukál: 1/4 mol is elég! A komplex hidridek reaktivitása és mechanizmusa igen eltérő és így különböző típusú vegyületek redukciójára kitűnően használhatók.
30 5. példa: hidrogén-cianid (N) addíciója = csoportra ez volt a legelső szerves reakció amelynek mechanizmusát kinetikai módszerekkel felderítették (Lapworth 1903) uckner I/1 526 N (kéksav, megtalálható pl. keserűmandulában a benzaldehidcianohidrin 6 5 ()N formájában [ennek hidrolizátuma a mandulasav 6 5 () ] δ+ δ- N lassú N N gyors N + N N köztitermék cianohidrin kivitelezés: nem N-t használunk mert az gyenge sav (és kicsi a -N nukleofil koncentrációja), hanem valamilyen sót (pl. NaN, KN)!!ne savanyítsuk meg!! felhasználás: a cianohidrin tovább alakítható: 6. példa: szénnukleofilok addíciója = rendszerekre cél: új szén-szén kötés kialakítása 1. megoldás: karbanion fémorganikus-, Grignard-vegyületekből -MgX δ+ δ- δ- δ+ Mg Mg Mg Grignard reagens / 2 Mg
31 A reakció felhasználása: 1) Mg metanal formaldehid 2) / 2 primer alkohol 1) Mg François Auguste Victor Grignard ( ) Kémiai Nobeldíj: 1912 aldehid 2) / 2 1) Mg 2) / 2 szekunder alkohol keton tercier alkohol az alkoholok tovább alakíthatók: S N reakcióval halogénszármazékká az alkoholokból vízvesztéssel (lásd később) alkén állítható elő: 2. megoldás: karbanion acetilén származékokból a megfelelő alkin () erős bázis (N 2 ) hatására deprotonálódik és visszamarad a szénnukleofil ( ) δ+ δ- N 3 β-hidroxi alkin kivitelezés: cseppfolyós ammóniában (fp. 33,4 o )
32 felhasználás: továbbalakítás a második eljárás részletei: elektrofil addíció (Ad E ) nyitólépés után a Markovnyikov szabály szerint megy a reakció, majd egy keto-enol tautomerizáció zárja a sort.
33 3. megoldás: karbainion karbonilvegyületekből kérdés: híg lúgos/vizes oldatban (a 3, K 2 3 ), szobahőmérsékleten mi történik? válasz: kialakul de el is bomlik a geminális diol, ám ha a karbonil csoporthoz kapcsolódó szén legalább egy hidrogént tartalmaz ([--=, --, -- ] aldehid, keton, karbonsavszármazék), akkor ez az enyhén savas proton disszociábilis (-sav) és az alábbit tapasztaljuk: 2 delokalizálodó karbanion; határszerkezetek -nukleof il -nukleofil kérdés: válasz: mit tapasztalunk például az acetaldehid esetében? β hidroxi-aldehid képződik aldoldimerizáció révén: β α ismét létrhoztunk egy - kötést
34 kérdés: mi történik ha tömény (Na) lúgos/vizes oldatban vezetjük a reakciót, és a karbonil csoporthoz kapcsolódó szénen nincs egyetlen hidrogénatom sem ([Ph-= ]? válasz: más reakció megy végbe (annizzaro- reakció), amelynek során diszproporcionálódást figyelhetünk meg: Ph δ- δ+ Ph δ- δ+ Ph Stanislao annizzaro ( ) Ph + Ph Ph + Ph leírás: az -nukleofillel kiváltott Ad N nyitó lépés után kialakuló geminális diolát, egy hidridion ( - ) átadásával stabilizálódik. A egy Ad N lépésben egy másik aldehid karboniljára megy, s így kialakul az alkohol, és a karbonsav anion végtermék. az -nukleofil ( ) oxidált, a -nukleofil ( ) redukált egy-egy aldehid molekulát: ez a diszproporcionálódás. kérdés: mit tapasztalunk ketonok (pl. aceton) esetében (híg lúgos oldatban)? válasz: mivel a karbonilcsoporthoz kapcsolódó szén itt is tartalmaz hidrogént (hat darabot) ([ ], s ezek is disszociábilsak (-sav), ezért aldoldimerizáció típusú reakciót észlelünk: δ+ δ- 2 2 a reakció jóval lassabb mint a megfelelő aldehid esetében!! 2 2 2
35 kérdés: mit tapasztalunk a karbonilcsoportot tartalmazó észter esetében? (pl. alkoholos oldatban bázis jelenlétében Na + Et ) válasz: a reakció megy (laisen-kondenzáció) magyarázat: mivel a karbonilcsoporthoz kapcsolódó szén itt is tartalmaz hidrogént (3 darabot) ([ ], s ezek is disszociábilsak (-sav), ezért az aldoldimerizációhoz hasonló reakciót észlelünk: uttó reakció: A részletes mechanizmus: leírás: a -nukleofillal kezdeményezett Ad N nyitólépés után az Et (jó távozó csoport) lehasad az sp 3 -as szénről. Az így kialakuló β ketoészter savanyú hidrogénje is lehasad és megkapjuk a acetecetészter anionját, amely enolát formában stabilis. savanyítás után acetecetészter keletkezik. tautomerek
36 7. példa: nitrogén nukleofilok addíciója = csoportra kivitelezés: aceton és hidroxilamin reakciója enyhén savas közegben (p 4-5) leírás: az N-nukleofillal kezdeményezett Ad N nyitólépés ikerionhoz vezet, amelyből belső protontranszfer során kialakul a semleges addukt. Ennek -ja protonálódás után vízformájában távozik és így kapjuk a megfelelő oximot. karbonilcsoportot tartalmazó természetes vegyületek (pl. cukrok) egy sorát izolálták oxim vagy hidrazon formában: N 2 N N 2 -N N-N hidrazin helyett fenilhidrazint (=Ph), vagy 2,4-dinitrofenilhidrazint (= 6 3 (N 2 ) 2 ) használtak, a kapott szilárd termék azonosításra alkalmas.
37 Addíció X (karbonsavszármazékokra) kérdés: megy-e az Ad N típusú reakció lúgos közegben karbonsavakkal? válasz: a reakció nem megy! magyarázat: az -nukleofil egyben bázis is (pl. ), amely deprotonálja a karbonsavat. A karboxilát anion viszont taszítja a nukleofilt! kérdés: megy-e az Ad N típusú reakció karbonsav-halogenidekkel: l, karbonsav-észterekkel Q, karbonsav-anhidridekkel(q? válasz: a reakció végbemegy már akár a gyenge 2 nukleofillal is: leírás: az -nukleofillal kiváltott Ad N nyitólépés után sp 3 -as szénatomot tartalmazó tetraéderes adduktum keletkezik, amelyről a kloridion mint jó távozó csoport lehasad. Protonvesztés után karbonsavat kapunk, amely viszont már nem reagál ilyen körülmények között (lásd fent). minden azon áll vagy bukik, hogy milyen jó a távozó csoport!
38 kérdés: elég jó távozó csoport-e lúgos közegben az alkoholát? válasz: nem, de az észterek lúgos hidrolízise mégis végbemegy: Et Et - Et + Et észter leírás: kvázi irreverzibilis Az alkoxid-karbonsav egyensúly el van tolva az alkohol-karboxilát irányba. + Et karbonsav-észterek savban is hidrolizálnak: δ- δ+ Et Et Et 2 Et észter 2 2 Et - Et - leírás: proton felvétellel kialakul az oxokation, amelynek a karbokation határszerkezete a stabilisabb. Egy vízmolekula megkötése során az Ad N reakció útján kialakul az sp 3 -as szénatomot tartalmazó addukt. A belső protontranszfert követően távozik az alkohol (Et), majd protonvesztés után kapjuk a karbonsavat. a visszafele reakció a közvetlen észteresítés.
39 Addíció nem hanem -N (ciano) csoportra kérdés: megy-e az Ad N típusú reakció karbonsav-nitrilekkel: N? válasz: igen, mivel a karbonil- és a cianocsoportok polaritása hasonló. Az alábbi példa a savas és a lúgos hidrolízist szemlélteti: leírás: savkatalízis esetén protonfelvétellel egy karbokation keletkezik, amelynek szénatomját víz támadja meg egy Ad N -reakció keretében. Az iminohidrin tautomer alakon keresztül savamid képződik. Báziskatalízis során az -nukleofil Ad N nyitólépést kezdeményez. A kialakuló anion vízfelvétele eredményezi a karbonsav-amidot.
IV. Elektrofil addíció
IV. Elektrofil addíció Szerves molekulákban a kettős kötés kimutatására ismert analitikai módszer a 2 -os vagy a KMnO 4 -os reakció. 2 2 Mi történik tehát a brómmolekula addíciója során? 2 2 ciklusos bromónium
Addíció (bevezető gondolatok)
Addíció (bevezető gondolatok) megfigyelés: memo: Mind az elektrofil (E + ), mind a nukleofil (Nu ) addíció elektronban gazdag molekularészen következik be. a -kötés (sp 2 hibridállapotú atomok s+p x +p
Fémorganikus vegyületek
Fémorganikus vegyületek A fémorganikus vegyületek fém-szén kötést tartalmaznak. Ennek polaritása a fém elektropozitivitásának mértékétől függ: az alkálifém-szén kötések erősen polárosak, jelentős százalékban
Szénhidrogének II: Alkének. 2. előadás
Szénhidrogének II: Alkének 2. előadás Általános jellemzők Általános képlet C n H 2n Kevesebb C H kötés van bennük, mint a megfelelő tagszámú alkánokban : telítetlen vegyületek Legalább egy C = C kötést
HALOGÉNEZETT SZÉNHIDROGÉNEK
ALOGÉNEZETT SZÉNIDOGÉNEK Elnevezés Nyíltláncú, telített általános név: halogénalkán alkilhalogenid l 2 l 2 2 l klórmetán klóretán 1klórpropán l metilklorid etilklorid propilklorid 2klórpropán izopropilklorid
OXOVEGYÜLETEK. Levezetés. Elnevezés O CH 2. O R C R' keton. O R C H aldehid. funkciós csoportok O. O CH oxocsoport karbonilcsoport formilcsoport
XVEGYÜLETEK Levezetés 2 aldehid ' keton funkciós csoportok oxocsoport karbonilcsoport formilcsoport Elnevezés Aldehidek nyíltláncú (racionális név: alkánal) 3 2 2 butánal butiraldehid gyűrűs (cikloalkánkarbaldehid)
szabad bázis a szerves fázisban oldódik
1. feladat Oldhatóság 1 2 vízben tel. Na 2 CO 3 oldatban EtOAc/víz elegyben O-védett protonált sóként oldódik a sóból felszabadult a nem oldódó O-védett szabad bázis a felszabadult O-védett szabad bázis
Szénhidrogének III: Alkinok. 3. előadás
Szénhidrogének III: Alkinok 3. előadás Általános jellemzők Általános képlet C n H 2n 2 Kevesebb C H kötés van bennük, mint a megfelelő tagszámú alkánokban : telítetlen vegyületek Legalább egy C C kötést
KARBONIL-VEGY. aldehidek. ketonok O C O. muszkon (pézsmaszarvas)
KABNIL-VEGY VEGYÜLETEK (XVEGYÜLETEK) aldehidek ketonok ' muszkon (pézsmaszarvas) oxocsoport: karbonilcsoport: Elnevezés Aldehidek szénhidrogén neve + al funkciós csoport neve: formil + triviális nevek
H 3 C H + H 3 C C CH 3 -HX X 2
1 Gyökös szubsztitúciók (láncreakciók gázfázisban) - 3 2 2 3 2 3-3 3 Szekunder gyök 3 2 2 2 3 2 2 3 3 2 3 3 Szekunder gyök A propánban az azonos strukturális helyzetű hidrogének és a szekunder hidrogének
OXOVEGYÜLETEK. Levezetés. Elnevezés O CH 2. O R C H aldehid. O R C R' keton. Aldehidek. propán. karbaldehid CH 3 CH 2 CH 2 CH O. butánal butiraldehid
XVEGYÜLETEK Levezetés 2 aldehid ' keton Elnevezés Aldehidek propán karbaldehid 3 2 2 butánal butiraldehid oxo karbonil formil Példák 3 3 2 metanal etanal propanal formaldehid acetaldehid propionaldehid
O 2 R-H 2 C-OH R-H 2 C-O-CH 2 -R R-HC=O
Funkciós csoportok, reakcióik II C 4 C 3 C 2 C 2 R- 2 C- R- 2 C--C 2 -R C 2 R-C= ALKLK, ÉTEREK Faszesz C 3 Toxikus 30ml vakság LD 50 értékek alkoholokra patkányokban LD 50 = A populáció 50%-ának elhullásához
Helyettesített Szénhidrogének
elyettesített Szénhidrogének 1 alogénezett szénhidrogének 2 3 Alifás halogénvegyületek Szerkezet Kötéstávolság ( ) omolitikus disszociációs energia (kcal/mol) Alkil-F 1,38 116 Alkil-l 1,77 81 Alkil-Br
ALKOHOLOK ÉS SZÁRMAZÉKAIK
ALKLK ÉS SZÁRMAZÉKAIK Levezetés R R alkohol R R R éter Elnevezés Nyíltláncú, telített alkoholok általános név: alkanol alkil-alkohol 2 2 2 metanol etanol propán-1-ol metil-alkohol etil-alkohol propil-alkohol
Helyettesített karbonsavak
elyettesített karbonsavak 1 elyettesített savak alogénezett savak idroxisavak xosavak Dikarbonsavak Aminosavak (és fehérjék, l. Természetes szerves vegyületek) 2 alogénezett savak R az R halogént tartalmaz
Szemináriumi feladatok (alap) I. félév
Szemináriumi feladatok (alap) I. félév I. Szeminárium 1. Az alábbi szerkezet-párok közül melyek reprezentálják valamely molekula, vagy ion rezonancia-szerkezetét? Indokolja válaszát! A/ ( ) 2 ( ) 2 F/
R R C X C X R R X + C H R CH CH R H + BH 2 + Eliminációs reakciók
Eliminációs reakciók Amennyiben egy szénatomhoz távozó csoport kapcsolódik és ugyanazon a szénatomon egy (az ábrákon vel jelölt) bázis által protonként leszakítható hidrogén is található, a nukleofil szubsztitúció
1. KARBONILCSOPORTOT TARTALMAZÓ VEGYÜLETEK
1. KARBILSPRTT TARTALMAZÓ VEGYÜLETEK 1.1. A karbonilcsoport szerkezete A szénsav acilcsoportja a karbonilcsoport: vagy 1. ábra: A karbonilcsoport A karbonilcsoport az alábbi vegyületcsaládokban fordul
Fémorganikus kémia 1
Fémorganikus kémia 1 A fémorganikus kémia tárgya a szerves fémvegyületek előállítása, szerkezetvizsgálata és kémiai reakcióik tanulmányozása A fémorganikus kémia fejlődése 1760 Cadet bisz(dimetil-arzén(iii))-oxid
1. KARBONILCSOPORTOT TARTALMAZÓ VEGYÜLETEK
1. KARBILSPRTT TARTALMAZÓ VEGYÜLETEK 1.1. A karbonilcsoport szerkezete A szénsav acilcsoportja a karbonilcsoport: vagy 1. ábra: A karbonilcsoport A karbonilcsoport az alábbi vegyületcsaládokban fordul
Bevezetés a biokémiába fogorvostan hallgatóknak Munkafüzet 4. hét
Bevezetés a biokémiába fogorvostan hallgatóknak Munkafüzet 4. hét Szerves kémia ismétlése, a szerves kémiai ismeretek gyakorlása a biokémiához Írták: Agócs Attila, Berente Zoltán, Gulyás Gergely, Jakus
R nem hidrogén, hanem pl. alkilcsoport
1 Minimumkövetelmények C 4 metán C 3 - metilcsoport C 3 C 3 C 3 metil kation metilgyök metil anion C 3 -C 3 C 3 -C 2 - C 3 -C 2 C 3 -C 2 C 3 -C 2 C 2 5 - C 2 5 C 2 5 C 2 5 etán etilcsoport etil kation
Részletes tematika: I. Félév: 1. Hét (4 óra): 2. hét (4 óra): 3. hét (4 óra): 4. hét (4 óra):
Részletes tematika: I. Félév: 1. Hét (4 óra): Szerves Vegyületek Szerkezete. Kötéselmélet Lewis kötéselmélet; atompálya, molekulapálya; molekulapálya elmélet; átlapolódás, orbitálok hibridizációja; molekulák
Aromás: 1, 3, 5, 6, 8, 9, 10, 11, 13, (14) Az azulén (14) szemiaromás rendszert alkot, mindkét választ (aromás, nem aromás) elfogadtuk.
1. feladat Aromás: 1, 3, 5, 6, 8, 9, 10, 11, 13, (14) Az azulén (14) szemiaromás rendszert alkot, mindkét választ (aromás, nem aromás) elfogadtuk. 2. feladat Etil-metil-keton (bután-2-on) Jelek hozzárendelése:
Aldehidek, ketonok és kinonok
Aldehidek, ketonok és kinonok 3 3 3 innamomum camphora Agócs Attila rvosi Kémia 2018 kámfor Tanulási célok: Az oxovegyületek elnevezése és fizikai tulajdonságai Nukleofil addíció, az oxovegyületek legfontosabb
R nem hidrogén, hanem pl. alkilcsoport
1 Minimumkövetelmények C 4 metán C 3 - metilcsoport C 3 C 3 C 3 metil kation metilgyök metil anion C 3 -C 3 C 3 -C 2 - C 3 -C 2 C 3 -C 2 C 3 -C 2 C 2 5 - C 2 5 C 2 5 C 2 5 etán etilcsoport etil kation
Aromás vegyületek II. 4. előadás
Aromás vegyületek II. 4. előadás Szubsztituensek irányító hatása Egy következő elektrofil hova épül be orto, meta, para pozíció CH 3 CH 3 CH 3 CH 3 E E E orto (1,2) meta (1,3) para (1,4) Szubsztituensek
Szemináriumi feladatok (alap) I. félév
Szemináriumi feladatok (alap) I. félév I. Szeminárium 1. Az alábbi szerkezet-párok közül melyek reprezentálják valamely molekula, vagy ion rezonancia-szerkezetét? Indokolja válaszát! A/ ( ) 2 ( ) 2 F/
O S O. a konfiguráció nem változik O C CH 3 O
() ()-butanol [α] D = a konfiguráció nem változik () 6 4 ()--butil-tozilát [α] D = 1 a konfiguráció nem változik inverzió Na () () ()--butil-acetát [α] D = 7 ()--butil-acetát [α] D = - 7 1. Feladat: Milyen
leírás: típusai: memo:
VI. Bázissal (nukleofillal) -kiváltott elimináció (E) definíció: A molekula két vagy több szubsztituensét úgy távolítjuk el, hogy azok helyére új szubsztituens nem kerül. Két szubsztituens eltávolítása
Laboratóriumi technikus laboratóriumi technikus Drog és toxikológiai
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Kémiai kötések A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Cl + Na Az ionos kötés 1. Cl + - + Na Klór: 1s 2 2s 2 2p 6 3s 2 3p 5 Kloridion: 1s2 2s2 2p6 3s2 3p6 Nátrium: 1s 2 2s
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
szerotonin idegi mûködésben szerpet játszó vegyület
3 2 2 3 2 3 2 3 2 2 3 3 1 amin 1 amin 2 amin 3 amin 2 3 3 2 3 1-aminobután butánamin n-butilamin 2-amino-2-metil-propán 2-metil-2-propánamin tercier-butilamin 1-metilamino-propán -metil-propánamin metil-propilamin
Intra- és intermolekuláris reakciók összehasonlítása
Intra- és intermolekuláris reakciók összehasonlítása Intr a- és inter molekulár is r eakciok összehasonlítása molekulán belüli reakciók molekulák közötti reakciók 5- és 6-tagú gyűrűk könnyen kialakulnak.
Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév
Kémia - 9. évfolyam - I. félév 1. Atom felépítése (elemi részecskék), alaptörvények (elektronszerkezet kiépülésének szabályai). 2. A periódusos rendszer felépítése, periódusok és csoportok jellemzése.
7. Előadás. Alkoholok, éterek. Oxovegyületek.
7. Előadás Alkoholok, éterek. xovegyületek. 22. Alkoholok, fenolok, éterek Faszesz ( 3 ) Toxikus: 30ml vakság LD 50 érték patkányokban LD 50 = A populáció 50%-ának elhullásához szükséges dózis [g/kg] LD
IX. Szénhidrátok - (Polihidroxi-aldehidek és ketonok)
IX Szénhidrátok - (Polihidroxi-aldehidek és ketonok) A szénhidrátok polihidroxi-aldehidek, polihidroxi-ketonok vagy olyan vegyületek, amelyek hidrolízisekor az előbbi vegyületek keletkeznek Növényi és
KARBONSAV-SZÁRMAZÉKOK
KABNSAV-SZÁMAZÉKK Karbonsavszármazékok Karbonsavak H X Karbonsavszármazékok X Halogén Savhalogenid l Alkoxi Észter ' Amino Amid N '' ' Karboxilát Anhidrid Karbonsavhalogenidek Tulajdonságok: - színtelen,
Elektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
Beszélgetés a szerves kémia eméleti alapjairól IV.
Beszélgetés a szerves kémia eméleti alapjairól IV. Az alkének elektrofil addiciós reakciói Az alkénekben levő kettős kötés pi-elekronrendszerének jellegzetes térbeli orientáltsága kifejezetten nukleofil
Szerves Kémia. Farmakológus szakasszisztens képzés 2012/2013 ősz
Szerves Kémia Farmakológus szakasszisztens képzés 2012/2013 ősz Általános tudnivalók Kele Péter (ELTE Északi tömb, Kémia, 646. szoba) kelep@elte.hu sütörtök 17 15 19 45 Szeptember 27. elmarad Őszi szünet
10. Kémiai reakcióképesség
4. Előadás Kémiai reakciók leírása. Kémiai reakciók feltételei. Termokémia. A szerves kémiai reakciómechanizmusok felosztása és terminológiája. Sav-bázis reakció. Szubsztitució. Addició és elimináció.
KARBONSAVAK. A) Nyílt láncú telített monokarbonsavak (zsírsavak) O OH. karboxilcsoport. Példák. pl. metánsav, etánsav, propánsav...
KABNSAVAK karboxilcsoport Példák A) Nyílt láncú telített monokarbonsavak (zsírsavak) "alkánsav" pl. metánsav, etánsav, propánsav... (nem használjuk) omológ sor hangyasav 3 2 2 2 valeriánsav 3 ecetsav 3
Heterociklusos vegyületek
Szerves kémia A gyűrű felépítésében más atom (szénatomon kívül!), ún. HETEROATOM is részt vesz. A gyűrűt alkotó heteroatomként leggyakrabban a nitrogén, oxigén, kén szerepel, (de ismerünk arzént, szilíciumot,
Nitrogéntartalmú szerves vegyületek. 6. előadás
Nitrogéntartalmú szerves vegyületek 6. előadás Aminok Funkciós csoport: NH 2 (amino csoport) Az ammónia (NH 3 ) származékai Attól függően, hogy hány H-t cserélünk le, kapunk primer, szekundner és tercier
CHO CH 2 H 2 H HO H H O H OH OH OH H
2. Előadás A szénhidrátok kémiai reakciói, szénhidrátszármazékok Áttekintés 1. Redukció 2. xidáció 3. Észter képzés 4. Reakciók a karbonil atomon 4.1. iklusos félacetál képzés 4.2. Reakció N-nukleofillel
1. feladat. Versenyző rajtszáma:
1. feladat / 4 pont Válassza ki, hogy az 1 és 2 anyagok közül melyik az 1,3,4,6-tetra-O-acetil-α-D-glükózamin hidroklorid! Rajzolja fel a kérdésben szereplő molekula szerkezetét, és értelmezze részletesen
Kötések kialakítása - oktett elmélet
Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések
Curie Kémia Emlékverseny 10. évfolyam országos döntő 2018/2019. A feladatok megoldásához csak periódusos rendszer és zsebszámológép használható!
A feladatokat írta: Kódszám: Horváth Balázs, Szeged Lektorálta: 2019. május 11. Széchenyi Gábor, Budapest Curie Kémia Emlékverseny 10. évfolyam országos döntő 2018/2019. A feladatok megoldásához csak periódusos
Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések
Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Pécsi Tudományegyetem Általános Orvostudományi Kar 2010-2011. 1 A vegyületekben az atomokat kémiai kötésnek nevezett erők tartják össze. Az elektronok
MECHANIZMUSGYŰJTEMÉNY a Szerves kémia I. előadáshoz
Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Szerves Kémia és Technológia Tanszék MECHANIZMUSGYŰJTEMÉNY a Szerves kémia I. előadáshoz Készítette: Kormos Attila Lektorálta:
Beszélgetés a szerves kémia elméleti
Beszélgetés a szerves kémia elméleti alapjairól V. Az alkének eiektrofil addiciójának irányítottsága: Markovnikov szabály vagy anti-markovnyikov "szabály"? 1. kérdés Mint elméleti, mint gyakorlati szempontból
6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.
6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen
KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004.
KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004. JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden megítélt
Szerves Kémia II. Dr. Patonay Tamás egyetemi tanár E 405 Tel:
Szerves Kémia II. TKBE0312 Előfeltétel: TKBE03 1 Szerves kémia I. Előadás: 2 óra/hét Dr. Patonay Tamás egyetemi tanár E 405 Tel: 22464 tpatonay@puma.unideb.hu A 2010/11. tanév tavaszi félévében az előadás
KÉMIA FELVÉTELI DOLGOZAT
KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74
A szervetlen vegyületek
5. Vegyületek osztályozása, egyszerű szerves funkciós csoportok, fontosabb szervetlen és szerves vegyületek nagyon sokféle vegyület van, többféle csoportosítás lehet hasznos szervetlen vegyületek - szerves
Szemináriumi feladatok (kiegészítés) I. félév
Szemináriumi feladatok (kiegészítés) I. félév I. Szeminárium 1. Rajzolja fel az alábbi ion π-molekulapályáit: N ány centrumú a delokalizált rendszer? ány elektron építi fel a delokalizált rendszert? ány
4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.
4. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:
SZERVES KÉMIAI REAKCIÓEGYENLETEK
SZERVES KÉMIAI REAKCIÓEGYENLETEK Budapesti Reáltanoda Fontos! Sok reakcióegyenlet több témakörhöz is hozzátartozik. Szögletes zárójel jelzi a reakciót, ami más témakörnél található meg. Alkánok, cikloalkánok
A kémiatanári zárószigorlat tételsora
1. A. tétel A kémiatanári zárószigorlat tételsora Kémiai alapfogalmak: Atom- és molekulatömeg, anyagmennyiség, elemek és vegyületek elnevezése, jelölése. Kémiai egyenlet, sztöchiometria. A víz jelentősége
2. SZÉNSAVSZÁRMAZÉKOK. Szénsav: H 2 CO 3 Vízvesztéssel szén-dioxiddá alakul, a szén-dioxid a szénsav valódi anhidridje.
2. ZÉAVZÁMAZÉKK 2.1. zénsavszármazékok szerkezete, elnevezése zénsav: 2 3 Vízvesztéssel szén-dioxiddá alakul, a szén-dioxid a szénsav valódi anhidridje. 2 + 1. ábra: A szénsav szén-dioxid egyensúly A szén-dioxid
Beszélgetés a szerves kémia elméleti alapjairól III.
Beszélgetés a szerves kémia elméleti alapjairól III. Csökkentett vagy fokozott reakciókészségű halogénszármazékok? A középiskolai szerves kémiai tananyag alapján, a telített alkil-halogenidek reakcióképes
Szerves Kémia II. 2016/17
Szerves Kémia II. 2016/17 TKBE0301 és TKBE0312 4 kr Előfeltétel: TKBE0301 Szerves kémia I. Előadás: 2 óra/hét Dr. Juhász László egyetemi docens E 409 Tel: 22464 juhasz.laszlo@science.unideb.hu A 2016/17.
1. feladat Összesen: 8 pont. 2. feladat Összesen: 12 pont. 3. feladat Összesen: 14 pont. 4. feladat Összesen: 15 pont
1. feladat Összesen: 8 pont Az autók légzsákját ütközéskor a nátrium-azid bomlásakor keletkező nitrogéngáz tölti fel. A folyamat a következő reakcióegyenlet szerint játszódik le: 2 NaN 3(s) 2 Na (s) +
Helyettesített Szénhidrogének
elyettesített Szénhidrogének alogénezett szénhidrogének Alifás halogénvegyületek Szerkezet Kötéstávolság ( ) omolitikus disszociációs energia (kcal/mol) Alkil-F 1,38 116 Alkil-l 1,77 81 Alkil-Br 1,91 66
Összefoglaló előadás. Sav-bázis elmélet
Összefoglaló előadás Sav-bázis elmélet SAV-BÁZIS TULAJDNSÁGKAT BEFLYÁSLÓ TÉNYEZŐK Elméletek: 1. Brönsted Lowry elmélet: sav - + donor; bázis - + akceptor; Konjugálódó (vagy korrespondáló) sav-bázis pár:
Louis Camille Maillard ( )
Maillard reakció Louis Camille Maillard (1878-1936) 1913-ban, PhD. tanulmányaiban közölte le, hogy ha egy cukor és amin elegyét hevítjük, egy idő után mindkét reakciópartner eltűnik az oldatból és új termékek
AROMÁS SZÉNHIDROGÉNEK
AROMÁS SZÉNIDROGÉNK lnevezés C 3 C 3 3 C C C 3 C 3 C C 2 benzol toluol xilol (o, m, p) kumol sztirol naftalin antracén fenantrén Csoportnevek C 3 C 2 fenil fenilén (o,m,p) tolil (o,m,p) benzil 1-naftil
Bevezetés. Szénvegyületek kémiája Organogén elemek (C, H, O, N) Életerő (vis vitalis)
Szerves kémia Fontos tudnivalók Tárgy neve: Kémia alapjai I. Neptun kód: SBANKE1050 Előadó: Borzsák István C121 szerda 11-12 e-mail: iborzsak@ttk.nyme.hu http://www.bdf.hu/ttk/fldi/iborzsak/dokumentumok/
A tételek: Elméleti témakörök. Általános kémia
A tételek: Elméleti témakörök Általános kémia 1. Az atomok szerkezete az atom alkotórészei, az elemi részecskék és jellemzésük a rendszám és a tömegszám, az izotópok, példával az elektronszerkezet kiépülésének
Savak bázisok. Csonka Gábor Általános Kémia: 7. Savak és bázisok Dia 1 /43
Savak bázisok 12-1 Az Arrhenius elmélet röviden 12-2 Brønsted-Lowry elmélet 12-3 A víz ionizációja és a p skála 12-4 Erős savak és bázisok 12-5 Gyenge savak és bázisok 12-6 Több bázisú savak 12-7 Ionok
A kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált
Szerves kémiai szintézismódszerek
Szerves kémiai szintézismódszerek 7. Átrendez dések. Szén-nitrogén kötések kialakítása. Kovács Lajos 1 Átrendez dések elektronhiányos szénre 1. A Wagner-erwein-átrendez ı dés 3 C 3 C 3 C 1 3 C 3 C 3 C
Javító vizsga követelményei kémia tantárgyból augusztus osztály
Javító vizsga követelményei kémia tantárgyból 2019. augusztus 29. 10. osztály I. Szerves kémia-bevezetés 1. A szerves kémia kialakulása, tárgya (Tk. 64-65 old.) - Lavoisier: organogén elemek (C, H, O,
1. feladat Összesen 15 pont. 2. feladat Összesen 6 pont. 3. feladat Összesen 6 pont. 4. feladat Összesen 7 pont
1. feladat Összesen 15 pont Egy lombikba 60 g jégecetet és 46 g abszolút etanolt öntöttünk. A) Számítsa ki a kiindulási anyagmennyiségeket! B) Határozza meg az egyensúlyi elegy összetételét móltörtben
Tartalmi követelmények kémia tantárgyból az érettségin K Ö Z É P S Z I N T
1. Általános kémia Atomok és a belőlük származtatható ionok Molekulák és összetett ionok Halmazok A kémiai reakciók A kémiai reakciók jelölése Termokémia Reakciókinetika Kémiai egyensúly Reakciótípusok
Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion
A szervetlen vegyületek
5. Vegyületek osztályozása, egyszerű szerves funkciós csoportok, fontosabb szervetlen és szerves vegyületek nagyon sokféle vegyület van, többféle csoportosítás lehet hasznos szervetlen vegyületek - szerves
Név: Pontszám: / 3 pont. 1. feladat Adja meg a hiányzó vegyületek szerkezeti képletét!
Név: Pontszám: / 3 pont 1. feladat Adja meg a hiányzó vegyületek szerkezeti képletét! Név: Pontszám: / 4 pont 2. feladat Az ábrán látható vegyületnek a) hány sztereoizomerje, b) hány enantiomerje van?
Szerves Kémiai Problémamegoldó Verseny
Szerves Kémiai Problémamegoldó Verseny 2014. április 25. Név: E-mail cím: Egyetem: Szak: Képzési szint: Évfolyam: Pontszám: Név: Pontszám: / 3 pont 1. feladat Adja meg a hiányzó vegyületek szerkezeti képletét!
Oxovegyületek. Nevezéktan. Aldehidek
Ketonok láncon belül oxocsoportot tartalmaznak xovegyületek karbonilcsoportot tartalmaznak Aldehidek láncvégi - csoport (v. oldalláncban) -atomhoz kapcsolódik a) szubsztitúciós nómenklatúra Nevezéktan
Szerves kémiai szintézismódszerek
Szerves kémiai szintézismódszerek 3. Alifás szén-szén egyszeres kötések kialakítása báziskatalizált reakciókban Kovács Lajos 1 C-H savak Savas hidrogént tartalmazó szerves vegyületek H H 2 C α C -H H 2
Kémia fogorvostan hallgatóknak Munkafüzet 14. hét
Kémia fogorvostan hallgatóknak Munkafüzet 14. hét Szerves anyagok vizsgálata III. (177-180. o.) Írták: Agócs Attila, Berente Zoltán, Gulyás Gergely, Jakus Péter, Lóránd Tamás, Nagy Veronika, Radó-Turcsi
KARBONSAVSZÁRMAZÉKOK
KABNSAVSZÁMAZÉKK Levezetés Kémiai rokonság 2 2 2 N 3 N A karbonsavszármazékok típusai l karbonsavklorid karbonsavanhidrid karbonsavészter N N 2 karbonsavnitril karbonsavamid Példák karbonsavkloridok 3
Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol
Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések
Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások I. FELADATSOR 1. C 6. C 11. E 16. C 2. D 7. B 12. E 17. C 3. B 8. C 13. D 18. C 4. D
Szerves kémia Fontosabb vegyülettípusok
Fontosabb vegyülettípusok Szénhidrogének: alifás telített (metán, etán, propán, bután, ) alifás telítetlen (etén, etin, ) aromás (benzol, toluol, naftalin) Oxigéntartalmú vegyületek: hidroxivegyületek
H H 2. ábra: A diazometán kötésszerkezete σ-kötések: fekete; π z -kötés: kék, π y -kötés: piros sp-hibrid magányos elektronpár: rózsaszín
3. DIAZ- ÉS DIAZÓIUMSPRTT TARTALMAZÓ VEGYÜLETEK 3.1. A diazometán A diazometán ( 2 2 ) egy erősen mérgező (rákkeltő), robbanékony gázhalmazállapotú anyag. 1. ábra: A diazometán határszerkezetei A diazometán
Reakciókinetika és katalízis
Reakciókinetika és katalízis 2. előadás: 1/18 Kinetika: Kísérletekkel megállapított sebességi egyenlet(ek). A kémiai reakció makroszkópikus, fenomenológikus jellemzése. 1 Mechanizmus: Az elemi lépések
3. A kémiai kötés. Kémiai kölcsönhatás
3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes
Szerves Kémiai Problémamegoldó Verseny
Szerves Kémiai Problémamegoldó Verseny 2015. április 24. Név: E-mail cím: Egyetem: Szak: Képzési szint: Évfolyam: Pontszám: Név: Pontszám: / 3 pont 1. feladat Egy C 4 H 10 O 3 összegképletű vegyület 0,1776
Energiaminimum- elve
Energiaminimum- elve Minden rendszer arra törekszi, hogy stabil állapotba kerüljön. Milyen kapcsolat van a stabil állapot, és az adott állapot energiája között? Energiaminimum elve Energiaminimum- elve
Közös elektronpár létrehozása
Kémiai reakciók 10. hét a reagáló részecskék között közös elektronpár létrehozása valósul meg sav-bázis reakciók komplexképződés elektronátadás és átvétel történik redoxi reakciók Közös elektronpár létrehozása
VI. Bázissal (nukleofillal) kiváltott elimináció ( definíció: távolítjuk el nem kerül leírás: szomszédos hidrogénatom elvesztésével indul típusai:
VI. Bázissal (nukleofillal) kiváltott elimináció (E) definíció: Az elimináció során egy molekula két, vagy több szubsztituensét úgy távolítjuk el, hogy azok helyére új szubsztituens nem kerül. A két szubsztituens
A kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált
Kémiai reakciók. Közös elektronpár létrehozása. Általános és szervetlen kémia 10. hét. Elızı héten elsajátítottuk, hogy.
Általános és szervetlen kémia 10. hét Elızı héten elsajátítottuk, hogy a kémiai reakciókat hogyan lehet csoportosítani milyen kinetikai összefüggések érvényesek Mai témakörök a közös elektronpár létrehozásával
KÉMIA PÓTÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK június 6. du.
KÉMIA PÓTÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2003. június 6. du. I. Ha most érettségizik, az I. feladat kidolgozását karbonlapon végezze el! Figyelem! A kidolgozáskor tömör és lényegretörő megfogalmazásra
Zárójelentés a. című pályázatról ( , )
Zárójelentés a Reakciósorozatokban érvényesülő szubsztituens és oldószerhatás elemzése aktiválási paraméterekből leszármaztatott reakciókonstansok alkalmazásával című pályázatról (2006-2009, 060889) A