*M M* Osnovna raven Alapszint MATEMATIKA
|
|
- Antal Barna
- 6 évvel ezelőtt
- Látták:
Átírás
1 Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Torek, 8. avgust 007 / 10 minut 007. augusztus 8., kedd / 10 perc JESENSKI ROK ŐSZI IDŐSZAK Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese s seboj nalivno pero ali kemični svinčnik, svinčnik, radirko, računalo brez grafičnega zaslona in brez možnosti računanja s simboli, šestilo in dva trikotnika, lahko tudi ravnilo. Kandidat dobi dva ocenjevalna obrazca in dva konceptna lista. Engedélyezett segédeszközök: a jelölt töltőtollat vagy golyóstollat, ceruzát, radírt, csak műveleteket végző zsebszámológépet, körzőt és háromszögvonalzót vagy vonalzót hoz magával. A jelöt két értékelőlapot és két vázlatlapot is kap. SPLOŠNA MATURA ÁLTALÁNOS ÉRETTSÉGI VIZSGA Navodila kandidatu so na naslednji strani. A jelöltnek szóló útmutató a következő oldalon olvasható. Ta pola ima 0 strani, od tega 4 prazne. A feladatlap terjedelme 0 oldal, ebből 4 üres. RIC 007
2 M M NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne izpu{~ajte ni~esar! Ne obra~ajte strani in ne za~enjajte re{evati nalog, dokler Vam nadzorni u~itelj tega ne dovoli. Prilepite kodo oziroma vpi{ite svojo {ifro (v okvir~ek desno zgoraj na prvi strani in na ocenjevalna obrazca). V tej izpitni poli je 1 nalog, re{ujete vse, in sicer na strani, kjer je besedilo naloge. Ocenjevalci ne bodo pregledovali konceptnih listov. Pi{ite z nalivnim peresom ali s kemi~nim svin~nikom. ^e se zmotite, napisano pre~rtajte. Grafe funkcij ri{ite s svin~nikom. Pazite, da bo Va{ izdelek pregleden in ~itljiv. Pri re{evanju nalog mora biti jasno in korektno predstavljena pot do rezultata z vmesnimi ra~uni in sklepi. Na strani 3 in 4 je standardna zbirka zahtevnej{ih formul, ki jih ni treba znati na pamet. Morda si boste s katero med njimi pomagali. Re{itev v izpitni poli ni dovoljeno zapisovati z navadnim svin~nikom. ^e ste nalogo re{evali na ve~ na~inov, nedvoumno ozna~ite, katero re{itev naj ocenjevalec to~kuje. Vsako nalogo skrbno preberite. Re{ujte premi{ljeno. Zaupajte vase in v svoje sposobnosti. [tevilo to~k, ki jih lahko dose`ete, je vam veliko uspeha. ÚTMUTATÓ A JELÖLTNEK Figyelmesen olvassa el ezt az útmutatót. Semmit se hagyjon ki. Ne lapozzon, és ne kezdjen a feladatok megoldásába, amíg ezt a felügyelő tanár nem engedélyezi. Ragassza vagy írja be kódszámát (a feladatlap első oldalának jobb felső sarkában levő keretbe és az értékelőlapokra). Ez a feladatlap 1 feladatot tartalmaz. Mindegyiket oldja meg, éspedig azon az oldalon, ahol a feladat található. Az értékelők a vázlatlapokat nem nézik át. Töltőtollal vagy golyóstollal írjon. A rossz válaszait húzza át. A függvénygrafikonokat ceruzával rajzolja be. Ügyeljen arra, hogy munkája áttekinthető és olvasható legyen. A feladat megoldásának világosan és korrekten kell mutatnia az eredményhez vezető utat, a köztes számításokkal és következtetésekkel együtt. A 3. és 4. oldalon található azoknak a képleteknek a standard gyűjteménye, amelyeket nem kell fejből tudnia, de egy részük talán segítségére lesz a feladatok megoldásában. A feladatlapra nem szabad ceruzával írni a megoldásokat. Ha a feladatot többféleképpen oldotta meg, egyértelműen jelölje, melyik megoldást értékeljék. Figyelmesen olvassa el mindegyik feladatot, majd megfontoltan oldja meg őket. Bízzon önmagában és képességeiben. Összesen 80 pont érhető el. Eredményes munkát kívánunk!
3 M M 3 Formule n+ 1 n+ 1 n n 1 n n n 1 n a + b = ( a + b)( a a b + a b... + a b ab + b ) Evklidov in višinski izrek v pravokotnem trikotniku: a = ca 1, b = cb 1, vc = ab 11 Polmera trikotniku očrtanega in včrtanega kroga: R = abc 4S, r = S s, s = a + b + c Kotne funkcije polovičnih kotov: sin x =± 1 cosx ; cos x =± 1+ cosx ; tan x = sin x 1+ cosx Kotne funkcije trojnih kotov: sin 3x = 3 sin x 4 sin 3 x, cos 3x = 4 cos3 x 3 cos x Adicijski izrek: sin( x + y) = sin x cos y + cos x sin y cos( x + y) = cos x cos y sin x sin y tan x + tan y tan( x + y) = 1 tanx tany Faktorizacija: x + y x y x + y x y sin x + sin y = sin cos, sin x sin y = cos sin x + y x y x + y x y cos x + cosy = cos cos, cos x cos y = sin sin sin( x ± y) sin ( y ± x) tan x ± tan y =, cotx ± coty = cos x cos y sin x sin y Razčlenitev produkta kotnih funkcij: sin x sin y = 1 [ cos( x + y) cos( x y) ] cos x cos y = 1 [ cos( x + y) + cos( x y) ] sin x cos y = 1 [ sin ( x + y) + sin ( x y) ] Razdalja točke (, 0 0 0) 0 0 (, p) = dt 0 T x y od premice ax + by c = 0 : ax + by c a + b Ploščina trikotnika z oglišči Ax (, y 1 1), B( x, y ), (, 3 3) S = 1 ( x x )( y y ) ( x x )( y y ) Elipsa: e = a b, ε = e a ; a > b Hiperbola: e = a + b, ε = e a, a je realna polos Parabola: p y = px, gorišče G (,0 ) Integrala: dx 1 arc tan x C x + a = a a, dx a x C x y : = arc sin x + C a
4 4 M M Képletek n+ 1 n+ 1 n n 1 n n n 1 n a + b = ( a + b)( a a b + a b... + a b ab + b ) A derékszögű háromszög magasságtétele és befogótétele: a = ca 1, b = cb 1, v c = ab A háromszög köré írt kör és a háromszögbe írt kör sugara: R = abc 4S, r = S s, s = a + b + c A félszögek szögfüggvényei: sin x =± 1 cosx ; cos x =± 1+ cosx ; tg x = sin x 1+ cosx A szög háromszorosának szögfüggvényei: sin 3x = 3 sin x 4 sin 3 x, cos 3x = 4 cos3 x 3 cos x Addíciós tételek: sin( x + y) = sin x cos y + cos x sin y cos( x + y) = cos x cos y sin x sin y tgx + tgy tg( x + y) = 1 tgx tgy Tényezőkre bontás: x + y x y x + y x y sin x + sin y = sin cos, sin x sin y = cos sin x + y x y x + y x y cos x + cosy = cos cos, cos x cos y = sin sin sin( x ± y) sin ( y ± x) tgx ± tgy = cos x cos y, ctgx ± ctgy = sin x sin y A szögfüggvények szorzatának felbontása: sin x sin y = 1 [ cos( x + y) cos( x y) ] cos x cos y = 1 [ cos( x + y) + cos( x y) ] sin x cos y = 1 [ sin ( x + y) + sin ( x y) ] A 0( 0, 0) T x y pont távolsága az ax + by c = 0 egyenestől: 0 0 ( 0, p) = dt ax + by c a + b Az Ax (, y ), B( x, y ), C ( x, y ) csúcsú háromszög területe: S = 1 ( x x1)( y3 y1) ( x3 x1)( y y1) Ellipszis: e = a b, ε = e a ; a > b Hiperbola: e = a + b, ε = e a, az a valós féltengely p =, fókuszpont G (,0) Parabola: y px Integrálok: dx 1 arc tg x a a C x + a = +, dx = arc sin x C a + a x 11
5 M M V koordinatni sistem narišite množico točk T( x, y ), ki ustreza pogojema 1 x 3 in 1 y. Osenčite nastali lik in izračunajte njegovo ploščino. A koordináta-rendszerbe rajzolja be azon T( x, y ) pontok halmazát, amelyek eleget tesznek az 1 x 3 és a 1 y feltételeknek. Satírozza be a kapott síkidomot, és számítsa ki a területét. (7 točk/pont) y x
6 6 M M 0. V enakokrakem trikotniku ABC so dolžine stranic c = AB = 4 cm, a = BC = AC = 6 cm. Izračunajte ploščino trikotnika in kot β = ABC. Zapišite natančno vrednost ploščine, kot β pa zaokrožite na stotinko stopinje. Az ABC egyenlő szárú háromszögben az oldalak hossza c = AB = 4 cm, a = BC = AC = 6 cm. Számítsa ki a háromszög területét és a β = ABC szöget. Írja fel a terület pontos értékét, a β szöget pedig kerekítse századfok pontosságra. (6 točk/pont)
7 M M Izračunajte odvode funkcij: f ( x) = 3 x, g( x) = x sin x, h 1 ( x x ) = +. Odvod funkcije h( x ) 1 x poenostavite. Számítsa ki az f ( x) = 3 x, g( x) = x sin x, h 1 ( x x ) = + függvények deriváltjait. A h( x ) 1 x függvény deriváltját egyszerűsítse. (8 točk/pont)
8 8 M M 04. V kompleksni ravnini narišite sliko kompleksnega števila z = 3i. Koliko je absolutna vrednost tega kompleksnega števila? Izračunajte z in 1 z. A komplex számsíkon rajzolja meg a z = 3i komplex szám ábráját. Mennyi az említett komplex szám abszolút értéke? Számítsa ki: z és 1 z. Im (7 točk/pont) i 0 1 Re
9 M M Graf kvadratne funkcije f ( x) = ax + bx + c poteka skozi točke A( 1, 0), B ( 0, 1) in C ( 1, 5). Izračunajte števila a, b in c ter zapišite predpis funkcije f. Az f ( x) = ax + bx + c másodfokú függvény az A( 1, 0), B ( 0, 1) és C ( 1, 5) pontokon halad át. Számítsa ki az a, b és c számokat, és írja fel az f függvény hozzárendelését. (6 točk/pont)
10 10 M M 06. V dani koordinatni sistem narišite hiperbolo 4x y = 4 (narišite tudi asimptoti). Izračunajte in zapišite presečišči hiperbole in premice y = x + 1. Az adott koordináta-rendszerben rajzolja meg a 4x y = 4 hiperbolát (rajzolja meg az aszimptotáit is). Számítsa ki és írja fel a hiperbola és az y = x + 1 egyenes metszéspontjait. (8 točk/pont) y x
11 M M Rešite enačbo logx ( x + 30) =. Oldja meg a logx ( x + 30) = egyenletet. (5 točk/pont)
12 1 M M 08. V aritmetičnem zaporedju a1, a,, a 4,8... izračunajte a 1, a, a 4, a 671 in vsoto prvih 671 členov. Az a1, a,, a 4,8... számtani sorozatban számítsa ki az a 1, a, a 4, a 671 tagokat, és az első 671 tag összegét. (8 točk/pont)
13 M M 13 π 09. Pokažite, da je za vsak x vrednost izraza sin x + sin ( x ) enaka 1. π Bizonyítsa, hogy minden x esetében a sin x + sin ( x ) kifejezés értéke egyenlő 1-gyel. 4 4 (5 točk/pont)
14 14 M M 10. V posodi so 4 modre in 6 rumenih kroglic. Iz posode na slepo izvlečemo kroglici. Izračunajte verjetnost, da sta tako dobljeni kroglici iste barve. Egy fazékban 4 kék és 6 sárga golyó van. A fazékból találomra golyót húzunk ki. Számítsa ki annak a valószínűségét, hogy a két kihúzott golyó egyenlő színű. (6 točk/pont)
15 M M Dan je vektor a = (,1). Izračunajte točno dolžino vektorja a. Zapišite komponenti vektorja b, če je b = 5 in a b = 10. Adott az a = (,1) vektor. Számítsa ki az a vektor pontos hosszát. Írja fel a b vektor koordinátáit, ha b = 5 és a b = 10. (8 točk/pont)
16 16 M M 1. Število a = 1, 4 zapišite v obliki okrajšanega ulomka. Za dano število a izračunajte vrednost izraza ( 1 1 a ) 1. Rezultat zapišite v obliki okrajšanega ulomka. Nalogo rešite brez uporabe žepnega računala. Az a = 1, 4 számot írja fel rövídített tört alakjában. Az a adott szám esetén számítsa ki az ( 1 1 a ) 1 kifejezés értékét. Az eredményt írja fel rövídített tört alakjában. A feladatot zsebszámológép használata nélkül oldja meg! (6 točk/pont)
17 M M 17 PRAZNA STRAN ÜRES OLDAL
18 18 M M PRAZNA STRAN ÜRES OLDAL
19 M M 19 PRAZNA STRAN ÜRES OLDAL
20 0 M M PRAZNA STRAN ÜRES OLDAL
*M M* Višja raven Emelt szint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M0714011M* Višja raven Emelt szint MATEMATIKA Izpitna pola 1 1. feladatlap Sobota,. junij 007 / 90 minut 007. június.,
*M M* Višja raven Emelt szint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M071401M* Višja raven Emelt szint MATEMATIKA Izpitna pola. feladatlap Sobota,. junij 007 / 90 minut 007. június., szombat
Dr`avni izpitni center. MATEMATIKA Izpitna pola 2 2. feladatlap Vi{ja raven Emelt szint
[ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *M0640M* JESENSKI ROK ŐSZI IDŐSZAK MATEMATIKA Izpitna pola. feladatlap Vi{ja raven Emelt szint Ponedeljek, 8. avgust 006 / 90 minut 006. augusztus
Dr`avni izpitni center. MATEMATIKA Izpitna pola 1 1. feladatlap Vi{ja raven Emelt szint
[ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *M0640M* JESENSI RO ŐSZI IDŐSZA MATEMATIA Izpitna pola. feladatlap Vi{ja raven Emelt szint Ponedeljek, 8. avgust 006 / 90 minut 006. augusztus
*M M* Višja raven Emelt szint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M101401M* Višja raven Emelt szint MATEMATIKA Izpitna pola. feladatlap Sobota, 5. junij 010 / 90 minut 010. június 5.,
*M M* Osnovna raven Alapszint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M1040111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Četrtek, 6. avgust 010 / 10 minut 010. augusztus
*M M* Višja raven Emelt szint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M081401M* Višja raven Emelt szint MATEMATIKA Izpitna pola. feladatlap Sobota, 7. junij 008 / 90 minut 008. június 7.,
*M M* Osnovna raven Alapszint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M10140111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Sobota, 5. junij 010 / 10 minut 010. június
*M M* Osnovna raven Alapszint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M11140111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Sobota, 4. junij 011 / 10 minut 011. június
*M M* Osnovna raven Alapszint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M0940M* Osnovna raven Alapszint MATEMATIKA Izpitna pola. feladatlap Sobota, 6. junij 009 / 0 minut 009. június 6.,
*M M* Osnovna raven Alapszint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M0840M* Osnovna raven Alapszint MATEMATIKA Izpitna pola. feladatlap Torek, 6. avgust 008 / 0 minut 008. augusztus 6.,
*M M* Osnovna raven Alapszint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M1140111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Petek, 6. avgust 011 / 10 minut 011. augusztus
Dr`avni izpitni center MATEMATIKA
[ ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *P07C0M* SPOMLADANSKI ROK TAVASZI IDŐSZAK MATEMATIKA Izpitna pola / Feladatlap Sobota,. junij 007 / 0 minut brez odmora 007. június., szombat
V sivo polje ne pišite. / A szürke mezőbe ne írjon!
*M1714011M* /0 *M1714011M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma
Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2
[ifra kandidata: *M06123112* Dr`avni izpitni center Izpitna pola 2 A) Poznavanje in raba jezika B) Kraj{i vodeni sestavek Torek, 13. junij 2006 / 70 minut (40 + 30) SPOMLADANSKI ROK MAD@AR[^INA KOT DRUGI
Dr`avni izpitni center. SOCIOLOGIJA SZOCIOLÓGIA Izpitna pola 1 1. feladatlap. Sobota, 5. junij 2004 / 120 minut június 5., szombat / 120 perc
[ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *M04152111M* SOCIOLOGIJA SZOCIOLÓGIA Izpitna pola 1 1. feladatlap SPOMLADANSKI ROK TAVASZI IDŐSZAK Sobota, 5. junij 2004 / 120 minut 2004. június
*M M03* 3/20 ( ) Formule. Cx y : = 2. Evklidov in višinski izrek v pravokotnem trikotniku: a 2
*M17401M* /0 *M17401M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma
Državni izpitni center. Višja raven. Izpitna pola 2 2. feladatlap. Sobota, 7. junij 2014 / 90 minut
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M141401M* Višja raven SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Izpitna pola. feladatlap Sobota, 7. junij 014
Dr`avni izpitni center MATEMATIKA
[ ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *P07C0M* JESENSKI ROK ŐSZI IDŐSZAK MATEMATIKA Izpitna pola / Feladatlap Torek, 8. avgust 007 / 0 minut brez odmora 007. augusztus 8., kedd /
Državni izpitni center. Izpitna pola 2. Slušno razumevanje. Sobota, 15. junij 2013 / Do 20 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M13123112* SPOMLADANSKI IZPITNI ROK Izpitna pola 2 Slušno razumevanje Sobota, 15. junij 2013 / Do 20 minut Dovoljeno gradivo in pripomočki: Kandidat
Državni izpitni center. Višja raven. Izpitna pola 1 1. feladatlap. Sobota, 9. junij 2012 / 90 minut
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M40M* Višja raven SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Izpitna pola. feladatlap Sobota, 9. junij 0 / 90 minut
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK. Izpitna pola 2. Slušno razumevanje. Sobota, 13. junij 2015 / Do 20 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M15123112* SPOMLADANSKI IZPITNI ROK MADŽARŠČINA KOT DRUGI JEZIK Izpitna pola 2 Slušno razumevanje Sobota, 13. junij 2015 / Do 20 minut Dovoljeno gradivo
2/20 NAVODILA KANDIDATU
*M151401M* /0 *M151401M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma
Dr`avni izpitni center MATEMATIKA
[ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *P063C0M* ZIMSKI ROK TÉLI VIZSGAIDŐSZAK MATEMATIKA Izpitna pola / Feladatlap Sobota, 7. februar 007 / 0 minut brez odmora 007. február 7., szombat
Državni izpitni center. Izpitna pola 2 2. feladatlap Esejske naloge / Esszé típusú faladatok. Torek, 5. junij 2012 / 120 minut
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M12152112M* SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Izpitna pola 2 2. feladatlap Esejske naloge / Esszé típusú
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK. Izpitna pola 2. Slušno razumevanje. Sobota, 10. junij 2017 / Do 20 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M17123212* SPOMLADANSKI IZPITNI ROK MADŽARŠČINA KOT DRUGI JEZIK Izpitna pola 2 Slušno razumevanje Sobota, 10. junij 2017 / Do 20 minut Dovoljeno gradivo
V sivo polje ne pišite. / A szürke mezőbe ne írjon!
*M72402M* 2/20 *M72402M02* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma
V sivo polje ne pišite. / A szürke mezőbe ne írjon!
*M1840111M* /0 *M1840111M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma
V sivo polje ne pišite. / A szürke mezőbe ne írjon!
*M1640111M* /0 *M1640111M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma
V sivo polje ne pišite. / A szürke mezőbe ne írjon!
*M1540111M* /0 *M1540111M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma
Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2
[ifra kandidata: *M05223112* Dr`avni izpitni center Izpitna pola 2 A) Poznavanje in raba jezika B) Kraj{i vodeni sestavek Petek, 9. september 2005 / 70 minut (40 + 30) JESENSKI ROK MAD@AR[^INA KOT DRUGI
Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2
[ifra kandidata: *M05123112* r`avni izpitni center Izpitna pola 2 ) Poznavanje in raba jezika ) Kraj{i vodeni sestavek Torek, 14. junij 2005 / 70 minut (40 + 30) SPOMLNSKI ROK M@R[^IN KOT RUGI JEZIK N
Dr`avni izpitni center MATEMATIKA
[ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *P073C0M* ZIMSKI ROK TÉLI VIZSGAIDŐSZAK MATEMATIKA Izpitna pola / Feladatlap Sreda, 3. februar 008 / 0 minut brez odmora 008. február 3., szerda
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU
Š i f r a k a n d i d a t a : Državni izpitni center *M10123112* MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 2 A) Poznavanje in raba jezika B) Krajši vodeni sestavek
Dr`avni izpitni center. Osnovna raven MADŽAR[^INA. Izpitna pola 1. Bralno razumevanje / 30 minut. Dele` pri oceni: 20 %
[ifra kandidata: Dr`avni izpitni center *001J3111* 001 Osnovna raven MADŽAR[^INA Izpitna pola 1 Bralno razumevanje / 30 minut Dele` pri oceni: 20 % Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese
Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1
[ifra kandidata: *M05223111* Dr`avni izpitni center Izpitna pola 1 A) Slu{no razumevanje B) Bralno razumevanje Petek, 9. september 2005 / 60 minut (20 + 40) JESENSKI ROK MAD@AR[^INA KOT DRUGI JEZIK NA
V sivo polje ne pišite. / A szürke mezőbe ne írjon!
*M840M* /0 *M840M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma vpišite
Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2
[ifra kandidata: *M06223112* Dr`avni izpitni center Izpitna pola 2 A) Poznavanje in raba jezika B) Kraj{i vodeni sestavek Petek, 8. september 2006 / 70 minut (40 + 30) JESENSKI ROK MAD@AR[^INA KOT DRUGI
Državni izpitni center. Izpitna pola 2. Slušno razumevanje. Sobota, 16. junij 2012 / Do 20 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M12123112* SPOMLADANSKI IZPITNI ROK Izpitna pola 2 Slušno razumevanje Sobota, 16. junij 2012 / Do 20 minut Dovoljeno gradivo in pripomočki: Kandidat
Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Sreda, 11. februar 2009 / 120 minut február 11., szerda / 120 perc
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P083C0M* MATEMATIKA Izpitna pola / Feladatlap ZIMSKI IZPITNI ROK TÉLI VIZSGAIDŐSZAK Sreda,. februar 009 / 0 minut 009.
Državni izpitni center. Višja raven. Izpitna pola 2 2. feladatlap. Ponedeljek, 27. avgust 2012 / 90 minut
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M1401M* Višja raven JESENSKI IZPITNI ROK ŐSZI VIZSGAIDŐSZAK Izpitna pola. feladatlap Ponedeljek, 7. avgust 01 / 90
2/20 NAVODILA KANDIDATU
*M161401M* /0 *M161401M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma
Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1
[ifra kandidata: *M04023111* Dr`avni izpitni center Izpitna pola 1 A) Slu{no razumevanje B) Bralno razumevanje Marec 2004 / 60 minut (20 + 40) PREDPREIZKUS MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM
Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Torek, 26. avgust 2008 / 120 minut augusztus 26.
Š i f r a k a n d i d a t a : A jelölt kódszáma: Državni izpitni center *P08C0M* JESENSKI IZPITNI ROK ŐSZI VIZSGAIDŐSZAK MATEMATIKA Izpitna pola / Feladatlap Torek, 6. avgust 008 / 0 minut 008. augusztus
Državni izpitni center. Višja raven. Izpitna pola 2 2. feladatlap. Sobota, 8. junij 2013 / 90 minut
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M131401M* Višja raven SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Izpitna pola. feladatlap Sobota, 8. junij 013
Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Sobota, 5. junij 2010 / 120 minut június 5., szombat / 120 perc
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P0C0M* MATEMATIKA Izpitna pola / Feladatlap SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Sobota, 5. junij 00 / 0
Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1
[ifra kandidata: *M06223111* Dr`avni izpitni center Izpitna pola 1 A) Slu{no razumevanje B) Bralno razumevanje Petek, 8. september 2006 / 60 minut (20 + 40) JESENSKI ROK MAD@AR[^INA KOT DRUGI JEZIK NA
Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Sobota, 4. junij 2011 / 120 minut június 4., szombat / 120 perc
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P111C10111M* MATEMATIKA Izpitna pola / Feladatlap SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Sobota, 4. junij 011
Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1
[ifra kandidata: *M04123111* Dr`avni izpitni center Izpitna pola 1 A) Slu{no razumevanje B) Bralno razumevanje Sobota, 5. junij 2004 / 60 minut (20 + 40) SPOMLADASKI ROK MAD@AR[^IA KOT DRUGI JEZIK A ARODO
*M M03* 3/20. Formule. , če je n liho naravno število. , če je n
*M16140111M* /0 *M16140111M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU. Izpitna pola 1 A) Slušno razumevanje B) Bralno razumevanje
Š i f r a k a n d i d a t a : Državni izpitni center *M11123111* MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 1 A) Slušno razumevanje B) Bralno razumevanje Torek, 14.
Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2
[ifra kandidata: *M04023112* Dr`avni izpitni center Izpitna pola 2 A) Poznavanje in raba jezika B) Kraj{i vodeni sestavek Marec 2004 / 70 minut (40 + 30) PREDPREIZKUS MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO
Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Torek, 25. avgust 2009 / 120 minut augusztus 25.
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P09C10111M* MATEMATIKA Izpitna pola / Feladatlap JESENSKI IZPITNI ROK ŐSZI VIZSGAIDŐSZAK Torek, 5. avgust 009 / 10
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU
Š i f r a k a n d i d a t a : Državni izpitni center *M09223112* MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 2 A) Poznavanje in raba jezika B) Krajši vodeni sestavek
Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Sobota, 6. junij 2009 / 120 minut június 6., szombat / 120 perc
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P09C0M* MATEMATIKA Izpitna pola / Feladatlap SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Sobota, 6. junij 009 /
Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Torek, 7. februar 2012 / 120 minut február 7., kedd/ 120 perc
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *PC0M* MATEMATIKA Izpitna pola / Feladatlap ZIMSKI IZPITNI ROK TÉLI VIZSGAIDŐSZAK Torek, 7. februar 0 / 0 minut 0. február
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU
Š i f r a k a n d i d a t a : Državni izpitni center *M09123112* MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 2 A) Poznavanje in raba jezika B) Krajši vodeni sestavek
Državni izpitni center. Osnovna raven. Izpitna pola 1 1. feladatlap. Ponedeljek, 27. avgust 2012 / 120 minut
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M140111M* Osnovna raven JESENSKI IZPITNI ROK ŐSZI VIZSGAIDŐSZAK Izpitna pola 1 1. feladatlap Ponedeljek, 7. avgust
Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Petek, 26. avgust 2011 / 120 minut augusztus 26., péntek / 120 perc
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P11C10111M* MATEMATIKA Izpitna pola / Feladatlap JESENSKI IZPITNI ROK ŐSZI VIZSGAIDŐSZAK Petek, 6. avgust 011 / 10
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU. Izpitna pola 2
Š i f r a k a n d i d a t a : *M08223112* Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 2 A) Poznavanje in raba jezika B) Krajši vodeni sestavek
Dr`avni izpitni center. Vi{ja raven MADŽAR[^INA. Izpitna pola 1. Bralno razumevanje / 40 minut. Dele` pri oceni: 20 %
[ifra kandidata: Dr`avni izpitni center *001J3211* 001 Vi{ja raven MADŽAR[^INA Izpitna pola 1 Bralno razumevanje / 40 minut Dele` pri oceni: 20 % Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese
*M15140111M03* 3/20. Formule. , če je n liho naravno število. , če je n
*M15140111M* /0 *M15140111M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU
Š i f r a k a n d i d a t a : Državni izpitni center *M11123112* MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 2 A) Poznavanje in raba jezika B) Krajši vodeni sestavek
Državni izpitni center MATEMATIKA. Torek, 7. maj 2013 / 60 minut
Š i f r a u č e n c a : A tanuló kódszáma: Državni izpitni center *N13140131M* REDNI ROK RENDES MÉRÉS 3. obdobje MATEMATIKA Torek, 7. maj 013 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese
Državni izpitni center. Višja raven. Izpitna pola 1 1. feladatlap. Sobota, 7. junij 2014 / 90 minut
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M1414011M* Višja raven SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Izpitna pola 1 1. feladatlap Sobota, 7. junij
Azononosító matrica FIGYELMESEN RÁRAGASZTANI MAT B MATEMATIKA. alapszint MATB.32.MA.R.K1.20 MAT B D-S032. MAT B D-S032 MAG.indd
Azononosító matrica FIGYELMESEN RÁRAGASZTANI MAT B MATEMATIKA alapszint MAT3.MR.K. MAT B D-S3 MAT B D-S3 MAG.indd 3.6.6. 3:5: Üres oldal MAT B D-S3 99 MAT B D-S3 MAG.indd 3.6.6. 3:5:3 ÁLTALÁNOS UTASÍTÁSOK
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
Državni izpitni center MAGYAR NYELV MINT ANYANYELV. 1. feladatlap augusztus 25., csütörtök / 150 perc
K ó d s z á m : Državni izpitni center *M11213111* ŐSZI VIZSGAIDŐSZAK MAGYAR NYELV MINT ANYANYELV 1. feladatlap Iskolai esszé (700 1000 szó) 2011. augusztus 25., csütörtök / 150 perc Engedélyezett segédeszközök:
NULLADIK MATEMATIKA ZÁRTHELYI
A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával
Državni izpitni center. Izpitna pola 1. A) Bralno razumevanje B) Poznavanje in raba jezika C) Tvorjenje kratke besedilne vrste
Š i f r a k a n d i d a t a : Državni izpitni center *M14223111* JESENSKI IZPITNI ROK Izpitna pola 1 A) Bralno razumevanje B) Poznavanje in raba jezika C) Tvorjenje kratke besedilne vrste Sreda, 27. avgust
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1
[ifra kandidata: *M05123111* Dr`avni izpitni center Izpitna pola 1 A) Slu{no razumevanje B) Bralno razumevanje Torek, 14. junij 2005 / 60 minut (20 + 40) SPOMLADANSKI ROK MAD@AR[^INA KOT DRUGI JEZIK NA
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA ÍRÁSBELI FELMÉRŐLAP. Torek, 8. maja 2007 / 60 minut 2007. május 8.
Š i f r a u ~ e n c a: A tanuló kódszáma: Državni izpitni center *N0710121M* REDNI ROK RENDES MÉRÉS MATEMATIKA PREIZKUS ZNANJA ÍRÁSBELI FELMÉRŐLAP Torek, 8. maja 2007 / 60 minut 2007. május 8., kedd /
Državni izpitni center MATEMATIKA. Sreda, 4. maj 2016 / 60 minut
Š i f r a u č e n c a : A tanuló kódszáma: Državni izpitni center *N16140131M* 9. razred MATEMATIKA Sreda, 4. maj 016 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese modro/črno nalivno pero
Državni izpitni center. Višja raven. Izpitna pola 2 2. feladatlap. Ponedeljek, 26. avgust 2013 / 90 minut
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M13240212M* Višja raven JESENSKI IZPITNI ROK ŐSZI VIZSGAIDŐSZAK Izpitna pola 2 2. feladatlap Ponedeljek, 26. avgust
2018/2019. Matematika 10.K
Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül
Dr`avni izpitni center MAGYAR NYELV ÉS IRODALOM. 1. feladatlap. Nem művészi szöveg elemzése. Kedd, február 01. / 60 perc
A jelölt kódszáma: Dr`avni izpitni center *P043A10311* TÉLI VIZSGAIDŐSZAK MAGYAR NYELV ÉS IRODALOM 1. feladatlap Nem művészi szöveg elemzése Kedd, 2005. február 01. / 60 perc Engedélyezett segédeszközök:
*N M03* 3/32. Prazna stran. Üres oldal OBRNI LIST. LAPOZZ!
*N15140121M* 2/32 *N15140121M02* *N15140121M03* 3/32 Prazna stran Üres oldal OBRNI LIST. LAPOZZ! 4/32 *N15140121M04* 1. Izračunaj: 1. a) 702173974861 Dobljeni rezultat zaokroži na stotice: (2 točki) 1.
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP. Ponedeljek, 12. maja 2008 / 60 minut május 12.
Š i f r a u ~ e n c a: A tanuló kódszáma: Državni izpitni center *N08140121M* REDNI ROK RENDES MÉRÉS MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP Ponedeljek, 12. maja 2008 / 60 minut 2008. május 12., hétfő /
2/20 NAVODILA KANDIDATU
*M840M* /0 *M840M0* NAVODILA KANDIDATU Pazljivo preberite ta avodila. Ne odpirajte izpite pole i e začejajte reševati alog, dokler vam adzori učitelj tega e dovoli. Prilepite kodo oziroma vpišite svojo
Feladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!
egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.
Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Državni izpitni center MATEMATIKA. Sreda, 30. maj 2012 / 60 minut
Š i f r a u č e n c a : A tanuló kódszáma: Državni izpitni center *N14011M* NAKNADNI ROK UTÓLAGOS MÉRÉS. obdobje MATEMATIKA Sreda, 0. maj 01 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese modro/črno
Državni izpitni center. Izpitna pola 1. A) Bralno razumevanje B) Poznavanje in raba jezika C) Tvorjenje kratke besedilne vrste
Š i f r a k a n d i d a t a : Državni izpitni center *M12123111* SPOMLADANSKI IZPITNI ROK Izpitna pola 1 A) Bralno razumevanje B) Poznavanje in raba jezika C) Tvorjenje kratke besedilne vrste Sobota, 16.
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU. Izpitna pola 1 A) Slušno razumevanje B) Bralno razumevanje
Š i f r a k a n d i d a t a : Državni izpitni center *M11223111* MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 1 A) Slušno razumevanje B) Bralno razumevanje Ponedeljek,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
Azononosító matrica FIGYELMESEN RÁRAGASZTANI MATEMATIKA. felső szint MATA.28.MA.R.K1.28 MAT A D-S028
Azononosító matrica FIGYELMESEN RÁRAGASZTANI MATEMATIKA felső szint MAT8.MR.K.8 MAT A D-S8 Üres oldal MAT A D-S8 99 ÁLTALÁNOS UTASÍTÁSOK Figyelmesen olvassa el az összes utasítást és kövesse azokat. Ne
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU. Izpitna pola 1. A) Slušno razumevanje B) Bralno razumevanje
Š i f r a k a n d i d a t a : *M08223111* Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 1 A) Slušno razumevanje B) Bralno razumevanje Petek, 29.
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
NULLADIK MATEMATIKA ZÁRTHELYI
5A NULLADIK MATEMATIKA ZÁRTHELYI 05-09- Terem: Munkaidő: 50 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
FELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy