*N M03* 3/32. Prazna stran. Üres oldal OBRNI LIST. LAPOZZ!
|
|
- Zoltán Pap
- 6 évvel ezelőtt
- Látták:
Átírás
1 *N M*
2 2/32 *N M02*
3 *N M03* 3/32 Prazna stran Üres oldal OBRNI LIST. LAPOZZ!
4 4/32 *N M04* 1. Izračunaj: 1. a) Dobljeni rezultat zaokroži na stotice: (2 točki) 1. b) 868 : 80 Dobljeni rezultat zaokroži na desetine: (2 točki) 1. c) ,3 (2 točki)
5 *N M05* 5/32 1. Számítsd ki: 1. a) Az eredményt kerekítsd százasokra: (2 pont) 1. b) 868 : 80 Az eredményt kerekítsd tizedekre: (2 pont) 1. c) ,3 (2 pont)
6 6/32 *N M06* 2. a) Pobarvaj lik tako, da ostane 3 4 lika nepobarvanega. 2. b) Na številskem poltraku je označen ulomek 3. Na isti način označi še 2 ulomka 3 4 in (2 točki) 2. c) Izračunaj: 6 od od (2 točki) 2. d) Decimalno število pretvori v desetiški ulomek: 0,023
7 *N M07* 7/32 2. a) Színezd ki a síkidomot úgy, hogy a síkidom 3 4 része maradjon színezetlen! 2. b) A számfélegyenesen ábrázoltuk a 3 2 törtet. Ugyanilyen módon ábrázold még a 3 4 és a 7 6 törteket is! 3 2 (2 pont) 2. c) Számítsd ki: az 56-nak a 6 -e 7 3 -nak a -e = (2 pont) 2. d) A vesszős alakban felírt tizedes törtet írd fel tört alakban: 0,023
8 8/32 *N M08* 3. a) Učenci so pri likovnem pouku barvali svilene rutice. Po barvanju so jih obesili na dolgo vrv. Vsako rutico so pritrdili z dvema ščipalkama za perilo, kakor je prikazano na sliki spodaj. Za eno rutico potrebujemo 2 ščipalki za perilo. Za dve rutici potrebujemo 3 ščipalke. Izpolni tabelo: Število rutic Število ščipalk za perilo 2 3 (2 točki) 3. b) Posušene rutice so pritrdili na steno. Vsako rutico so pritrdili s štirimi risalnimi žebljički, kakor je prikazano na sliki spodaj. Za eno rutico so potrebovali 4 risalne žebljičke. Za dve rutici so potrebovali 6 risalnih žebljičkov. Izpolni tabelo: Število rutic Število risalnih žebljičkov 4 6 (2 točki)
9 *N M09* 9/32 3. a) A tanulók képzőművészetnél selyemkendőket festettek. Festés után egy hosszú kötélre akasztották őket. Minden kendőt két ruhacsipesszel akasztottak fel, az alábbi ábrán látható módon. Egy kendőhöz 2 ruhacsipeszre van szükségünk, két kendőhöz 3 ruhacsipeszre. Egészítsd ki a táblázatot: A kendők száma A ruhacsipeszek száma 2 3 (2 pont) 3. b) A száraz kendőket a falra függeszették. Minden kendőt négy rajzszöggel erősítettek a falra, az alábbi ábrán látható módon. Egy kendőhöz 4 rajzszögre volt szükségük. Két kendőhöz 6 rajzszögre volt szükségük. Egészítsd ki a táblázatot: A kendők száma A rajzszögek száma 4 6 (2 pont)
10 10/32 *N M10* 4. Dolžina enega kroga atletske steze na stadionu je 400 m. 4. a) Koliko celih krogov mora tekač preteči pri teku na metrov? Odgovor: 4. b) Koliko kilometrov bo tekač pretekel, če bo tekel 7 krogov in pol? Reševanje: Odgovor: (2 točki)
11 *N M11* 11/32 4. c) V kateri točki je start teka na metrov, če je cilj v točki B? Start teka je v točki.
12 12/32 *N M12* 4. A stadion atlétikai futópályájának egy köre 400 m hosszú. 4. a) Hány egész kört kell megtennie a futónak a méteres futásnál? Válasz: 4. b) Hány kilométert tesz meg a futó, ha 7 és fél kört fut le? Megoldási eljárás: Válasz: (2 pont)
13 *N M13* 13/32 4. c) Melyik pontban van az méteres futás rajtja (startja), ha a cél a B pontban van? A futás rajtja a/az pontban van.
14 14/32 *N M14* 5. Dan je enakostranični trikotnik ABC. C A B 5. a) Izmeri dolžino stranice trikotnika ABC. Stranica danega enakostraničnega trikotnika ABC meri. 5. b) Izračunaj obseg trikotnika ABC. Reševanje: Obseg meri. (2 točki) 5. c) Načrtaj kvadrat, ki ima enak obseg kakor enakostranični trikotnik ABC.
15 *N M15* 15/32 5. d) Kolikšna je ploščina tega kvadrata? Reševanje: Ploščina kvadrata je. (2 točki)
16 16/32 *N M16* 5. Adott az ABC egyenlő oldalú háromszög. C A B 5. a) Mérd le az ABC háromszög oldalának hosszúságát! Az adott ABC egyenlő oldalú háromszög oldala hosszú. 5. b) Számítsd ki az ABC háromszög kerületét! Megoldási eljárás: A kerülete. (2 pont) 5. c) Szerkessz olyan négyzetet, amelynek kerülete egyenlő az ABC egyenlő oldalú háromszög kerületével!
17 *N M17* 17/32 5. d) Mekkora ennek a négyzetnek a területe? Megoldási eljárás: A négyzet területe. (2 pont)
18 18/32 *N M18* 6. a) Načrtaj kot o 225 in ga označi z. Za koliko stopinj je kot o 225 večji od iztegnjenega kota? Za koliko stopinj je kot o 225 manjši od polnega kota?
19 *N M19* 19/32 6. b) Miha je narisal 5 kotov. Kateri od narisanih kotov je največji? Obkroži ustrezno grško črko. Katera dva od narisanih kotov sta skladna? Obkroži ustrezni grški črki. Izmeri velikost kota.
20 20/32 *N M20* 6. a) Rajzolj o 225 -os szöget, és jelöld -val! Hány fokkal nagyobb a o 225 -os szög az egyenes szögnél? Hány fokkal kisebb a o 225 -os szög a teljes szögnél?
21 *N M21* 21/32 6. b) Miha 5 szöget rajzolt. A lerajzolt szögek közül melyik a legnagyobb? Karikázd be a megfelelő görög betűt! Melyik két szög egybevágó? Karikázd be a két megfelelő görög betűt! Mérd le a szög nagyságát!
22 22/32 *N M22* 7. V preglednici so navedene razdalje med večjimi slovenskimi mesti, izražene v kilometrih. Razdalja med dvema mestoma je zapisana v polju, v katerem se vrstica in stolpec križata. Ljubljana 127 Maribor Koper Novo mesto Kranj Murska Sobota V odgovorih upoštevaj podatke iz preglednice. 7. a) Kolikšna je razdalja med Mariborom in Kranjem? Odgovor: 7. b) Kateri dve mesti sta med seboj najbolj oddaljeni? Odgovor: 7. c) Do katerih mest se lahko pripelješ iz Novega mesta, da prevoziš manj kakor 150 km? Odgovor:
23 *N M23* 23/32 7. d) Jure se bo z avtomobilom odpravil iz Novega mesta v Koper. Njegov avto porabi povprečno 6,5 litra goriva na 100 km. Koliko litrov goriva bo porabil za vožnjo iz Novega mesta v Koper? Reševanje: Odgovor: (3 točke)
24 24/32 *N M24* 7. A táblázatban a nagyobb szlovén városok közötti távolságok láthatók, kilométerben kifejezve. Két város távolsága abban a mezőben olvasható le, amelyben a sor és az oszlop keresztezi egymást. Ljubljana 127 Maribor Koper Novo mesto Kranj Murska Sobota A válaszoknál vedd figyelembe a táblázat adatait! 7. a) Mekkora a Maribor és Kranj közti távolság? Válasz: 7. b) Melyik két város van legtávolabb egymástól? Válasz: 7. c) Melyik városokból kell Novo mestóig 150 km-nél rövidebb utat megtenni? Válasz:
25 *N M25* 25/32 7. d) Jure autóval Novo mestóból Koperba fog utazni. Az autója 100 km-en átlagosan 6,5 liter üzemanyagot fogyaszt. Hány liter üzemanyagot fog elhasználni Novo mestótól Koperig? Megoldási eljárás: Válasz: (3 pont)
26 26/32 *N M26* 8. a) Izračunaj: 2, ,38 :10 (2 točki) 2 8. b) Izračunaj vrednost izraza 4 a 2a3 a, če je a 5. Reševanje: 2 4a 2a3 a Vrednost izraza je. (2 točki) 8. c) Kateri potenci iz tabele imata isto vrednost? Obkroži ustrezni potenci d) Koliko je polovica od 2 6? Obkroži ustrezno potenco
27 *N M27* 27/32 8. a) Számítsd ki: 2, ,38 :10 (2 pont) 2 8. b) Számítsd ki a 4a 2a3 a kifejezés helyettesítési értékét, ha a 5. Megoldási eljárás: 2 4a 2a3 a A kifejezés helyettesítési értéke. (2 pont) 8. c) A táblázat melyik két hatványának van egyenlő értéke? Karikázd be a két megfelelő hatványt! d) Mennyi a 2 6 fele? Karikázd be a megfelelő hatványt!
28 28/32 *N M28* 9. Na kmetiji so pripravili 55 soka in dovolj stekleničk po 1 2 in po 3 d. 9. a) Napolnili so 50 stekleničk po 1, preostanek soka so pretočili v stekleničke 2 po 3 d. Koliko stekleničk po 3 d so napolnili? Reševanje: Odgovor: (4 točke) 9. b) Ali bi lahko s 55 soka napolnili le stekleničke po 1? 2 Utemelji. Utemeljitev: 9. c) Ali bi lahko s 55 soka napolnili le stekleničke po 3 d? Utemelji. Utemeljitev: Skupno število točk: 50
29 *N M29* 29/32 9. A parasztgazdaságban 55 szörpöt készítettek, és ahhoz elegendő d-es üvegeket készítettek elő. -es és 9. a) 50 darab 1 2 -es üveget töltöttek meg, a maradék szörpöt pedig 3 d -es üvegekbe töltötték. Hány 3 d-es üveget töltöttek meg? Megoldási eljárás: Válasz: 9. b) Telitölthetnének-e 55 szörppel kizárólag 1 2 indokold meg! -es üvegeket? Válaszodat (4 pont) Indoklás: 9. c) Telitölthetnének-e 55 szörppel kizárólag 3 d -es üvegeket? Válaszodat indokold meg! Indoklás: Összpontszám: 50
30 30/32 *N M30* Prazna stran Üres oldal
31 *N M31* 31/32 Prazna stran Üres oldal
32 32/32 *N M32* Prazna stran Üres oldal
Üres oldal. Prazna stran *N M03* 3/28
*N14140121M* 2/28 *N14140121M02* Ide ne írj! Ide ne írj! Ide ne írj! Ide ne írj! Ide ne írj! Ide ne írj! Ide ne írj! Ide ne írj! Ide ne írj! Ide ne írj! *N14140121M03* 3/28 Prazna stran Üres oldal OBRNI
2/28 NAVODILA UČENCU ÚTMUTATÓ A TANULÓNAK
*N15140131M* /8 *N15140131M0* NAVODILA UČENCU Natančno preberi ta navodila. Prilepi kodo oziroma vpiši svojo šifro v okvirček desno zgoraj na prvi strani. Preden začneš reševati naloge, previdno iztrgaj
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP. Ponedeljek, 12. maja 2008 / 60 minut május 12.
Š i f r a u ~ e n c a: A tanuló kódszáma: Državni izpitni center *N08140121M* REDNI ROK RENDES MÉRÉS MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP Ponedeljek, 12. maja 2008 / 60 minut 2008. május 12., hétfő /
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA ÍRÁSBELI FELMÉRŐLAP. Torek, 8. maja 2007 / 60 minut 2007. május 8.
Š i f r a u ~ e n c a: A tanuló kódszáma: Državni izpitni center *N0710121M* REDNI ROK RENDES MÉRÉS MATEMATIKA PREIZKUS ZNANJA ÍRÁSBELI FELMÉRŐLAP Torek, 8. maja 2007 / 60 minut 2007. május 8., kedd /
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP. Torek, 5. maja 2009 / 60 minut május 5., kedd / 60 perc
Š i f r a u č e n c a: A tanuló kódszáma: Državni izpitni center *N09140121M* REDNI ROK RENDES MÉRÉS MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP Torek, 5. maja 2009 / 60 minut 2009. május 5., kedd / 60 perc
Državni izpitni center MATEMATIKA. Torek, 7. maj 2013 / 60 minut
Š i f r a u č e n c a : A tanuló kódszáma: Državni izpitni center *N13140121M* REDNI ROK / RENDES MÉRÉS 2. obdobje / MATEMATIKA Torek, 7. maj 2013 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese
Tukaj ne piši. Tukaj ne piši. Tukaj ne piši. Tukaj ne piši. Tukaj ne piši. Tukaj ne piši. Tukaj ne piši.
*N18140131M* /36 *N18140131M0* NAVODILA UČENCU Natančno preberi ta navodila. Prilepi kodo oziroma vpiši svojo šifro v okvirček desno zgoraj na prvi strani. Preden začneš reševati naloge, previdno iztrgaj
2/32 NAVODILA UČENCU ÚTMUTATÓ A TANULÓNAK
*N17140131M* /3 *N17140131M0* NAVODILA UČENCU Natančno preberi ta navodila. Prilepi kodo oziroma vpiši svojo šifro v okvirček desno zgoraj na prvi strani. Preden začneš reševati naloge, previdno iztrgaj
Državni izpitni center. Izpitna pola 2. Slušno razumevanje. Sobota, 15. junij 2013 / Do 20 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M13123112* SPOMLADANSKI IZPITNI ROK Izpitna pola 2 Slušno razumevanje Sobota, 15. junij 2013 / Do 20 minut Dovoljeno gradivo in pripomočki: Kandidat
Državni izpitni center MATEMATIKA. Torek, 7. maj 2013 / 60 minut
Š i f r a u č e n c a : A tanuló kódszáma: Državni izpitni center *N13140131M* REDNI ROK RENDES MÉRÉS 3. obdobje MATEMATIKA Torek, 7. maj 013 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese
2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.
Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi
Dr`avni izpitni center MATEMATIKA PREIZKUS ZNANJA ÍRÁSBELI FELMÉRŐLAP. Ponedeljek, 4. junija 2007 / 60 minut június 4.
Š i f r a u ~ e n c a: A tanuló kódszáma: Dr`avni izpitni center *N07240131M* NAKNADNI ROK UTÓLAGOS MÉRÉS MATEMATIKA PREIZKUS ZNANJA ÍRÁSBELI FELMÉRŐLAP Ponedeljek, 4. junija 2007 / 60 minut 2007. június
Državni izpitni center MATEMATIKA. Torek, 6. maj 2014 / 60 minut
Š i f r a u č e n c a : A tanuló kódszáma: Državni izpitni center *N14140131M* 9. razred MATEMATIKA Torek, 6. maj 014 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese modro/črno nalivno pero
Državni izpitni center MATEMATIKA. Sreda, 30. maj 2012 / 60 minut
Š i f r a u č e n c a : A tanuló kódszáma: Državni izpitni center *N14011M* NAKNADNI ROK UTÓLAGOS MÉRÉS. obdobje MATEMATIKA Sreda, 0. maj 01 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese modro/črno
Državni izpitni center MATEMATIKA. Petek, 4. maj 2012 / 60 minut
Š i f r a u č e n c a : A tanuló kódszáma: Državni izpitni center *N110131M* REDNI ROK RENDES MÉRÉS 3. obdobje MATEMATIKA Petek,. maj 01 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese modro/črno
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA ÍRÁSBELI FELADATLAP. Torek, 9. maja 2006 / 60 minut 2006 május 9.
Š i f r a u ~ e n c a/-k e : A tanuló kódszáma: Državni izpitni center *N06140121M* REDNI ROK ELSŐ IDŐSZAK MATEMATIKA PREIZKUS ZNANJA ÍRÁSBELI FELADATLAP Torek, 9. maja 2006 / 60 minut 2006 május 9., kedd
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP. Ponedeljek, 30. maj 2011 / 60 minut május 30., hétfő / 60 perc
Š i f r a u č e n c a: A tanuló kódszáma: Državni izpitni center *N110131M* MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP NAKNADNI ROK UTÓLAGOS MÉRÉS 3. obdobje/ szakasz Ponedeljek, 30. maj 011 / 60 minut 011.
Dr`avni izpitni center MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP. Ponedeljek, 12. maja 2008 / 60 minut május 12.
Š i f r a u ~ e n c a: A tanuló kódszáma: Dr`avni izpitni center *N08140131M* REDNI ROK RENDES MÉRÉS MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP Ponedeljek, 12. maja 2008 / 60 minut 2008. május 12., hétfő /
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK. Izpitna pola 2. Slušno razumevanje. Sobota, 13. junij 2015 / Do 20 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M15123112* SPOMLADANSKI IZPITNI ROK MADŽARŠČINA KOT DRUGI JEZIK Izpitna pola 2 Slušno razumevanje Sobota, 13. junij 2015 / Do 20 minut Dovoljeno gradivo
2/32 NAVODILA UČENCU ÚTMUTATÓ A TANULÓNAK
*N19140131M* /3 *N19140131M0* NAVODILA UČENCU Natančno preberi ta navodila. Prilepi kodo oziroma vpiši svojo šifro v okvirček desno zgoraj na prvi strani. Preden začneš reševati naloge, previdno iztrgaj
Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK. Izpitna pola 2. Slušno razumevanje. Sobota, 10. junij 2017 / Do 20 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M17123212* SPOMLADANSKI IZPITNI ROK MADŽARŠČINA KOT DRUGI JEZIK Izpitna pola 2 Slušno razumevanje Sobota, 10. junij 2017 / Do 20 minut Dovoljeno gradivo
VI. Vályi Gyula Emlékverseny november
VI. Vályi Gyula Emlékverseny 1999. november 19-1. VI. osztály 1. Ki a legidősebb, ha Attila 10 000 órás, Balázs 8 000 napos, Csanád 16 éves, Dániel 8000000 perces, Ede 00 hónapos. (A) Attila (B) Balázs
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP. Sreda, 4. maj 2011 / 60 minut május 4., szerda / 60 perc
Š i f r a u č e n c a: A tanuló kódszáma: Državni izpitni center *N1110131M* MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP REDNI ROK RENDES MÉRÉS 3. obdobje/ szakasz Sreda,. maj 011 / 60 minut 011. május., szerda
Feladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Természetes számok: 0123 (TK 4-49.oldal) - tízes számrendszer helyi értékei alaki érték valódi érték - becslés kerekítés - alapműveletek:
Državni izpitni center MATEMATIKA. Sreda, 4. maj 2016 / 60 minut
Š i f r a u č e n c a : A tanuló kódszáma: Državni izpitni center *N16140131M* 9. razred MATEMATIKA Sreda, 4. maj 016 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese modro/črno nalivno pero
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
matematikából 2. TESZT
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 018.04.07. Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 017/018. Feladat 1... 4.. 6. Összesen Elérhető
Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
VIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege?
VIII. Vályi Gyula Emlékverseny 001 november 3-5 VI osztály Csak az eredmény kérjük! 1. Frédi 3 naponként, Béni 4 naponként jár az uszodába, mindig pontosan délután 4-től 6-ig. Kedden találkoztak az uszodában.
Državni izpitni center MATEMATIKA. Četrtek, 30. maj 2013 / 60 minut
Š i f r a u č e n c a : A tanuló kódszáma: Državni izpitni center *N14011M* NAKNADNI ROK UTÓLAGOS MÉRÉS. obdobje MATEMATIKA Četrtek, 0. maj 01 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP. Torek, 4. maja 2010 / 60 minut május 4., kedd / 60 perc
Š i f r a u č e n c a: A tanuló kódszáma: Državni izpitni center *N10140121M* MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP REDNI ROK RENDES MÉRÉS 2. obdobje/ szakasz Torek, 4. maja 2010 / 60 minut 2010. május
Dr`avni izpitni center MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP. Ponedeljek, 2. junija 2008 / 60 minut június 2.
Š i f r a u ~ e n c a: A tanuló kódszáma: Dr`avni izpitni center *N082011M* NAKNADNI ROK UTÓLAGOS MÉRÉS MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP Ponedeljek, 2. junija 2008 / 60 minut 2008. június 2., hétfő
FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2014/2015-ös tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2014/2015-ös tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ Egy 20 feladatból álló tesztet kell megoldanod. A munka elvégzésére 120
*M M* Osnovna raven Alapszint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M0940M* Osnovna raven Alapszint MATEMATIKA Izpitna pola. feladatlap Sobota, 6. junij 009 / 0 minut 009. június 6.,
1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4
. Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP. Torek, 4. maja 2010 / 60 minut május 4., kedd / 60 perc
Š i f r a u č e n c a: A tanuló kódszáma: Državni izpitni center *N1014011M* MATEMATIKA PREIZKUS ZNANJA FELMÉRŐLAP REDNI ROK RENDES MÉRÉS. obdobje/ szakasz Torek, 4. maja 010 / 60 minut 010. május 4.,
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
Az egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
Hatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
Bolyai János Matematikai Társulat. 1. Az a és b valós számra a 2 + b 2 = 1 teljesül, ahol ab 0. Határozzuk meg az. szorzat minimumát. Megoldás.
Bolyai János Matematikai Társulat Oktatási Minisztérium Alapkezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 005/00-os tanév első iskolai) forduló haladók II. kategória nem speciális
Državni izpitni center. Izpitna pola 2. Slušno razumevanje. Sobota, 16. junij 2012 / Do 20 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M12123112* SPOMLADANSKI IZPITNI ROK Izpitna pola 2 Slušno razumevanje Sobota, 16. junij 2012 / Do 20 minut Dovoljeno gradivo in pripomočki: Kandidat
A III. forduló megoldásai
A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU
Š i f r a k a n d i d a t a : Državni izpitni center *M10123112* MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 2 A) Poznavanje in raba jezika B) Krajši vodeni sestavek
matematikából 1. TESZT
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
*M M* Osnovna raven Alapszint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M0740111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Torek, 8. avgust 007 / 10 minut 007. augusztus
*M M* Višja raven Emelt szint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M101401M* Višja raven Emelt szint MATEMATIKA Izpitna pola. feladatlap Sobota, 5. junij 010 / 90 minut 010. június 5.,
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes
*M M* Osnovna raven Alapszint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M11140111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Sobota, 4. junij 011 / 10 minut 011. június
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 3 matematikából
2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.
Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.
+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93
. Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan
*M M* Osnovna raven Alapszint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M10140111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Sobota, 5. junij 010 / 10 minut 010. június
Alapszerkesztések 2. (Merőlegesek szerkesztése, nevezetes szögek, háromszög három oldalból) Merőleges szerkesztése egyeneshez külső pontból
1 Merőleges szerkesztése egyeneshez külső pontból Egy egyeneshez szerkessz egy adott ponton átmenő merőlegest! 1.Végy fel a síkon egy egyenest 2.Végy fel a síkon egy olyan pontot, amely nem az egyenesen
Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc
PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben
FOLYTATÁS A TÚLOLDALON!
ÖTÖDIK OSZTÁLY 1. Egy négyjegyű számról ezeket tudjuk: (1) van 3 egymást követő számjegye; (2) ezek közül az egyik duplája egy másiknak; (3) a 4 db számjegy összege 10; (4) a 4 db számjegy szorzata 0;
matematikából 3. TESZT
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
Szerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2017/2018-as tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
Dr`avni izpitni center. MATEMATIKA Izpitna pola 2 2. feladatlap Vi{ja raven Emelt szint
[ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *M0640M* JESENSKI ROK ŐSZI IDŐSZAK MATEMATIKA Izpitna pola. feladatlap Vi{ja raven Emelt szint Ponedeljek, 8. avgust 006 / 90 minut 006. augusztus
PISA2000. Nyilvánosságra hozott feladatok matematikából
PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács
(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.
Euklidész tételei megoldások c = c a + c b a = c c a b = c c b m c = c a c b 1. Számítsuk ki az derékszögű ABC háromszög hiányzó oldalainak nagyságát, ha adottak: (a) c a = 1,8; c b =, (b) c = 10; c a
Szerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2018/2019-es tanévben TESZT. matematikából
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
6 ; 5 6 ; 4 3 ; 4 3 ; 3 2 ; 9 6 ; 1 2 ; 7 5 ; 3 10 ; 8 4 ; 10 8 ; 2
T rtek. ttekint s A) Ábrázold a törteket az adott számegyenesen! Rendezd nagyság szerint növekvő sorrendbe őket! a) ; 6 ; ; 6 ; ; 6 ; ; 6 ; 7 6 ; ; 9 6 ; 6. 0 b) ; 0 ; ; 7 0 ; ; ; 0 ; 8 0 ; 8 ; ; 0 ; 0.
BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK
IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;
4,5 1,5 cm. Ezek alapján 8 és 1,5 cm lesz.
1. Tekintse az oldalsó ábrát! a. Mekkora lesz a 4. sor téglalap mérete? b. Számítsa ki az ábrán látható három téglalap területösszegét! c. Mekkora lesz a 018. sorban a téglalap oldalai? d. Hány téglalapot
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET TESZT MATEMATIKÁBÓL
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET TESZT MATEMATIKÁBÓL a 2013/2014-es tanévben UTASÍTÁS A TESZT MEGÍRÁSÁHOZ
Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2
Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű
Feladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!
Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU. Izpitna pola 1 A) Slušno razumevanje B) Bralno razumevanje
Š i f r a k a n d i d a t a : Državni izpitni center *M11123111* MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 1 A) Slušno razumevanje B) Bralno razumevanje Torek, 14.
V sivo polje ne pišite. / A szürke mezőbe ne írjon!
*M1640111M* /0 *M1640111M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma
Érettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
XY_TANULÓ FELADATSOR 8. ÉVFOLYAM MATEMATIKA
XY_TNULÓ FELTSOR 8. ÉVFOLYM MTEMTIK 1. feladat: akkumulátor mc006 Egy mobiltelefon akkumulátorának töltöttségi állapota a következőképpen változott két nap leforgása alatt. Habekapcsoljuk,denemhasználjuk,48óraalattmerülleteljesenatelefon.Folyamatoshasználatban
2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.
1. Az A halmaz elemei a ( 5)-nél nagyobb, de 2-nél kisebb egész számok. B a pozitív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! A \ B = { } 2. Adott a valós számok halmazán
1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége?
1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége? A) 1 B) 336 C) 673 D) 1009 E) 1010 2. BUdapesten a BIciklik kölcsönzésére
BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK
1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2010/2011-es
PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA EMELT SZINT Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
*M M* Osnovna raven Alapszint MATEMATIKA
Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M1140111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Petek, 6. avgust 011 / 10 minut 011. augusztus
Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?
Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet
Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek
2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 1 matematikából
;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
*M M03* 3/20. Formule. , če je n liho naravno število. , če je n
*M16140111M* /0 *M16140111M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma
9. évfolyam Javítóvizsga szóbeli. 1. Mit ért két halmaz unióján? 2. Oldja meg a következő egyenletrendszert a valós számok halmazán!
9. évfolyam Javítóvizsga szóbeli 1. tétel 1. Mit ért két halmaz unióján? 2. Oldja meg a következő egyenletrendszert a valós számok halmazán! 3. Írja fel a és b hatványaiként a következő kifejezést! 4.
Helyvektorok, műveletek, vektorok a koordináta-rendszerben
Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )
MATEMATIKA VERSENY
Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
Megoldások IV. osztály
Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy
Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
matematikából 4. TESZT
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2
1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy