LAN-ok összekapcsolása. Számítógépes Hálózatok Repeater. Hub

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "LAN-ok összekapcsolása. Számítógépes Hálózatok 2008. Repeater. Hub"

Átírás

1 LN-ok özekapcoláa Számítógépe Hálózatok 8 8. LN-ok özekapcoláa; Hálózati réteg Packet orwarding, Link-State-Routing, itance- Vector-Routing Repeater Hub Szignál-regenerátor izikai réteg komponene Két kábelt köt öze ogad egy zignált é azt regenerálva továbbítja a máik kábelen ak az elektromo vagy az optikai zignált továbbítja tartalmat (biteket) nem interpretálja Repeaterek a hálózatot fizikai zegmenekre oztják logikai topológia megmarad catlakozó kábelek közö ütközéi tartományt alkotnak Kábeleket köt öze cillag topológiában Haonló a Repeaterhez zignálokat minden catlakozó kábelen továbbítja izikai réteg komponene tartalmat nem interpretálja catlakozó kábelek egy ütközéi tartományt alkotnak

2 Switch Terminálokat cillag topológiába kapcol öze datkapcolati réteg komponene Kollíziók egy zegmenen belül maradnak frame-ek célcímét megvizgálja é a frame-et cak a megfelelő kábelen továbbítja ehhez zükége puffer é tudni kell melyik állomá hol catlakozik gy táblázatot tart nyilván: Megfigyeli, hogy honnan jön egy comag, a küldőt azon a kábelen lehet elérni ackward learning ridge Lokáli hálózatokat kapcol öze llentétben witch-ekkel (azok cak állomáokat -- eredetileg) datkapcolati réteg komponene lkülöníti a kollíziókat Megvizgálja az érkező frame-eket frame-et cak a megfelelő kábelen továbbítja ak korrekt frame-eket továbbít z átmenet bridge é witch között folyamato Özekapcolhat többféle LN tiput Switche & bridge Tipiku kombináció: bridge cak egy máik állomá a wich zámára Switch ridge Switch ackward learning a bridge-ekben ackward learning triviali witch-ekben mi a helyzet a bridge-ekben? Példa: küld frame-et -nek Tegyük fel, é tudja, hogy hol van azt fogja látni, hogy frame-je LN-ből jön Mivel nem tud LN-ről, azt feltételezi, hogy LN-ben van mi jó! továbbítani fog minden -nak küldött comagot LN-nek, amely LN-be érkezik 7 8

3 ackward learning a bridge-ekben boottrapping z előző példában: honnan tudja kezdetben, hogy hol van? Válaz: NM tudja Opció : kézi konfiguráció nem éppen zép megoldá! Opció : nem zámít egyzerűen továbbítja az imeretlen című comagot mindenfele zon hálózat kivételével, ahonnan érkezett z algoritmu: eláraztá (flood) ha a cím imeretlen; dobja el ha tudja, hogy nem zükége; továbbíta pecifikuan, ha a cél címe imert láraztá bridge által problémák ackward learning by flooding egyzerű, de problémá Példa: gy máodik bridge i özeköti a két LN-t a nagyobb megbízhatóág miatt LN LN végtelen cikluba kerül Hogy kerüljünk el ilyen cikluokat? z frame küldée imeretlen célhoz 9. Megoldá: Valahogy korlátozzuk az eláraztát Korlátozatlan, brute-force flooding nyilvánvalóan roz Kerüljük el a ciklut azáltal, hogy megjegyezzük, hogy mely frame-ek azok, amelyeket már továbbítottunk Ha már láttunk é továbbítottunk egy frame-et, dobjuk el lőfeltétel: állapot é egyértelműég ridge-eknek meg kell jegyezni, hogy mely frame-eket továbbította frame-eknek egyértelműen azonoíthatóknak kell lenni legalább küldő, fogadó é orozatzám zükége az azonoítához Nagy overhead! Különöen az állapotok tároláa a probléma, é a kereé a ok állapot között Nem igen haználják Megoldá: ezítőfák comagok cikluai cak akkor jöhetnek létre, ha a gráf, amit a bridge-ek definiálnak kört tartalmaz Tekintük a LN-okat é a bridge-eket comópontoknak gy LN-comópont é egy bridge-comópont öze van kötve egy éllel, ha a LN a bridge-hez kapcolódik Redundán élek köröket formálnak ebben a gráfban Ötlet: alakítuk át a gráfot köröktől menteé Legegyzerűbb megoldá: Számítunk ki egy fezítőfát ebben a LN-bridge gráfban efiníció: Legyen G=(V,) egy gráf. G egy olyan T=(V, T ) rézgráfját, T, ami egy fa (özefüggő é nem tartalmaz kört), G fezítőfájának nevezzük gyzerű, önkonfiguráló, nem kell kézi beavatkozá e nem optimáli: az intallált bridge-ek kapacitáát nem bizto hogy kihaználja I 8.: Spanning Tree Protocol (STP), gy fezítőfa I 8.w: Rapid Spanning Tree Protocol (RSTP)

4 Spanning Tree Protocol (STP) (I 8.) Spanning Tree Protocol (I 8.) Minden bridge-nek van egy azonoító záma, amely a M címen pluz egy konfigurálható prioritáon alapul z a bridge lez a fezítőfa gyökere, amelynek minimáli az azonoítója lőzör a prioritát haonlítjuk öze az azonoítóban Ha ez egyenlő, akkor a M cím dönt záltal a hálózat adminiztrátora tudja meghatározni a gyökér bridge-t Minden linknek van egy költége Konfigurálható az adminiztrátor által Különböző technológiáknak különböző default költége van Pl.: Sávzéleég STP költég Mbp Mbp 9 Mbp Mbp Gbp Gbp Minden bridge meghatározza a legalaconyabb költégű utat a gyökérhez zok a portok, amelyek ezen az úton vannak, un. root portok leznek z egy zegmenen lévő bridge-k közöen meghatározzák, hogy melyiküknek minimáli a költége a gyökérhez. port, amelyen a zegmen ehhez a bridge-hez kapcolódik, kitüntetett port lez Minden port blokkolódik, amely nem root port é nem kitüntetett port Spanning Tree Protocol (I 8.) Ha a legkiebb költégű út nem egyértelmű: Ha egy bridge-től több minimáli költégű út van a gyökérhez, azt az utat válaztjuk ezek közül, amelyen a következő bridge azonoítója minimáli Ha egy zegmentől több bridge-en kereztül vezet minimáli költégű út a gyökérhez, azt az utat válaztjuk ezek közül, amelyen a következő bridge azonoítója minimáli Ha két bridge több kábellel van özekötve é egy bridge-en több port i root port lehetne, válazuk a legalaconyabb zámú portot root portnak STP lgorithm z STP algoritmuban az üzenetekhez a bridge-k peciáli frame-eket, un. ridge Protocol ata Unit (PU) haználnak. gyökér meghatározáa: bridgek meghirdetik az azonoítókat. Ha változik a legalaconyabb azonoító, amit hallottak, továbbítják a zomzédaiknak. legalaconyabb azonoító eljut minden bridge-hez: legalaconyabb azonoítójú bridge lez a gyökér. zután a költégek a gyökértől eláraztáal terjednek a hálózaton. Minden bridge figyeli a legalaconyabb költégű utat a gyökérhez. Ha ez a költég változik, a bridge továbbítja ezt a zomzédai felé. Nemegyértelműég eetén a bridge-azonoítók alapján dönt. gyökér zabályo intervallumokban Hello broadcat-üzenetet küld.

5 Konvergencia: Switch é bridge Tradícionálian, a megkülönbözteté bridge é witch között értelme volt Ma: a legtöbb kézülék kínálja mindkét tipuú funkcionalitát Gyakran inkább marketing megkülönbözteté, mint műzaki Hálózati réteg 7 8 hálózati réteg Routing-tábla é comag továbbítá (packet forwarding) Lokáli hálózatokat özeköthetünk hub-okkal, witch-ekkel, bridgeekkel az alaconyabb retegekben Hub(fizikai réteg): kollíziók záma nagyon gyoran növekzik Switch (datkapcolati réteg): z útvonalakról a forgalom megfigyeléével gyűjt információt Imeretlen célcím eetén a broadcat problémákat okoz z Internet kb. Mio. lokáli hálózatot tartalmaz... Nagy hálózatokban a comagok továbbítáához útvonal információk zükégeek. hálózati réteg feladatai z útvonal információk felépítée (route detection) comagok továbbítáa (packet forwarding) z Internet-Protokoll lényegében hálózati réteg protokoll IP-Routing-tábla Tartalmazza cél címekhez (detination) a következő zámítógép (gateway) címét a hozzá vezető úton cél meghatározhat egy zámítógépet vagy egy egéz ub-net-et zen kívül tartalmaz egy default-gateway-t Packet forwarding (korábban packet routing-nak nevezték) IP comag (datagram) tartalmazza a küldő IP címét é a cél IP címét mikor egy IP comag megérkezik egy routerhez: Ha a cél IP cím = aját IP cím, akkor a comagot kizállítja Ha a cél IP cím a routing-táblában van, továbbítja a megadott gateway-hez Ha a cél IP-ubnet a routing-táblában van, továbbítja a megadott gatewaynek gyébként továbbítja a default-gateway-nek 9

6 Internet Protocol IP z adatok a küldőtől a cél-állomáig IP-comagokban kerülnek átvitelre comagok fejléce tartalmazza a cél IP-címét IPv: it-címek IPv: 8 it-címek 8 Ver HL ToS Total Length Identification - M ragment Offet octet TTL Protocol Source ddre Header etination ddre Option (max. octet) ata IPv comag omag továbbítá az Internet Protokollban IP-comag (datagram) tartalmazza TTL (Time-to-Live): hop-ok zámát Küldő IP címét él IP címét gy comag kezelée a routerben TTL = TTL - 8 Ver HL ToS Total Length Identification - M ragment Offet TTL Protocol Source ddre etination ddre Option (max. octet) Ha TTL akkor packet-forwarding a routing-tábla alapján Ha TTL = vagy probléma lép fel a packet-forwarding-nél: Töröljük a comagot Ha a comag nem IMP-comag (Internet ontrol Meage Protocol), akkor Küldjünk IMP-comagot (TTL equal during tranit), melyben Küldő IP címe = aktuáli IP cím él IP címe = az eredeti küldő IP címe ata Statiku é dinamiku routing orwarding: omagok továbbítáa Routing: Útvonalak meghatározáa, azaz routing-tábla felépítée (rute detection) Statiku routing routing-táblát manuálian építjük fel Ki é tatiku LN-ok eetén értelme inamiku routing routing-tábla felépítée é aktualizáláa automatizált entalizált algoritmu, pl. Link State gy/minden állomának imerni kell minden információt ecentráli algoritmu, pl. itance Vector minden routeren lokálian dolgozik, lokáli információkkal Legrövidebb utak fája ingle ource hortet path dott: gy irányított gráf G = (V,), w : R nem negatív élúlyokkal Kezdő comópont V Legyen P útvonal úlya w(p) := e P w(e) az élek úlyainak özege P-ben u é v távolága G-ben, u,v V, egy legrövidebb út úlya G-ben u é v között : d(u,v) := min{ w(p) : P egy út u-tól v-hez G-ben}. Kereük: egy legrövidebb utat kezdő comóponttól minden má v V \ {} comóponthoz G-ben eltezük, hogy minden v V \ {} elérhető -ből. Nem elérhető comóponthoz nem létezhet legrövidebb út em Megoldá: gy fa, melynek gyökere é minden v V \ {} comóponthoz tartalmaz egy legrövidebb utat -től v-hez G-ben

7 ijktra algoritmua Ötlet: legrövidebb utakat hozuk zerint növekvő orrendben zámítjuk ki. Minden v V comóponthoz kizámítjuk a következő értékeket: d[v]: egy legrövidebb út hoza -től v-hez, pred[v]: a v-t megelőző comópont egy legrövidebb úton -től v-hez. z algoritmu végrehajtáa után az élhalmaz { (pred[v],v) : v V \ {} } megadja egy legrövidebb utak fáját gyökérrel G-ben. gy v comópontot kéz -nek jelölünk: ready[v] = true, ha már meghatároztunk egy legrövidebb utat -től v-hez (röv. legrövidebb -v utat). nem kéz comópontok halmazát, amelyeket egy current ditance d[v] kéz comópontból egy éllel elérünk, horizont-nak nevezzük. ource node ready horizon ijktra algoritmua Invariánok: Minden horizont beli comópontot egy Q priority-queue-ban tárolunk, úgy hogy minden v Q comópontra a következő érvénye: d[v] egy legrövidebb -v út hoza mindazon utak között, melyek v-n kívül cak kéz comópontokat tartalmaznak, pred[v] a v-t megelőző comópont egy ilyen úton, v prioritáa Q-ban d[v] Inicializálá d[]:=, ready[]:=true, minden v zomzédjára: d[v]:=w(,v), pred[v]:=, ready[v]:=fale, Q.Inert(v,d[v] ). Minden v V \ {} comópontra: d[v]:=, ready[v]:=fale. ijktra algoritmua ijktra algoritmua z invariánok megőrzée egy iteráció után Minden lépében egy új comópont lez kéz, egy comópont v minimáli prioritáal. d[v] már tartalmazza a helye értéket. Mivel v minimáli prioritáú comópont, minden olyan -v út úlya, amely nem kéz comópontot i tartalmaz, legalább olyan nagy, mint annak az útnak a hoza, amit már megtaláltunk a cak kéz comópontokat tartalmazó utak között. Legyen dj[v] := { u : (v,u) }, v V, a v-hez adjacen comópontok halmaza minden u dj[v], ha u Q, meg kell vizgálni, hogy -től u-hoz direkt v-ből egy rövidebb út vezet-e, mint azok az utak, amik cak v-től különböző kéz comópontot tartalmaznak. Ha igen, akkor aktualizáljuk pred[u] := v é d[u] := d[v] + w(v,u), cökkentük u prioritáát Q-ban. minden u dj[v], ha u Q é u nem kéz : pred[u] := v, d[u] := d[v] + w(v,u), u-t be kell zúrni Q-ba d[u] prioritáal. ijktra(g,,w) Output: egy legrövidebb utak fája T=(V, ) G-ben gyökérrel := Ø; ready[] := true; ready[v] := fale; v V \ {}; d[] := ; d[v] :=; v V \ {}; priority_queue Q; 7 forall v dj[] do 8 pred[v] := ; 9 d[v] := w(,v); Q.Inert(v,d[v]); od while Q Ø do v := Q.eleteMin(); := U {(pred[v],v)}; ready[v] := true; forall u dj[v] do 7 if u Q and d[v] + w(v,u) < d[u]) then 8 pred[u] := v; 9 d[u] := d[v] + w(v,u); Q.ecreaePriority(u,d[u]); ele if u Q and not ready[u] then pred[u] := v; d[u] := d[v] + w(v,u); Q.Inert(u,d[u]); fi od 7 od 7 8

8 9 ijktra algoritmua utái idő (ibonacci Heap-pel): # Q.Inert(): n (comópontonként ) -- O(n) idő # Q.eleteMin(): n (comópontonként ) -- O(n log n) idő # Q.ecreaePriority(): m (élenként ) -- O(m) idő # tezt a 7. é. orban: m (élenként ) -- O(m) idő Inicializálá: O(n) idő Özeen: O(n log n + m) idő Tárigény: O(n+m) ijktra: Példa zimmetrikuan irányított élek ellman-ord algoritmu Negatív élúlyok eetén ijktra algoritmua nem működik ellman-ord algoritmu (97) megoldja a problémát O( V ) idő alatt. inamiku programozá: a k-adik iteráció után, k=,, V -, minden v V: ha d[v], akkor d[v] egy -v út P v úlya é d[v] nem nagyobb mint egy legrövidebb -v út úlya, amely k élt tartalmaz pred[v] = ha d[v] =, egyébként pedig (pred[v],v) az utoló él a P v úton ellman-ord(g,,w) forall v V do d[v] := ; pred[v] := d[] := for k := to V do forall (u,v) do if d[u] + w(u,v) < d[v] then 7 d[v] := d[u] + w(u,v) 8 pred[v] := u 9 forall (u,v) do if d[u] + w(u,v) < d[v] then error negatív úlyú ciklut találtunk" ellman-ord: Példa ügg az élek feldolgozáának orrendjétől

9 itance Vector Routing Protokoll ellman-ord algoritmunak az eloztott változatát haználja, azaz minden comópont cak a direkt zomzédjaival kommunikál zinkron működé comópontoknak nem ugyanabban a körben kell információkat cerélniük Minden router nyilvántart egy táblát minden lehetége célhoz egy bejegyzéel (ditance vector) egy bejegyzé tartalmazza a legrövidebb út (becült) költégét (delay, vagy #hop) a következő comópont címét ezen az úton (next hop) minden router imeri a költéget a direkt zomzédaihoz Periodikuan elküldi a tábláját minden zomzédjának mikor egy router megkapja a zomzéd tábláját aktualizálja a aját tábláját Initial ditance vector of cot next hop vector after received vector cot next hop - Initial ditance vector of cot next hop - - final ditance vector cot next hop ount to Infinity Probléma Jó hír gyoran terjed Új kapcolat létrejöttekor gyoran aktualizálódnak a táblák Roz hír laan terjed Kapcolat kieik zomzédok felváltva növelik a távolágokat ount to Infinity Probléma é nem tudja, hogy nem elérhető (amíg a távolág el nem ér egy limitet, amit -nek tekintenek) ikluok keletkezhetnek itance vector of cot next hop - itance table of cot next hop itance table of cot next hop cot next hop 7 cot next hop 7 Röviddel utánna itance vector of cot next hop itance table of cot next hop itance table of cot next hop cot next hop cot next hop 9 ount to Infinity Probléma Módoítáok a itance-vector routing protokollokban a ping-pong-cikluokat (count to infinity) megakadályozáához plit horizon: olyan utakat nem küld viza a comópont annak a zomzédjának, amit tőle tanult a példában nem küldi a (,,) ornak megfelelő utat viza -nek, mert azt -től kellett tanulnia plit horizon with poion revere: negatív információt küld viza pl. (,) utat küldi viza -nek Mindkét módzer cak két comópontból álló ciklut kerül el itance table of cot next hop itance table of cot next hop - Link State Protokoll Minden Link State router tárolja a hálózat topológiáját egy nem-eloztott legrövidebb utak algoritmut haznál routerek Link State Packet (LSP) által cerélnek ki információkat LSP tartalmazza az LSP-t létrehozó r router IP címét a költégét r minden direkt zomzédjához orozatzámot (SQNO) TTL (time to live) mezőt Megbízható eláraztá (Reliable looding) minden comópont aktuáli LSP-jét tároljuk továbbítjuk az LSP-ket minden zomzédo comóponthoz azon comópont kivételével, amely az LSP-t felénk továbbította továbbítánál cökkentjük a TTL értékét periodikuan létrehozunk egy új aját LSP-t növekvő SQNO-val

10 lapo routing korlátai Link State Routing O( n) bejegyzére van zükég, ahol n a routerek záma, a maximáli fok Minden comópont minden má comópontnak el kell hogy küldje az információit itance Vector O(n) bejegyzé routerenként ikluokat okozhat Konvergencia ideje a hálózat méretével nő z Internet több mint routert tartalmaz ezek a u.n. lapo routing módzerek nem haználhatók az egéz Internetre Megoldá: Hierarchiku routing utonomou Sytem (S), Intra-S é Inter-S routing utonomou Sytem (S) gy két zintű modellt ad a routinghoz az Interneten Példa S-re: elte.hu Intra-S-routing routing az S-en belül pl. RIP, OSP, IGRP,... Inter-S-routing a Kapcolódái pont: átjáró (gateway) teljeen decentráli routing Mindeki aját maga határozza meg az optimalizálái kritériumát pl. GP, GP (korábban).b b Hot Inter-S routing between and Gateway.a.a Gateway Hot.c c a a b c Intra-S routing b within S d Intra-S routing within S 7 8 Intra-S routing: RIP Routing Information Protocol (R 8) itance Vector algoritmu távolág metrika = hop zám (linkek záma) távolág vektorokat (ditance vector) minden router minden Repone-üzenettel (advertiement) adja át a zomzédjának zomzédok zintén egy új advertiement-et küldenek ha a táblájuk ezáltal megváltozott Minden dvertiement-ben célhálózathoz hirdetik meg az utakat UP-vel (UP port ) Ha 8-ig nem kap a router advertiement-et egy zomzédjától az utakat a zomzédon kereztül érvénytelennek deklarálja új dvertiment-eket küld a zomzédainak Hogy elkerülje a ping-pong-cikluokat (count to infinity), plit horizon with poion revere módzert haznál Végtelen távolág = Hop (limitet zab a hálózat átmérőjére) Intra-S routing: OSP routing (Open Shortet Path irt) open = nyilvánoan rendelkezére álló Link-State algoritmu LS comagok terjeztée a topológiát minden comópontban tárolja az útvonalakat ijktra algoritmuával zámítja ki OSP-advertiment TP-vel, növeli a biztonágot (ecurity) az egéz S-be eláraztja (broadcat) több egyenlő költégű útvonal lehetége 9

11 Intra-S routing -- Hierarchiku OSP Nagy hálózatokhoz két hierarchia zint: Lokáli terület é gerinchálózat (backbone) Lokáli: Link-tate advertiement Minden comópont cak az irányt zámítja ki má lokáli területek hálózataihoz Local rea order Router: aját lokáli területeik távolágait foglalják öze zeket má Lokal rea order Router-eknek meghirdetik (advertiement) ackbone Router OSP protokollt haználnak a gerinchálózatra korlátozva oundary Router: Má S-ekkel kapcolnak öze Intra-S routing: IGRP (Interior Gateway Routing Protocol) ISO-Protokoll (98-a évek közepe), a RIP utódja itance-vector-protokoll, mint a RIP Holddown time Split horizon Poion revere Különböző költég metrikákat támogat elay, andwidth, Reliability, Load, tb TP-t haznál a routing információk kicerélééhez utonóm rendzerek (S) tipuai Stub-S ak egy má S-hez kapcolódik Multihomed S Több S-hez kapcolódik Nem továbbítja má S-ek forgalmát Tranit S Több kapcolat Továbbítja má S-ek üzeneteit (pl. ISP) Large company Large company ackbone ervice provider ackbone ervice provider Small company onumer ISP onumer ISP Peering point Inter-S-Routing Inter-S-Routing nehéz... Szervezetek megtagadhatják az üzenetek továbbítáát (pl. cak fizető ügyfelek a comagjait továbbítja) Politikai követelmények Továbbítá má orzágokon kereztül?.a Gateway b.c Hot a d c b Intra-S routing within S Különböző S-ek routing-metrikái okzor nem özehaonlíthatók Útvonal optimalizálá lehetetlen! Inter-S-Routing megpróbálja legalább a comópontok elérhetőégét lehetővé tenni Méret: inter-domain routereknek ma kb.. hálózatról kell tudni.b Inter-S routing between and.a a Gateway c b Intra-S routing within S Hot

12 Inter-S routing: GP (order Gateway Protocol) z inter-s routing tandard GPv Path Vector protokoll Haonló a itance Vector protokollhoz Minden order Gateway meghirdeti minden zomzédjának (peer) az egéz utat (S-ek orozata) a célig (advertiement) TP-t haznál mikor Gateway X az utat Z-hez Peer-Gateway W-nek küldi akkor W válazthatja ezt az utat, vagy éppen nem Optimalizálái kritériumok: költégek, politika, etc Ha W az X által meghirdetett utat válaztja, akkor meghirdeti Path(W,Z) = (W, Path (X,Z)) Megjegyzé X tudja zabályozni a hozzá érkező forgalmat a meghirdetéek által. Komplikált protokoll

Számítógépes Hálózatok 2010

Számítógépes Hálózatok 2010 Számítógépe Hálózatok 00 9. Hálózati réteg Packet orwarding, Link-State-Routing, itance- Vector-Routing hálózati réteg Lokáli hálózatokat özeköthetünk hub-okkal, witch-ekkel, bridgeekkel az alaconyabb

Részletesebben

A hálózati réteg. Számítógépes Hálózatok Internet Protocol IP. Routing-tábla és csomag továbbítás (packet forwarding)

A hálózati réteg. Számítógépes Hálózatok Internet Protocol IP. Routing-tábla és csomag továbbítás (packet forwarding) hálózati réteg Számítógépe Hálózatok 0 8. Hálózati réteg Packet orwarding, Routing, itance Vector Routing, Link State Routing, RIP, OSP, IGRP Lokáli hálózatokat özeköthetünk hub-okkal, witch-ekkel, bridgeekkel

Részletesebben

Számítógépes Hálózatok 2011

Számítógépes Hálózatok 2011 Számítógépe Hálózatok 0 9. Hálózati réteg Packet orwarding, Link-State-Routing, itance- Vector-Routing hálózati réteg Lokáli hálózatokat özeköthetünk hub-okkal, witch-ekkel, bridgeekkel az alaconyabb retegekben

Részletesebben

LAN-ok összekapcsolása. Számítógépes Hálózatok Repeater. Hub. 8. LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Routing

LAN-ok összekapcsolása. Számítógépes Hálózatok Repeater. Hub. 8. LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Routing LAN-ok özekapcoláa Számítógépe Hálózatok 0 8. LAN-ok özekapcoláa; Hálózati réteg Packet orwarding, Routing Hálózatok, 0 Hálózatok, 0 Repeater Hub Szignál-regenerátor izikai réteg komponene Két kábelt köt

Részletesebben

Számítógépes Hálózatok 2011

Számítógépes Hálózatok 2011 Számítógépe Hálózatok 7. LN-ok özekapcoláa; Hálózati réteg Packet orwarding, Routing Hálózatok, LN-ok özekapcoláa Hálózatok, Repeater Szignál-regenerátor izikai réteg komponene Két kábelt köt öze ogad

Részletesebben

Számítógépes Hálózatok LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Link-State-Routing, Distance- Vector-Routing

Számítógépes Hálózatok LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Link-State-Routing, Distance- Vector-Routing Számítógépe Hálózatok 8 8. LN-ok özekapcoláa; Hálózati réteg Packet orwarding, Link-State-Routing, itance- Vector-Routing LN-ok özekapcoláa Repeater Szignál-regenerátor izikai réteg komponene Két kábelt

Részletesebben

Az előadáshoz. Tartalom

Az előadáshoz. Tartalom z előadához lőadá: Kedd :-: óra,. terem Hálózattervezé lapjai 7 : lapok, minimáli fezítőfák, legrövidebb utak Honlap: http://people.inf.elte.hu/lukovzki/oure/7nwt Irodalom: ktuáli publikációk J. heriyan,

Részletesebben

Az Ethernet példája. Számítógépes Hálózatok 2012. Az Ethernet fizikai rétege. Ethernet Vezetékek

Az Ethernet példája. Számítógépes Hálózatok 2012. Az Ethernet fizikai rétege. Ethernet Vezetékek Az Ethernet példája Számítógépes Hálózatok 2012 7. Adatkapcsolati réteg, MAC Ethernet; LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Routing Gyakorlati példa: Ethernet IEEE 802.3 standard A

Részletesebben

Számítógépes Hálózatok 2013

Számítógépes Hálózatok 2013 Számítógépes Hálózatok 2013 9. Hálózati réteg Packet Forwarding, Link-State-Routing, Distance- Vector-Routing, RIP, OSPF, IGRP 1 Distance Vector Routing Protokoll ellman-ford algoritmusnak az elosztott

Részletesebben

Számítógépes Hálózatok 2012

Számítógépes Hálózatok 2012 Számítógépes Hálózatok 2012 7. Adatkapcsolati réteg, MAC Ethernet; LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Routing 1 Az Ethernet példája Gyakorlati példa: Ethernet IEEE 802.3 standard

Részletesebben

Számítógépes Hálózatok

Számítógépes Hálózatok Számítógépes Hálózatok 7a. Előadás: Hálózati réteg ased on slides from Zoltán Ács ELTE and. hoffnes Northeastern U., Philippa Gill from Stonyrook University, Revised Spring 06 by S. Laki Legrövidebb út

Részletesebben

Számítógépes Hálózatok 2008

Számítógépes Hálózatok 2008 Számítógépes Hálózatok 2008 7. datkapcsolati réteg, MC korlátozott verseny, WLN, Ethernet; LN-ok összekapcsolása 1 MC alréteg Statikus Multiplexálás Dinamikus csatorna foglalás Kollízió alapú protokollok

Részletesebben

Hálózati Algoritmusok

Hálózati Algoritmusok Hálózati Algoritmuok 05 GLS: Egy kálázható helymeghatározó zerviz Jinyang Li, John Jannotti, Dougla S. J. De Couto, David R. Karger, Robert Morri: A Scalable Location Service for Geographic Ad Hoc Routing,

Részletesebben

2: Minimális feszítőfák, legrövidebb utak. HálózatokII, 2007

2: Minimális feszítőfák, legrövidebb utak. HálózatokII, 2007 Hálózatok II 007 : Minimális feszítőfák, legrövidebb utak Fák, Feszítőfák Egy irányítatlan gráf egy fa, ha összefügő és nem tartalmaz kört. Egy irányítatlan G=(V,E) gráf feszítőfája egy olyan fa, melynek

Részletesebben

MAC alréteg. Számítógépes Hálózatok Protokollok korlátozott versennyel. Adaptív fa bejárás protokoll

MAC alréteg. Számítógépes Hálózatok Protokollok korlátozott versennyel. Adaptív fa bejárás protokoll MC alréteg Számítógépes Hálózatok 2011 6. datkapcsolati réteg, MC korlátozott verseny, adaptív fa bejárás, Ethernet; LN-ok összekapcsolása Statikus Multiplexálás inamikus csatorna foglalás Kollízió alapú

Részletesebben

Dinamikus routing - alapismeretek -

Dinamikus routing - alapismeretek - Router működési vázlata Dinamikus routing - alapismeretek - admin Static vs Dynamic Static vs Dynamic Csoportosítás Csoportosítás Belső átjáró protokollok Interior Gateway Protocol (IGP) Külső átjáró protokollok

Részletesebben

Számítógépes Hálózatok 2013

Számítógépes Hálózatok 2013 Számítógépes Hálózatok 2013 6. datkapcsolati réteg, MC CSM/CD, versenymentes protokollok, korlátozott verseny, Ethernet; LN-ok összekapcsolása 1 Kollízió felismerés (collision detection) CSM/CD Ha két

Részletesebben

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT október 29. HSNLab SINCE 1992

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT október 29. HSNLab SINCE 1992 Hálózati Technológiák és Alkalmazások Vida Rolland, BME TMIT 2018. október 29. Link-state protokollok OSPF Open Shortest Path First Első szabvány RFC 1131 ( 89) OSPFv2 RFC 2178 ( 97) OSPFv3 RFC 2740 (

Részletesebben

Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban

Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban Hoszt kommunikáció Statikus routing Két lehetőség Partnerek azonos hálózatban (A) Partnerek különböző hálózatban (B) Döntéshez AND Címzett IP címe Feladó netmaszk Hálózati cím AND A esetben = B esetben

Részletesebben

Újdonságok Nexus Platformon

Újdonságok Nexus Platformon Újdonságok Nexus Platformon Balla Attila balla.attila@synergon.hu CCIE #7264 Napirend Nexus 7000 architektúra STP kiküszöbölése Layer2 Multipathing MAC Pinning MultiChassis EtherChannel FabricPath Nexus

Részletesebben

Routing IPv4 és IPv6 környezetben. Professzionális hálózati feladatok RouterOS-el

Routing IPv4 és IPv6 környezetben. Professzionális hálózati feladatok RouterOS-el Routing IPv4 és IPv6 környezetben Professzionális hálózati feladatok RouterOS-el Tartalom 1. Hálózatok osztályozása Collosion/Broadcast domain Switchelt hálózat Routolt hálózat 1. Útválasztási eljárások

Részletesebben

Routing. Számítógép-hálózatok. Dr. Lencse Gábor. egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék

Routing. Számítógép-hálózatok. Dr. Lencse Gábor. egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék Routing Számítógép-hálózatok Dr. Lencse Gábor egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék lencse@sze.hu Út(vonal)választás - bevezetés A csomagok továbbítása általában a tanult módon,

Részletesebben

Tájékoztató. Használható segédeszköz: -

Tájékoztató. Használható segédeszköz: - A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 52 481 02 Irodai informatikus Tájékoztató A vizsgázó az első lapra írja fel a nevét!

Részletesebben

20 bájt 8 bájt. IP fejléc UDP fejléc RIP üzenet. IP csomag UDP csomag

20 bájt 8 bájt. IP fejléc UDP fejléc RIP üzenet. IP csomag UDP csomag lab Routing protokollok Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem IP forgalomirányítás általában Hierarchikus (2 szintű) AS-ek közötti: EGP Exterior Gateway

Részletesebben

Számítógépes Hálózatok ősz Hálózati réteg IP címzés, ARP, Circuit Switching, Packet Switching

Számítógépes Hálózatok ősz Hálózati réteg IP címzés, ARP, Circuit Switching, Packet Switching Számítógépes Hálózatok ősz 2006 10. Hálózati réteg IP címzés, ARP, Circuit Switching, Packet Switching 1 Inter-AS-Routing Inter-AS routing Inter-AS-Routing nehéz... between A and B C.b Gateway B Szervezetek

Részletesebben

Forgalomirányítás (Routing)

Forgalomirányítás (Routing) Forgalomirányítás (Routing) Tartalom Forgalomirányítás (Routing) Készítette: (BMF) Forgalomirányítás (Routing) Autonóm körzet Irányított - irányító protokollok Irányítóprotokollok mőködési elve Távolságvektor

Részletesebben

Hálózati Technológiák és Alkalmazások

Hálózati Technológiák és Alkalmazások Hálózati Technológiák és Alkalmazások Vida Rolland Moldován István BME TMIT 2016. október 21. Routing - Router Routing (útválasztás) Folyamat, mely során a hálózati protokollok csomagjai a célállomáshoz

Részletesebben

Az internet ökoszisztémája és evolúciója. Gyakorlat 4

Az internet ökoszisztémája és evolúciója. Gyakorlat 4 Az internet ökoszisztémája és evolúciója Gyakorlat 4 Tartományok közti útválasztás konfigurálása: alapok Emlékeztető: interfészkonfiguráció R1 R2 link konfigurációja R1 routeren root@openwrt:/# vtysh OpenWrt#

Részletesebben

MAC sub-réteg. Számítógépes Hálózatok ősz Protokollok korlátozott versennyel. Adaptív fa protokoll

MAC sub-réteg. Számítógépes Hálózatok ősz Protokollok korlátozott versennyel. Adaptív fa protokoll MC sub-réteg Számítógépes Hálózatok ősz 2006 8. datkapcsolati réteg, MC korlátozott verseny, Ethernet, WLN; LN-ok összekapcsolása Statikus Multiplexálás Dinamikus csatorna foglalás Kollízió alapú protokollok

Részletesebben

Hálózati Technológiák és Alkalmazások

Hálózati Technológiák és Alkalmazások Hálózati Technológiák és Alkalmazások Vida Rolland BME TMIT 2016. október 28. Internet topológia IGP-EGP hierarchia előnyei Skálázhatóság nagy hálózatokra Kevesebb prefix terjesztése Gyorsabb konvergencia

Részletesebben

IP alapú kommunikáció. 4. Előadás Routing 1 Kovács Ákos

IP alapú kommunikáció. 4. Előadás Routing 1 Kovács Ákos IP alapú kommunikáció 4. Előadás Routing 1 Kovács Ákos Routing Útvonalválasztási processz, mely utat keres két hálózat között Nem csak az IP-s világ része PSTN telefonoknál is volt útvonalválasztás A switch-elt

Részletesebben

Hálózatok építése és üzemeltetése

Hálózatok építése és üzemeltetése Hálózatok építése és üzemeltetése OSPF gyakorlat 1 Ismétlés 2 Routing protokollok Feladatuk optimális útvonal (next hop) kiszámítása bármely csomópontok között aktuális állapot információ gyűjtés a hálózatról

Részletesebben

Routing update: IPv6 unicast. Jákó András BME EISzK

Routing update: IPv6 unicast. Jákó András BME EISzK Routing update: IPv6 unicast Jákó András goya@eik.bme.hu BME EISzK Változatlan alapelvek: IPv4 IPv6 prefixek a routing table-ben különféle attribútumokkal a leghosszabb illeszkedő prefix használata kétszintű

Részletesebben

Az adott eszköz IP címét viszont az adott hálózat üzemeltetői határozzákmeg.

Az adott eszköz IP címét viszont az adott hálózat üzemeltetői határozzákmeg. IPV4, IPV6 IP CÍMZÉS Egy IP alapú hálózat minden aktív elemének, (hálózati kártya, router, gateway, nyomtató, stb) egyedi azonosítóval kell rendelkeznie! Ez az IP cím Egy IP cím 32 bitből, azaz 4 byte-ból

Részletesebben

routing packet forwarding node routerek routing table

routing packet forwarding node routerek routing table Az útválasztás, hálózati forgalomirányítás vagy routing (még mint: routeing, route-olás, routolás) az informatikában annak kiválasztását jelenti, hogy a hálózatban milyen útvonalon haladjon a hálózati

Részletesebben

2015.06.25. Villámvédelem 3. #5. Elszigetelt villámvédelem tervezése, s biztonsági távolság számítása. Tervezési alapok (norma szerint villámv.

2015.06.25. Villámvédelem 3. #5. Elszigetelt villámvédelem tervezése, s biztonsági távolság számítása. Tervezési alapok (norma szerint villámv. Magyar Mérnöki Kamara ELEKTROTECHNIKAI TAGOZAT Kötelező zakmai továbbképzé 2015 Villámvédelem #5. Elzigetelt villámvédelem tervezée, biztonági távolág zámítáa Villámvédelem 1 Tervezéi alapok (norma zerint

Részletesebben

Kollízió felismerés (collision detection) CSMA/CD. Számítógépes Hálózatok CSMA/CD periódusai. Mi a teendő kollízió esetén? B Idle!

Kollízió felismerés (collision detection) CSMA/CD. Számítógépes Hálózatok CSMA/CD periódusai. Mi a teendő kollízió esetén? B Idle! Számítógépes Hálózatok 2013 6. datkapcsolati réteg, MC CSM/CD, versenymentes protokollok, korlátozott verseny, Ethernet; LN-ok összekapcsolása Kollízió felismerés (collision detection) CSM/CD Ha két csomag

Részletesebben

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT november 5. HSNLab SINCE 1992

Hálózati Technológiák és Alkalmazások. Vida Rolland, BME TMIT november 5. HSNLab SINCE 1992 Hálózati Technológiák és Alkalmazások Vida Rolland, BME TMIT 2018. november 5. Adatátviteli feltételek Pont-pont kommunikáció megbízható vagy best-effort (garanciák nélkül) A cél ellenőrzi a kapott csomagot:

Részletesebben

Számítógépes Hálózatok ősz Adatkapcsolati réteg, MAC korlátozott verseny, Ethernet, WLAN; LAN-ok összekapcsolása

Számítógépes Hálózatok ősz Adatkapcsolati réteg, MAC korlátozott verseny, Ethernet, WLAN; LAN-ok összekapcsolása Számítógépes Hálózatok ősz 2006 8. Adatkapcsolati réteg, MAC korlátozott verseny, Ethernet, WLAN; LAN-ok összekapcsolása 1 MAC sub-réteg Statikus Multiplexálás Dinamikus csatorna foglalás Kollízió alapú

Részletesebben

Az internet ökoszisztémája és evolúciója. Gyakorlat 4

Az internet ökoszisztémája és evolúciója. Gyakorlat 4 Az internet ökoszisztémája és evolúciója Gyakorlat 4 Tartományok közti útválasztás konfigurálása: alapok Emlékeztető: interfészkonfiguráció R1 R2 link konfigurációja R1 routeren root@openwrt:/# vtysh OpenWrt#

Részletesebben

Forgó mágneses tér létrehozása

Forgó mágneses tér létrehozása Forgó mágnee tér létrehozáa 3 f-ú tekercelé, pólupárok záma: p=1 A póluoztá: U X kivezetéekre i=io egyenáram Az indukció kerület menti elozláa: U X kivezetéekre Im=Io amplitúdójú váltakozó áram Az indukció

Részletesebben

Internet használata (internetworking) Készítette: Schubert Tamás

Internet használata (internetworking) Készítette: Schubert Tamás Internet használata (internetworking) Készítette: (BMF) Internet/1 Internet használata (internetworking) Az együttműködő számítógépek kapcsolódhatnak: kizárólag LAN-hoz, kizárólag WAN-hoz, vagy LAN-ok

Részletesebben

MAC címek (fizikai címek)

MAC címek (fizikai címek) MAC címek (fizikai címek) Hálózati eszközök egyedi azonosítója, amit az adatkapcsolati réteg MAC alrétege használ Gyárilag adott, általában ROM-ban vagy firmware-ben tárolt érték (gyakorlatilag felülbírálható)

Részletesebben

Hálózati Technológiák és Alkalmazások

Hálózati Technológiák és Alkalmazások Hálózati Technológiák és Alkalmazások Vida Rolland BME TMIT 016. március 9. Routing - Router Routing (útválasztás) Folyamat, mely során a hálózati protokollok csomagjai a célállomáshoz jutnak A routing

Részletesebben

Hálózatok Rétegei. Számítógépes Hálózatok és Internet Eszközök. TCP/IP-Rétegmodell. Az Internet rétegei - TCP/IP-rétegek

Hálózatok Rétegei. Számítógépes Hálózatok és Internet Eszközök. TCP/IP-Rétegmodell. Az Internet rétegei - TCP/IP-rétegek Hálózatok Rétegei Számítógépes Hálózatok és Internet Eszközök WEB FTP Email Telnet Telefon 2008 2. Rétegmodell, Hálózat tipusok Közbenenső réteg(ek) Tw. Pair Koax. Optikai WiFi Satellit 1 2 Az Internet

Részletesebben

Hálózati architektúrák és Protokollok PTI 6. Kocsis Gergely

Hálózati architektúrák és Protokollok PTI 6. Kocsis Gergely Hálózati architektúrák és Protokollok PTI 6 Kocsis Gergely 2018.04.11. Hálózati konfiguráció $ ifconfig Kapcsoló nélkül kiíratja a csomópont aktuális hálózati interfész beállításait. Kapcsolókkal alkalmas

Részletesebben

Hálózati architektúrák laborgyakorlat

Hálózati architektúrák laborgyakorlat Hálózati architektúrák laborgyakorlat 4. hét Dr. Orosz Péter, Skopkó Tamás 2012. szeptember Hálózati réteg (L3) Kettős címrendszer Interfész konfigurációja IP címzés: címosztályok, alhálózatok, szuperhálózatok,

Részletesebben

TestLine - zsoltix83 hálozat 1 Minta feladatsor

TestLine - zsoltix83 hálozat 1 Minta feladatsor lkalom: n/a átum: 2017.01.19 10:36:08 Oktató: n/a soport: n/a Kérdések száma: 24 kérdés Kitöltési idő: 42:56 Pont egység: +1-0 Szélsőséges pontok: 0 pont +51 pont Értékelés: Pozitív szemléletű értékelés

Részletesebben

FPC-500 hagyományos tűzjelző központ

FPC-500 hagyományos tűzjelző központ Tűzjelző rendzerek FPC-500 hagyományo tűzjelző központ FPC-500 hagyományo tűzjelző központ www.bochecrity.h Maga minőégű modern megjelené alkalma a közforgalmú területekre Szövege LCD kijelző Kapható 2,

Részletesebben

V2V - routing. Intelligens közlekedési rendszerek. VITMMA10 Okos város MSc mellékspecializáció. Simon Csaba

V2V - routing. Intelligens közlekedési rendszerek. VITMMA10 Okos város MSc mellékspecializáció. Simon Csaba V2V - routing Intelligens közlekedési rendszerek VITMMA10 Okos város MSc mellékspecializáció Simon Csaba MANET Routing Protokollok Reaktív routing protokoll: AODV Forrás: Nitin H. Vaidya, Mobile Ad Hoc

Részletesebben

Hálózati réteg, Internet

Hálózati réteg, Internet álózati réteg, Internet álózati réteg, Internet Készítette: (BM) Tartalom z összekapcsolt LN-ok felépítése. z Ethernet LN-okban használt eszközök hogyan viszonyulnak az OSI rétegekhez? Mik a kapcsolt hálózatok

Részletesebben

Hálózati rendszerek adminisztrációja JunOS OS alapokon

Hálózati rendszerek adminisztrációja JunOS OS alapokon Hálózati rendszerek adminisztrációja JunOS OS alapokon - áttekintés és példák - Varga Pál pvarga@tmit.bme.hu Áttekintés Általános laborismeretek Junos OS bevezető Routing - alapok Tűzfalbeállítás alapok

Részletesebben

Konfiguráljuk be a TCP/IP protokolt a szerveren: LOAD INETCFG A menüpontokból válasszuk ki a Proctcols menüpontot:

Konfiguráljuk be a TCP/IP protokolt a szerveren: LOAD INETCFG A menüpontokból válasszuk ki a Proctcols menüpontot: A TCP/IP protokolll konfigurálása Konfiguráljuk be a TCP/IP protokolt a szerveren: LOAD INETCFG A menüpontokból válasszuk ki a Proctcols menüpontot: A NetWare-ben beállítható protokolllok jelennek meg

Részletesebben

Hálózatok építése és üzemeltetése

Hálózatok építése és üzemeltetése Hálózatok építése és üzemeltetése Routing protokollok 1 Mai téma Eddig hálózati funkciók (NAT, Firewall, DHCP, DNS) Tulajdonképpen switch / bridge (Layer 2) router (Layer 3) is alap hálózati funkciók Mai

Részletesebben

FORGALOMIRÁNYÍTÓK. 6. Forgalomirányítás és irányító protokollok CISCO HÁLÓZATI AKADÉMIA PROGRAM IRINYI JÁNOS SZAKKÖZÉPISKOLA

FORGALOMIRÁNYÍTÓK. 6. Forgalomirányítás és irányító protokollok CISCO HÁLÓZATI AKADÉMIA PROGRAM IRINYI JÁNOS SZAKKÖZÉPISKOLA FORGALOMIRÁNYÍTÓK 6. Forgalomirányítás és irányító protokollok 1. Statikus forgalomirányítás 2. Dinamikus forgalomirányítás 3. Irányító protokollok Áttekintés Forgalomirányítás Az a folyamat, amely révén

Részletesebben

IP alapú kommunikáció. 5. Előadás Routing 2 Kovács Ákos

IP alapú kommunikáció. 5. Előadás Routing 2 Kovács Ákos IP alapú kommunikáció 5. Előadás Routing 2 Kovács Ákos Az internet ~84000 (2018 )különböző hálózatból épül fel, ezeket domainnek nevezzük Minden domain több routerből és hostból áll, amelyet egy szervezt

Részletesebben

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP kapcsolás hálózati réteg

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP kapcsolás hálózati réteg Dr. Wührl Tibor Ph.D. MsC 04 Ea IP kapcsolás hálózati réteg IP kapcsolás Az IP címek kezelése, valamint a csomagok IP cím alapján történő irányítása az OSI rétegmodell szerint a 3. rétegben (hálózati network

Részletesebben

Egyedi cölöp süllyedésszámítása

Egyedi cölöp süllyedésszámítása 14. zámú mérnöki kézikönyv Friítve: 2016. áprili Egyedi cölöp üllyedézámítáa Program: Cölöp Fájl: Demo_manual_14.gpi Ennek a mérnöki kézikönyvnek tárgya egy egyedi cölöp GEO5 cölöp programmal való üllyedézámítáának

Részletesebben

StP Beléptető és Munkaidő-nyilvántartó Rendszer. Általános leírás

StP Beléptető és Munkaidő-nyilvántartó Rendszer. Általános leírás StP Beléptető é Munkaidő-nyilvántartó Rendzer Általáno leírá StP SComplex Rendzer általáno leírá TARTALOMJEGYZÉK 1. Cégünkről...4 2. Egyéb termékeink...4 2.1. Walk-DVR... 4 2.2. Web-ACS... 5 2.3. ProLock,

Részletesebben

Tartalom. Router és routing. A 2. réteg és a 3. réteg működése. Forgalomirányító (router) A forgalomirányító összetevői

Tartalom. Router és routing. A 2. réteg és a 3. réteg működése. Forgalomirányító (router) A forgalomirányító összetevői Tartalom Router és routing Forgalomirányító (router) felépítésük működésük távolságvektor elv esetén Irányító protokollok autonóm rendszerek RIP IGRP DHCP 1 2 A 2. réteg és a 3. réteg működése Forgalomirányító

Részletesebben

1. Mit jelent a /24 címmel azonosított alhálózat?

1. Mit jelent a /24 címmel azonosított alhálózat? Traffic engineering: a lehetőség, hogy a hálózatban zajló forgalmat sokféle eszközzel racionalizálhassuk. Ilyen az LSP metric, a link coloring, az LSP @ IGP/OSPF. Hibavédelem: az MPLS lehetővé teszi, hogy

Részletesebben

4: Az IP Prefix Lookup Probléma Bináris keresés hosszosztályok alapján. HálózatokII, 2007

4: Az IP Prefix Lookup Probléma Bináris keresés hosszosztályok alapján. HálózatokII, 2007 Hálózatok II 2007 4: Az IP Prefix Lookup Probléma Bináris keresés hosszosztályok alapján 1 Internet Protocol IP Az adatok a küldőtől a cél-állomásig IP-csomagokban kerülnek átvitelre A csomagok fejléce

Részletesebben

Számítógépes Hálózatok

Számítógépes Hálózatok Számítógépes Hálózatok 6. Előadás: Adatkapcsolati réteg IV. & Hálózati réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring

Részletesebben

6. Forgalomirányítás

6. Forgalomirányítás 6. Forgalomirányítás Tartalom 6.1 Az irányító protokollok konfigurálása 6.2 Külső forgalomirányító protokollok Az irányító protokollok konfigurálása 6.1 Vissza a tartalomjegyzékre A forgalomirányítás alapjai

Részletesebben

TARTÓSZERKEZETEK II.-III.

TARTÓSZERKEZETEK II.-III. TRTÓSZERKEZETEK II.-III. VSBETOSZERKEZETEK 29.3.7. VSBETO KERESZTMETSZET YOMÁSI TEHERBÍRÁSÁK SZÁMÍTÁS kereztmetzet teherbíráa megelelı ha nyomott km. eetén: Rd hol a normálerı tervezéi értéke (mértékadó

Részletesebben

Hálózati alapismeretek

Hálózati alapismeretek Hálózati alapismeretek Tartalom Hálózat fogalma Előnyei Csoportosítási lehetőségek, topológiák Hálózati eszközök: kártya; switch; router; AP; modem Az Internet története, legfontosabb jellemzői Internet

Részletesebben

IP multicast routing napjainkban. Jákó András BME EISzK

IP multicast routing napjainkban. Jákó András BME EISzK IP multicast routing napjainkban Jákó András goya@eik.bme.hu BME EISzK Tartalomjegyzék IP multicast Multicast routing Interdomain kiegészítések A multicast routing jövője Networkshop 2001. IP multicast

Részletesebben

Számítógépes hálózatok

Számítógépes hálózatok Számítógépes hálózatok HATODIK ELŐADÁS Hálózati réteg, forgalomirányítási protokollok, címzés ELŐADÓ: ÁCS ZOLTÁN Hálózati réteg szerepkörei FŐ FELADATA A csomagok továbbítása a forrás és a cél között.

Részletesebben

Számítógépes Hálózatok ősz 2006

Számítógépes Hálózatok ősz 2006 Számítógépes Hálózatok ősz 2006 1. Bevezetés, Internet, Referenciamodellek 1 Organizáció Web-oldal http://people.inf.elte.hu/lukovszki/courses/nwi/ Előadás Szerda, 14:00-15:30 óra, hely: Mogyoródi terem

Részletesebben

Organizáció. Számítógépes Hálózatok ősz 2006. Tartalom. Vizsga. Web-oldal http://people.inf.elte.hu/lukovszki/courses/nwi/

Organizáció. Számítógépes Hálózatok ősz 2006. Tartalom. Vizsga. Web-oldal http://people.inf.elte.hu/lukovszki/courses/nwi/ Organizáció Számítógépes Hálózatok ősz 2006 1. Bevezetés, Internet, Referenciamodellek Web-oldal http://people.inf.elte.hu/lukovszki/courses/nwi/ Előadás Szerda, 14:00-15:30 óra, hely: Mogyoródi terem

Részletesebben

Perifériakezelés. Segítség március 16. Izsó Tamás Perifériakezelés/ 1

Perifériakezelés. Segítség március 16. Izsó Tamás Perifériakezelés/ 1 Perifériakezelé Segítég. 2016. márciu 16. Izó amá Perifériakezelé/ 1 1. feladat Procezor órajel : 100MHz 10 8 órajel átlago leüté: 10 leüté minimáli időköz: 50 m leüté állapot lekérdé: 500 órajel interrupt

Részletesebben

Hálózati architektúrák és Protokollok Levelező II. Kocsis Gergely

Hálózati architektúrák és Protokollok Levelező II. Kocsis Gergely Hálózati architektúrák és Protokollok Levelező II Kocsis Gergely 2016.04.29. Route tábla Lekérdezése: $ route -n $ netstat -rn Eredmény: célhálózat átjáró netmaszk interfész Route tábla Útválasztás: -

Részletesebben

Számítógépes hálózatok

Számítógépes hálózatok Számítógépes hálózatok NYOLCADIK ELŐADÁS Hálózati réteg, forgalomirányítási protokollok, címzés KÉSZÍTETTE: ÁCS ZOLTÁN KIEGÉSZÍTETTE: LAKI SÁNDOR Hálózati réteg szerepkörei FŐ FELADATA A csomagok továbbítása

Részletesebben

Hálózatok II. A hálózati réteg funkciói, szervezése

Hálózatok II. A hálózati réteg funkciói, szervezése Hálózatok II. A hálózati réteg funkciói, szervezése 2007/2008. tanév, I. félév r. Kovács Szilveszter -mail: szkovacs@iit.uni-miskolc.hu Miskolci gyetem Informatikai Intézet 106. sz. szoba Tel: (46) 565-111

Részletesebben

Számítógépes Hálózatok

Számítógépes Hálózatok Számítógépes Hálózatok 6. Előadás: Adatkapcsolati réteg IV. & Hálózati réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring

Részletesebben

Gyakorló feladatok Az alábbiakon kívül a nappalis gyakorlatokon szereplő feladatokból is lehet készülni.

Gyakorló feladatok Az alábbiakon kívül a nappalis gyakorlatokon szereplő feladatokból is lehet készülni. Gyakorló feladaok z alábbiakon kívül a nappali gyakorlaokon zereplő feladaokból i lehe kézülni. 1. 0,1,,,, zámjegyekből hány olyan valódi hajegyű zám kézíheő, melyben minden zámjegy cak egyzer zerepelhe,

Részletesebben

Organizáció. Számítógépes Hálózatok 2008. Gyakorlati jegy. Vizsga. Web-oldal http://people.inf.elte.hu/lukovszki/courses/08nwi/

Organizáció. Számítógépes Hálózatok 2008. Gyakorlati jegy. Vizsga. Web-oldal http://people.inf.elte.hu/lukovszki/courses/08nwi/ Organizáció Web-oldal http://people.inf.elte.hu/lukovszki/courses/08nwi/ Számítógépes Hálózatok 2008 1. Bevezetés, Internet, Referenciamodellek Előadás Hétfő, 14:00-16:00 óra, hely: Szabó József terem

Részletesebben

6.óra Hálózatok Hálózat - Egyedi számítógépek fizikai összekötésével kapott rendszer. A hálózat működését egy speciális operációs rendszer irányítja.

6.óra Hálózatok Hálózat - Egyedi számítógépek fizikai összekötésével kapott rendszer. A hálózat működését egy speciális operációs rendszer irányítja. 6.óra Hálózatok Hálózat - Egyedi számítógépek fizikai összekötésével kapott rendszer. A hálózat működését egy speciális operációs rendszer irányítja. Csoportosítás kiterjedés szerint PAN (Personal Area

Részletesebben

Forgalomirányítás, irányító protokollok (segédlet az internet technológiák 1 laborgyakorlathoz) Készítette: Kolluti Tamás RZI3QZ

Forgalomirányítás, irányító protokollok (segédlet az internet technológiák 1 laborgyakorlathoz) Készítette: Kolluti Tamás RZI3QZ Forgalomirányítás, irányító protokollok (segédlet az internet technológiák 1 laborgyakorlathoz) Készítette: Kolluti Tamás RZI3QZ A routerek elsődleges célja a hálózatok közti kapcsolt megteremtése, és

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépézeti alapimeretek középzint 2 ÉRETTSÉGI VIZSGA 204. máju 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fonto tudnivalók

Részletesebben

Számítógépes Hálózatok

Számítógépes Hálózatok Számítógépes Hálózatok 10. gyakorlat Számítógépes Hálózatok Gyakorlat 10. 1 Gyakorlat tematika topológia építés STP route iptables Számítógépes Hálózatok Gyakorlat 10. 2 Nyissuk meg a Hyper-V kezelőjét

Részletesebben

Tájékoztató. Értékelés. 100% = 90 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 30%.

Tájékoztató. Értékelés. 100% = 90 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 30%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont

Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont Hálózati réteg Hálózati réteg Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont közötti átvitellel foglalkozik. Ismernie kell a topológiát Útvonalválasztás,

Részletesebben

1 CO (váltóérintkező) 1 CO (váltóérintkező) Tartós határáram / max. bekapcs. áram. 10 / 0,3 / 0,12 6 / 0,2 / 0,12 Legkisebb kapcsolható terhelés

1 CO (váltóérintkező) 1 CO (váltóérintkező) Tartós határáram / max. bekapcs. áram. 10 / 0,3 / 0,12 6 / 0,2 / 0,12 Legkisebb kapcsolható terhelés 70- - Felu gyeleti relék 6-8 - 10 A 70- gy- é háromfáziú hálózatok felu gyelete Válaztható felu gyeleti funkciók: fez. cökkené, fez. növekedé, fez. növekedé é -cökkené, fázikieé, fáziorrend, azimmetria

Részletesebben

Változók közötti kapcsolat II. A nominális / ordinális eset: asszociációs mérőszámok.

Változók közötti kapcsolat II. A nominális / ordinális eset: asszociációs mérőszámok. http://tatiztika.zoc.elte.hu/tartat Táraalomtatiztika, 2003/2004 I. élév. ovember 18. Mai tematika: Változók közötti kapcolat II. A nomináli / orináli eet: azociáció mérőzámok. 1 Bevezeté 1 Hibavalózínűég

Részletesebben

Újdonságok Nexus Platformon

Újdonságok Nexus Platformon Újdonságok Nexus Platformon Balla Attila CCIE #7264 balla.attila@synergon.hu Újdonságok Unified Fabric Twin-AX kábel NX-OS L2 Multipathing Fabric Extender Emlékeztető Továbbítás Routing Van bejegyzés ->

Részletesebben

A kapcsolás alapjai, és haladó szintű forgalomirányítás. 1. Ismerkedés az osztály nélküli forgalomirányítással

A kapcsolás alapjai, és haladó szintű forgalomirányítás. 1. Ismerkedés az osztály nélküli forgalomirányítással A Cisco kapcsolás Networking alapjai Academy Program és haladó szintű forgalomirányítás A kapcsolás alapjai, és haladó szintű forgalomirányítás 1. Ismerkedés az osztály nélküli forgalomirányítással Mártha

Részletesebben

Számítógépes Hálózatok. 6. gyakorlat

Számítógépes Hálózatok. 6. gyakorlat Számítógépes Hálózatok 6. gyakorlat Forgalomirányítás DEFINÍCIÓ A hálózati réteg szoftverének azon része, amely azért a döntésért felelős, hogy a bejövő csomag melyik kimeneti vonalon kerüljön továbbításra.

Részletesebben

Hálózati alapismeretek

Hálózati alapismeretek Hálózati alapismeretek 10. Alhálózatok és forgalomirányítási alapismeretek 1. Irányított protokollok 2. IP alapú irányító protokollok 3. Az alhálózatok működése Irányított protokollok Irányított protokoll

Részletesebben

Kidolgozott minta feladatok kinematikából

Kidolgozott minta feladatok kinematikából Kidolgozott minta feladatok kinematikából EGYENESVONALÚ EGYNLETES MOZGÁS 1. Egy gépkoci útjának az elő felét, a máik felét ebeéggel tette meg. Mekkora volt az átlagebeége? I. Saját zavainkkal megfogalmazva:

Részletesebben

Bevezető. Az informatikai biztonság alapjai II.

Bevezető. Az informatikai biztonság alapjai II. Bevezető Az informatikai biztonság alapjai II. Póserné Oláh Valéria poserne.valeria@nik.uni-obuda.hu http://nik.uni-obuda.hu/poserne/iba Miről is lesz szó a félév során? Vírusvédelem Biztonságos levelezés

Részletesebben

Cisco Teszt. Question 2 Az alábbiak közül melyek vezeték nélküli hitelesítési módok? (3 helyes válasz)

Cisco Teszt. Question 2 Az alábbiak közül melyek vezeték nélküli hitelesítési módok? (3 helyes válasz) Cisco Teszt Question 1 Az ábrán látható parancskimenet részlet alapján mi okozhatja az interfész down állapotát? (2 helyes válasz) a. A protokoll rosszul lett konfigurálva. b. Hibás kábel lett az interfészhez

Részletesebben

20 bájt 8 bájt. IP fejléc UDP fejléc RIP üzenet. IP csomag UDP csomag

20 bájt 8 bájt. IP fejléc UDP fejléc RIP üzenet. IP csomag UDP csomag lab Routing protokollok Távközlési és Médiainformatikai Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem IP forgalomirányítás általában Hierarchikus (2 szintű) AS-ek közötti: EGP Exterior Gateway

Részletesebben

Számítógép hálózatok gyakorlat

Számítógép hálózatok gyakorlat Számítógép hálózatok gyakorlat 5. Gyakorlat Ethernet alapok Ethernet Helyi hálózatokat leíró de facto szabvány A hálózati szabványokat az IEEE bizottságok kezelik Ezekről nevezik el őket Az Ethernet így

Részletesebben

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2011. május 31.

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2011. május 31. Név, felvételi azonoító, Neptun-kód: VI pont(90) : Cak felvételi vizga: cak záróvizga: közö vizga: Közö alapképzée záróvizga meterképzé felvételi vizga Villamomérnöki zak BME Villamomérnöki é Informatikai

Részletesebben

Praktikus tippek: Lambdaszondák ellenőrzése és cseréje

Praktikus tippek: Lambdaszondák ellenőrzése és cseréje A mi zaktudáunk: Az Ön hazna Mint a lambdazonda feltalálója é legnagyobb gyártója, a Boch jól látható többletet kínál a kerekedelem, a műhelyek é gépjármű-tulajdonook zámára a minőég é termékválazték tekintetében.

Részletesebben

Jó teljesítmény... évekre szóló befektetés

Jó teljesítmény... évekre szóló befektetés motoro é LPG meghajtáú ellenúlyo targonák 4 Pneumatiku gumiabronok 4.0 5.5 tonna Jó teljeítmény... évekre zóló befekteté A 4 é 5 t teherbíráú, belő égéű motoro targonák maga hatékonyága é legendá megbízhatóága

Részletesebben

Alhálózatok. Bevezetés. IP protokoll. IP címek. IP címre egy gyakorlati példa. Rétegek kommunikáció a hálózatban

Alhálózatok. Bevezetés. IP protokoll. IP címek. IP címre egy gyakorlati példa. Rétegek kommunikáció a hálózatban Rétegek kommunikáció a hálózatban Alhálózatok kommunikációs alhálózat Alk Sz H Ak F Hol? PDU? Bevezetés IP protokoll Internet hálózati rétege IP (Internet Protocol) Feladat: csomagok (datagramok) forrásgéptől

Részletesebben

IP alapú kommunikáció. 3. Előadás Switchek 3 Kovács Ákos

IP alapú kommunikáció. 3. Előadás Switchek 3 Kovács Ákos IP alapú kommunikáció 3. Előadás Switchek 3 Kovács Ákos Vlanok elbonyolítva Mi lenne, ha egy szolgáltató az ügyfeleit el akarja szeparálni egymástól? Vlan?? Király max 4096 pár ügyfél Megoldás: QinQ, vagy

Részletesebben

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007 Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii

Részletesebben