Eichhardt Iván GPGPU óra anyagai

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Eichhardt Iván GPGPU óra anyagai"

Átírás

1 OpenCL modul 1. óra

2 Eichhardt Iván GPGPU óra anyagai

3 OpenCL API és alkalmazása Gyakorlati példák (C/C++) Pl.: Képfeldolgozás Párhuzamos programozás elméleti megközelítésben

4 Érdekességek (Mire használják a GPGPU-t?) GPGPU fogalmak Heterogén vs GPGPU Gyors elképesztés! OpenCL története OpenCL alapok OpenCL API HelloWorld!?

5 Fehérjék feltekeredésének (folding) szimulációja H1N1 szimuláció Az elveszett Apollo 11 videó Források: Felülírt videó, néhány átvett, és egy felvétel egy monitorról, amin a videót játsszák le éppen. 100x-os gyorsítás

6 FPGA, GPGPU, CPU Field-programmable gate array DES dekódolás esete Data Encryption Standard CPU: 16 millió kulcs / másodperc GPU: 250millió kulcs / másodperc (GTX-295) FPGA: ~1.8 milliárd kulcs / másodperc

7 H1N1 szimuláció L. Barney - Studying the H1N1 virus using NVIDIA GPUs, Nov Apollo 11 R. Wilson - DSP brings you a high-definition moon walk, Sep DES dekódolás Dr. Dobbs - Parallel algorithm leads to crypto breakthrough, Jan A GPGPU problémái A. Ghuloum - The problem(s) with GPGPU, Oct

8 Csak GPU-k GPGPU Stream programozás Compute Shader CUDA stb. (hardverközelibb) HETEROGENEOUS COMPUTING Több mint 1 fajta processzor (CPU, GPU,...) OpenCL szabvány Nyílt

9 Nincs szinkronizáció és kommunikáció Csővezeték alkalmazása Párhuzamosítás Alapműveletek: Map, Amplify, Reduce, Sum

10 Forrás:

11 SIMD GPU multiprocesszor (pl. Vertex tulajdonság streamek) CPU kiterjesztések (SSE*, 3DNow!, MMX, ) Adatközpontúság, erőteljesen párhuzamosítható Az adatot vektorként kezeljük Például (vec_res, v1, v bites float vektorok): vec_res.x = v1.x + v2.x; vec_res.y = v1.y + v2.y; vec_res.z = v1.z + v2.z; vec_res.w = v1.w + v2.w; Egy művelettel írható le

12 32-bit hosszú bináris sztringek Manhattan távolsága Ciklussal int bitcount_naive(int x) { int count = 0; while (x!= 0) { if ((x & 1) == 1) { count++; } x >>= 1; } return count; }

13 32-bit hosszú bináris sztringek Manhattan távolsága Párhuzamos megoldás unsigned int bitcount(unsigned int x) { x = (x & (0x )) + ((x >> 1) & (0x )); x = (x & (0x )) + ((x >> 2) & (0x )); x = (x & (0x0f0f0f0f)) + ((x >> 4) & (0x0f0f0f0f)); x = (x & (0x00ff00ff)) + ((x >> 8) & (0x00ff00ff)); x = (x & (0x0000ffff)) + ((x >> 16) & (0x0000ffff)); return x; }

14 128-bit hosszú bináris sztringek Manhattan távolsága unsigned int bitcount_128(unsigned int4 x) { const unsigned int4 a1(0x , 0x , 0x , 0x ); const unsigned int4 a2(0x , 0x , 0x , 0x ); const unsigned int4 a3(0x0f0f0f0f, 0x0f0f0f0f, 0x0f0f0f0f, 0x0f0f0f0f); const unsigned int4 a4(0x00ff00ff, 0x00ff00ff, 0x00ff00ff, 0x00ff00ff); const unsigned int4 a5(0x0000ffff, 0x0000ffff, 0x0000ffff, 0x0000ffff); } x = (x & (a1)) + ((x >> 1) & (a1)); x = (x & (a2)) + ((x >> 2) & (a2)); x = (x & (a3)) + ((x >> 4) & (a3)); x = (x & (a4)) + ((x >> 8) & (a4)); x = (x & (a5)) + ((x >> 16) & (a5)); return x.x + x.y + x.z + x.w;

15 Sok 128 hosszú bit-sztringre: K-NearestNeighbours 1 maggal, naiv megoldással: Lassú 1 maggal + SIMD: Párhuzamos: sokszoros gyorsulás 8 maggal CPU-n: még gyorsabb.. GPU-val (soksok mag): > NAGYON gyors!

16 (Tábla)

17 Adat- és feladat párhuzamos modell Az OpenCL nyílt szabvány A Khronos Group felügyeli Az OpenCL-C nyelv ISO C99 szabvány részhalmaza Numerikus műveletek az IEEE754 alapján Heterogén platform támogatás A modell alkalmazható a modern GPU-kra, CPU-kra, Cell processzorra, DSP-kre, Intel Xenon Phi, Altera FPGA stb...

18 Hasznos Oldalak!!! AMD Intel nvidia

19 Az OpenCL elemei Platform modell A Host és az eszköz kapcsolata Program modell Data-parallel és Task-parallel lehetőségek Végrehajtási séma Memória modell

20 Hoszt eszköz (Host) OpenCL eszköz (Compute Device, Device ) Számolási egység (Compute Unit, CU ) Pl.: NVidia kártyák multiprocesszora Feldolgozó egység (Processing Element, PE ) Pl.: Videokártya Stream processzora Pl.: CPU magja

21 Data-parallel és Task-parallel lehetőségek Data-parallel (Adat párhuzamos) modell Adat-feladat egység összerendelés Műveletsor végrehajtása több adatra A végrehajtás automatikus elosztása Task-parallel (Feladat párhuzamos) modell Több független feladat párhuzamos végrehajtása

22 Host feladata Kontextus kezelés Végrehajtás vezérlés Kernel program Számító Egységek vezérlése Egy munkacsoporton belül azonos feladat elvégzésére

23 Kernel program Feladat egységek (Work-Items) Globális azonosító (global ID) Minden munkacsoportban azonos program Egységenként eltérhet a vezérlés Munkacsoportok (Work-Groups) Index tér (NDRange)

24 Kernel program Feladat egységek (Work-Items) Munkacsoportok (Work-Groups) Munkacsoport azonosító (work-group ID) A feladat egységeknek lokális azonosító (local ID) Index tér (NDRange)

25 Kernel program Munkacsoportok (Work-Groups) Feladat egységek (Work-Items) Index tér (NDRange) N dimenziós problématér N = 1, 2, 3 Adott méretek N dimenzióban: Globális címtér Munkacsoport méret Azonosítók / indexelés N dimenzióban : Global ID [pl.: get_global_id(1)] Local ID [pl.: get_local_id(0)]

26 Kontextus (Context) Eszközök (Device) Kernelek (OpenCL függvények) Program objektumok (Program) Forrás Végrehajtható bináris Memória objektumok A Host és az Eszközök által használt memória A Kernelek ezt látják

27 Parancs sorok (command-queue) Host által ellenőrzött Kernelek végrehajtását vezérli Parancsok Kernel végrehajtás Memória műveletek (írás és olvasás) Szinkronizáció In-order / Out-of-order végrehajtási módok

28 Négy memória régió az Eszközön Globális Konstans Lokális Privát

29 Globális memória Írható / olvasható bármelyik Work-Itemből Bármely eleme elérhető bármely PE-ből A Host foglalja le (allokálja) a területet, végzi a másolást, és a memória felszabadítást.

30 Konstans memória A Globális memória csak olvasható megfelelője Kernelben statikusan is definiálható Néhány hardware külön erre a célra fenntartott, hatékony memóriaterülettel rendelkezik.

31 Lokális memória A Host nem fér hozzá Egy WG osztott memóriája Minden WI olvashatja/írhatja Privát memória A Host nem fér hozzá Csak az adott WI látja

32 A konzisztenciáról (Hol zavarnak be egymásnak a memória műveletek?) Work-Item szinten WI-ek között nem konzisztens, De egy WI-en belül konzisztens. Work-Group szinten Konzisztens Lokális és Globális memória egy WG-on belül Nem konzisztens a Globlális memória a WG-ok között

33 WorkGroup szinkronizáció WI-ek szinkronizációja Barrier Blokkoló hívás WG-ok között nincs szinkronizáció!!!! CommandQueue szinkronizáció Parancssori Barrier garantált a barrier előtti parancsok lefutása CQ-k között nincs szinkronizáció Várakozás Eseményre minden parancs generál egy eseményt, erre várakoztathatunk egy másikat

34 C99 nyelv módosítva Skalár típusok Vektor típusok (n {2,4,8,16}) (u)charn (u)shortn (u)intn (u)longn floatn Vektor komponensek elérése (float4 f;) Swizzle (f.xyzw, f.x, f.xy, f.xxyy, stb.) Numerikus indexek Felezés (f.odd, f.even, f.lo, f.hi)

35 Implicit konverzió Korlátozott mértékben használható; skalártípusok között Explicit konverzió (Példák) float4 f = (float4)1.0; uchar4 u; int4 c = convert_int4(u); float f = 1.0f; uint u = as_uint(f); // 0x3f lesz az értéke

36 Memóriaterület-jelölők global, local, constant, private Például: global float4 color; Függvény-jelölők kernel Egy OpenCL C függvényt Kernelnek jelöl ki. attribute Fordító segítő attribútumok.

37 Beépített függvények a végrehajtási modellre vonatkozóan get_work_dim() size_t get_{global/local}_{id/size}(uint dimidx); Pl.: size_t id = get_global_id(1); size_t get_num_groups(uint dimidx); size_t get_group_id(uint dimidx);

38 Szinkronizációs függvények barrier(flag); CLK_LOCAL_MEM_FENCE : lokális memóriát konzisztensé teszi CLK_GLOBAL_MEM_FENCE : globális memóriát konzisztensé teszi mem_fence(flag); write_mem_fence(flag); read_mem_fence(flag);

39 További beépített függvények Általános, szokásos függvények Geometriai függvények Összehasonlító függvények floatn típusokon (isequal, isinfinite, stb) Memóriára vonatkozóan: Aszinkron memória olvasás Prefetch (cache-be töltés globális memóriából)

40 Telepítés: T meghajtó subst parancs

41 Első példa letöltése: C host-al BOILERPLATE C++ host-al Kevesebb BOILERPLATE kód

42 VexCL C++ template könyvtár vektor-kifejezések írására és futtatására OpenCL/CUDA-n SharpCL C# bytecoderól OpenCL-re fordít és futtat Érdeklődni az előadónál. HadoopCL MapReduce Heterogén rendszereken, Hadoop és OpenCL integrációval Apple OS X Snow Leopard

43 OpenCL API hívások alapos áttekintése OpenCL fordítási beállítások Példaprogi: Platform/Eszköz-lekérdezések (Pl.: FLOPS) Példaprogi: OpenGL / OpenCL interakció Példaprogi: Képfeldolgozás

44 Köszönöm a figyelmet!

45

46

47

Eichhardt Iván GPGPU óra anyagai

Eichhardt Iván GPGPU óra anyagai OpenCL modul 1. óra Eichhardt Iván iffan@caesar.elte.hu GPGPU óra anyagai http://cg.inf.elte.hu/~gpgpu/ OpenCL API és alkalmazása Gyakorlati példák (C/C++) Pl.: Képfeldolgozás Párhuzamos tervezési minták

Részletesebben

GPGPU és számítások heterogén rendszereken

GPGPU és számítások heterogén rendszereken GPGPU és számítások heterogén rendszereken Eichhardt Iván eichhardt.ivan@sztaki.mta.hu ELTE-s GPGPU óra anyagai http://cg.inf.elte.hu/~gpgpu/ Gyors bevezetés a Párhuzamosságról OpenCL API Gyakorlati példák

Részletesebben

Adat- és feladat párhuzamos modell Az ISO C99 szabvány részhalmaza

Adat- és feladat párhuzamos modell Az ISO C99 szabvány részhalmaza Adat- és feladat párhuzamos modell Az ISO C99 szabvány részhalmaza párhuzamos kiegészítésekkel Numerikus műveletek az IEEE754 alapján Beágyazott és mobil eszközök támogatása OpenGL, OpenGL ES adatcsere

Részletesebben

OpenCL - The open standard for parallel programming of heterogeneous systems

OpenCL - The open standard for parallel programming of heterogeneous systems OpenCL - The open standard for parallel programming of heterogeneous systems GPU-k általános számításokhoz GPU Graphics Processing Unit Képalkotás: sok, általában egyszerű és független művelet < 2006:

Részletesebben

Videókártya - CUDA kompatibilitás: CUDA weboldal: Példaterületek:

Videókártya - CUDA kompatibilitás:   CUDA weboldal:   Példaterületek: Hasznos weboldalak Videókártya - CUDA kompatibilitás: https://developer.nvidia.com/cuda-gpus CUDA weboldal: https://developer.nvidia.com/cuda-zone Példaterületek: http://www.nvidia.com/object/imaging_comp

Részletesebben

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A

Részletesebben

Párhuzamos és Grid rendszerek

Párhuzamos és Grid rendszerek Párhuzamos és Grid rendszerek (10. ea) GPGPU Szeberényi Imre BME IIT Az ábrák egy része az NVIDIA oktató anyagaiból és dokumentációiból származik. Párhuzamos és Grid rendszerek BME-IIT

Részletesebben

Magas szintű optimalizálás

Magas szintű optimalizálás Magas szintű optimalizálás Soros kód párhuzamosítása Mennyi a várható teljesítmény növekedés? Erős skálázódás (Amdahl törvény) Mennyire lineáris a skálázódás a párhuzamosítás növelésével? S 1 P 1 P N GPGPU

Részletesebben

GPGPU-k és programozásuk Dezső, Sima Sándor, Szénási

GPGPU-k és programozásuk Dezső, Sima Sándor, Szénási GPGPU-k és programozásuk Dezső, Sima Sándor, Szénási GPGPU-k és programozásuk írta Dezső, Sima és Sándor, Szénási Szerzői jog 2013 Typotex Kivonat A processzor technika alkalmazásának fejlődése terén napjaink

Részletesebben

GPGPU. GPU-k felépítése. Valasek Gábor

GPGPU. GPU-k felépítése. Valasek Gábor GPGPU GPU-k felépítése Valasek Gábor Tartalom A mai órán áttekintjük a GPU-k architekturális felépítését A cél elsősorban egy olyan absztrakt hardvermodell bemutatása, ami segít megérteni a GPU-k hardveres

Részletesebben

Diplomamunka. Miskolci Egyetem. GPGPU technológia kriptográfiai alkalmazása. Készítette: Csikó Richárd VIJFZK mérnök informatikus

Diplomamunka. Miskolci Egyetem. GPGPU technológia kriptográfiai alkalmazása. Készítette: Csikó Richárd VIJFZK mérnök informatikus Diplomamunka Miskolci Egyetem GPGPU technológia kriptográfiai alkalmazása Készítette: Csikó Richárd VIJFZK mérnök informatikus Témavezető: Dr. Kovács László Miskolc, 2014 Köszönetnyilvánítás Ezúton szeretnék

Részletesebben

Grafikus csővezeték 1 / 44

Grafikus csővezeték 1 / 44 Grafikus csővezeték 1 / 44 Grafikus csővezeték Vertex feldolgozás A vertexek egyenként a képernyő térbe vannak transzformálva Primitív feldolgozás A vertexek primitívekbe vannak szervezve Raszterizálás

Részletesebben

GPGPU alapok. GPGPU alapok Grafikus kártyák evolúciója GPU programozás sajátosságai

GPGPU alapok. GPGPU alapok Grafikus kártyák evolúciója GPU programozás sajátosságai GPGPU alapok GPGPU alapok Grafikus kártyák evolúciója GPU programozás sajátosságai Szenasi.sandor@nik.uni-obuda.hu GPGPU alapok GPGPU alapok Grafikus kártyák evolúciója GPU programozás sajátosságai Szenasi.sandor@nik.uni-obuda.hu

Részletesebben

OpenCL alapú eszközök verifikációja és validációja a gyakorlatban

OpenCL alapú eszközök verifikációja és validációja a gyakorlatban OpenCL alapú eszközök verifikációja és validációja a gyakorlatban Fekete Tamás 2015. December 3. Szoftver verifikáció és validáció tantárgy Áttekintés Miért és mennyire fontos a megfelelő validáció és

Részletesebben

GPGPU programozás lehetőségei. Nagy Máté Ferenc Budapest ALICE ELTE TTK Fizika MSc 2011 e-science Café

GPGPU programozás lehetőségei. Nagy Máté Ferenc Budapest ALICE ELTE TTK Fizika MSc 2011 e-science Café GPGPU programozás lehetőségei Nagy Máté Ferenc Budapest ALICE ELTE TTK Fizika MSc 2011 e-science Café Vázlat Egy, (kettő,) sok. Bevezetés a sokszálas univerzumba. A párhuzamosok a végtelenben találkoznak,

Részletesebben

Google Summer of Code OpenCL image support for the r600g driver

Google Summer of Code OpenCL image support for the r600g driver Google Summer of Code 2015 OpenCL image support for the r600g driver Képek: http://www.google-melange.com a Min szeretnék dolgozni? Kapcsolatfelvétel a mentorral Project proposal Célok Miért jó ez? Milestone-ok

Részletesebben

A CUDA előnyei: - Elszórt memória olvasás (az adatok a memória bármely területéről olvashatóak) PC-Vilag.hu CUDA, a jövő technológiája?!

A CUDA előnyei: - Elszórt memória olvasás (az adatok a memória bármely területéről olvashatóak) PC-Vilag.hu CUDA, a jövő technológiája?! A CUDA (Compute Unified Device Architecture) egy párhuzamos számításokat használó architektúra, amelyet az NVIDIA fejlesztett ki. A CUDA valójában egy számoló egység az NVIDIA GPU-n (Graphic Processing

Részletesebben

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola

Részletesebben

GPU alkalmazása az ALICE eseménygenerátorában

GPU alkalmazása az ALICE eseménygenerátorában GPU alkalmazása az ALICE eseménygenerátorában Nagy Máté Ferenc MTA KFKI RMKI ALICE csoport ELTE TTK Fizika MSc Témavezető: Dr. Barnaföldi Gergely Gábor MTA KFKI RMKI ALICE csoport Elméleti Fizikai Főosztály

Részletesebben

OpenGL Compute Shader-ek. Valasek Gábor

OpenGL Compute Shader-ek. Valasek Gábor OpenGL Compute Shader-ek Valasek Gábor Compute shader OpenGL 4.3 óta része a Core specifikációnak Speciális shaderek, amikben a szokásos GLSL parancsok (és néhány új) segítségével általános számítási feladatokat

Részletesebben

Hallgatói segédlet: Nvidia CUDA C programok debugolása Nvidia Optimus technológiás laptopokon. Készítette: Kovács Andor. 2011/2012 első félév

Hallgatói segédlet: Nvidia CUDA C programok debugolása Nvidia Optimus technológiás laptopokon. Készítette: Kovács Andor. 2011/2012 első félév Hallgatói segédlet: Nvidia CUDA C programok debugolása Nvidia Optimus technológiás laptopokon Készítette: Kovács Andor 2011/2012 első félév 1 A CUDA programok debugolásához kettő grafikus kártyára van

Részletesebben

Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával

Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával 1 1 Eötvös Loránd Tudományegyetem, Informatikai Kar Kari TDK, 2016. 05. 10. Tartalom 1 2 Tartalom 1 2 Optimalizálási

Részletesebben

Flynn féle osztályozás Single Isntruction Multiple Instruction Single Data SISD SIMD Multiple Data MISD MIMD

Flynn féle osztályozás Single Isntruction Multiple Instruction Single Data SISD SIMD Multiple Data MISD MIMD M5-. A lineáris algebra párhuzamos algoritmusai. Ismertesse a párhuzamos gépi architektúrák Flynn-féle osztályozását. A párhuzamos lineáris algebrai algoritmusok között mi a BLAS csomag célja, melyek annak

Részletesebben

OpenCL Kovács, György

OpenCL Kovács, György OpenCL Kovács, György OpenCL Kovács, György Szerzői jog 2013 Typotex Tartalom Bevezetés... xii 1. Az OpenCL története... xii 2. Az OpenCL jelene és jövője... xvii 3. OpenCL a Flynn-osztályokban... xviii

Részletesebben

Java II. I A Java programozási nyelv alapelemei

Java II. I A Java programozási nyelv alapelemei Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 02. 19. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve az annak

Részletesebben

Grafikus csővezeték és az OpenGL függvénykönyvtár

Grafikus csővezeték és az OpenGL függvénykönyvtár Grafikus csővezeték és az OpenGL függvénykönyvtár 1 / 32 A grafikus csővezeték 3D-s színtér objektumainak leírása primitívekkel: pontok, élek, poligonok. Primitívek szögpontjait vertexeknek nevezzük Adott

Részletesebben

GPU Lab. 14. fejezet. OpenCL textúra használat. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc

GPU Lab. 14. fejezet. OpenCL textúra használat. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc 14. fejezet OpenCL textúra használat Grafikus Processzorok Tudományos Célú Programozása Textúrák A textúrák 1, 2, vagy 3D-s tömbök kifejezetten szín információk tárolására Főbb különbségek a bufferekhez

Részletesebben

Számítógépek felépítése

Számítógépek felépítése Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák

Részletesebben

AliROOT szimulációk GPU alapokon

AliROOT szimulációk GPU alapokon AliROOT szimulációk GPU alapokon Nagy Máté Ferenc & Barnaföldi Gergely Gábor Wigner FK ALICE Bp csoport OTKA: PD73596 és NK77816 TARTALOM 1. Az ALICE csoport és a GRID hálózat 2. Szimulációk és az AliROOT

Részletesebben

Autóipari beágyazott rendszerek. Komponens és rendszer integráció

Autóipari beágyazott rendszerek. Komponens és rendszer integráció Autóipari beágyazott rendszerek és rendszer integráció 1 Magas szintű fejlesztési folyamat SW architektúra modellezés Modell (VFB) Magas szintű modellezés komponensek portok interfészek adattípusok meghatározása

Részletesebben

Java II. I A Java programozási nyelv alapelemei

Java II. I A Java programozási nyelv alapelemei Java2 / 1 Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2009. 02. 09. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve

Részletesebben

Programozási nyelvek JAVA EA+GY 1. gyakolat

Programozási nyelvek JAVA EA+GY 1. gyakolat Programozási nyelvek JAVA EA+GY 1. gyakolat EÖTVÖS LORÁND TUDOMÁNYEGYTEM INFORMATIKAI KAR PROGRAMOZÁSI NYELVEK ÉS FORDÍTÓPROGRAMOK TANSZÉK 2018/2019. tavaszi félév Tartalom 1 A Java alapjai 2 Java program

Részletesebben

Operációs rendszerek III.

Operációs rendszerek III. A WINDOWS NT memóriakezelése Az NT memóriakezelése Memóriakezelő feladatai: Logikai-fizikai címtranszformáció: A folyamatok virtuális címterének címeit megfelelteti fizikai címeknek. A virtuális memóriakezelés

Részletesebben

CUDA alapok CUDA projektek. CUDA bemutató. Adatbányászat és Webes Keresés Kutatócsoport SZTAKI

CUDA alapok CUDA projektek. CUDA bemutató. Adatbányászat és Webes Keresés Kutatócsoport SZTAKI SZTAKI 2010 Tartalom 1 2 Tartalom 1 2 GPU-k és a CUDA El zmények grakus kártyák: nagy párhuzamos számítási kapacitás eredetileg csak grakus m veleteket tudtak végezni GPU-k és a CUDA El zmények grakus

Részletesebben

GPGPU: Általános célú grafikus processzorok cgpu: computational GPU GPGPU = cgpu Adatpárhuzamos gyorsító: dedikált eszköz, ami eleve csak erre

GPGPU: Általános célú grafikus processzorok cgpu: computational GPU GPGPU = cgpu Adatpárhuzamos gyorsító: dedikált eszköz, ami eleve csak erre GPGPU: Általános célú grafikus processzorok cgpu: computational GPU GPGPU = cgpu Adatpárhuzamos gyorsító: dedikált eszköz, ami eleve csak erre szolgál. Nagyobb memória+grafika nélkül (nincs kijelzőre kimenet)

Részletesebben

Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor

Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor Ismerkedjünk tovább a számítógéppel Alaplap és a processzeor Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív

Részletesebben

9. MPI

9. MPI 9. MPI kertesz.gabor@nik.uni-obuda.hu MPI Message Passing Interface Elosztott memóriájú párhuzamos programozási API Gyk. folyamatok közötti kommunikáció de facto ipari standard Több száz előre definiált

Részletesebben

SZÁMÍTÓGÉP ARCHITEKTÚRÁK

SZÁMÍTÓGÉP ARCHITEKTÚRÁK SZÁMÍTÓGÉP ARCHITEKTÚRÁK Az utasítás-pipeline szélesítése Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-05-19 1 UTASÍTÁSFELDOLGOZÁS

Részletesebben

KÉPFELDOLGOZÓ ALGORITMUSOK FEJLESZTÉSE GRAFIKUS HARDVER KÖRNYEZETBEN

KÉPFELDOLGOZÓ ALGORITMUSOK FEJLESZTÉSE GRAFIKUS HARDVER KÖRNYEZETBEN KÉPFELDOLGOZÓ ALGORITMUSOK FEJLESZTÉSE GRAFIKUS HARDVER KÖRNYEZETBEN Takács Gábor Konzulens: Vajda Ferenc PhD, adjunktus 1 TARTALOMJEGYZÉK: Budapesti Műszaki és Gazdaságtudományi Egyetem A kutatási projekt

Részletesebben

Oktatási Segédlet. OpenCL

Oktatási Segédlet. OpenCL Miskolci Egyetem Gépészmérnöki és Informatikai Kar Oktatási Segédlet OpenCL Új párhuzamos szoftverfejlesztési lehetőségek Dr. Nehéz Károly Miskolc, 2012.02.29 Tartalomjegyzék Tartalomjegyzék Tartalom Bevezetés...

Részletesebben

Operációs rendszerek gyak.

Operációs rendszerek gyak. Operációs rendszerek gyak. Linux alapok III., Bash Cirok Dávid Hirling Dominik Szegedi Tudományegyetem Cirok.David@stud.u-szeged.hu Hirling.Dominik@stud.u-szeged.hu Linux alapok III., Bash 1 Linkelés 2

Részletesebben

Occam 1. Készítette: Szabó Éva

Occam 1. Készítette: Szabó Éva Occam 1. Készítette: Szabó Éva Párhuzamos programozás Egyes folyamatok (processzek) párhuzamosan futnak. Több processzor -> tényleges párhuzamosság Egy processzor -> Időosztásos szimuláció Folyamatok közötti

Részletesebben

GPU-k a gravitációs hullám kutatásban

GPU-k a gravitációs hullám kutatásban GPU-k a gravitációs hullám kutatásban Debreczeni Gergely MTA KFKI RMKI (Gergely.Debreczeni@rmki.kfki.hu) e-science Cafè 2011. november 14. Óbudai Egyetem Neumann János Informatikai Kar Á.R.: Megfigyelhető

Részletesebben

Bevezetés a párhuzamos programozási koncepciókba

Bevezetés a párhuzamos programozási koncepciókba Bevezetés a párhuzamos programozási koncepciókba Kacsuk Péter és Dózsa Gábor MTA SZTAKI Párhuzamos és Elosztott Rendszerek Laboratórium E-mail: kacsuk@sztaki.hu Web: www.lpds.sztaki.hu Programozási modellek

Részletesebben

4. Funkcionális primitívek GPUn

4. Funkcionális primitívek GPUn 4. Funkcionális primitívek GPUn GPU API emlékeztető Jelenleg a következő eszközök állnak rendelkezésre GPUs kódok futtatására: DirectX vagy OpenGL vagy Vulkan Compute Shader Ez grafikai célokra van kitalálva,

Részletesebben

Processzusok (Processes), Szálak (Threads), Kommunikáció (IPC, Inter-Process Communication)

Processzusok (Processes), Szálak (Threads), Kommunikáció (IPC, Inter-Process Communication) 1 Processzusok (Processes), Szálak (Threads), Kommunikáció (IPC, Inter-Process Communication) 1. A folyamat (processzus, process) fogalma 2. Folyamatok: műveletek, állapotok, hierarchia 3. Szálak (threads)

Részletesebben

Processzusok (Processes), Szálak (Threads), Kommunikáció (IPC, Inter-Process Communication)

Processzusok (Processes), Szálak (Threads), Kommunikáció (IPC, Inter-Process Communication) 1 Processzusok (Processes), Szálak (Threads), Kommunikáció (IPC, Inter-Process Communication) 1. A folyamat (processzus, process) fogalma 2. Folyamatok: műveletek, állapotok, hierarchia 3. Szálak (threads)

Részletesebben

1.1. A forrásprogramok felépítése Nevek és kulcsszavak Alapvető típusok. C programozás 3

1.1. A forrásprogramok felépítése Nevek és kulcsszavak Alapvető típusok. C programozás 3 Darvay Zsolt Típusok és nevek a forráskódban Állandók és változók Hatókörök és az előfeldolgozó Bevitel és kivitel Kifejezések Utasítások Mutatók Függvények Struktúrák és típusok Állománykezelés C programozás

Részletesebben

CUDA haladó ismeretek

CUDA haladó ismeretek CUDA haladó ismeretek CUDA környezet részletei Többdimenziós indextér használata Megosztott memória használata Atomi műveletek használata Optimalizálás Hatékonyság mérése Megfelelő blokkméret kiválasztása

Részletesebben

Négyprocesszoros közvetlen csatolású szerverek architektúrája:

Négyprocesszoros közvetlen csatolású szerverek architektúrája: SzA49. AMD többmagos 2 és 4 processzoros szerverarchitektúrái (a közvetlenül csatolt architektúra főbb jegyei, négyprocesszoros közvetlen csatolású szerverek architektúrája, többmagos szerverprocesszorok

Részletesebben

Internet programozása. 1. előadás

Internet programozása. 1. előadás Internet programozása 1. előadás Áttekintés 1. Mi a PHP? 2. A PHP fejlődése 3. A PHP 4 újdonságai 4. Miért pont PHP? 5. A programfejlesztés eszközei 1. Mi a PHP? Egy makrókészlet volt, amely személyes

Részletesebben

GPGPU-k és programozásuk

GPGPU-k és programozásuk GPGPU-k és programozásuk Szénási Sándor Augusztus 2013 (1.1 verzió) Szénási Sándor Tartalomjegyzék 1. Bevezetés 2. Programozási modell 1. CUDA környezet alapjai 2. Fordítás és szerkesztés 3. Platform modell

Részletesebben

Riak. Pronounced REE-ahk. Elosztott adattároló eszköz. Molnár Péter molnarp@ilab.sztaki.hu

Riak. Pronounced REE-ahk. Elosztott adattároló eszköz. Molnár Péter molnarp@ilab.sztaki.hu Riak Pronounced REE-ahk Elosztott adattároló eszköz Molnár Péter molnarp@ilab.sztaki.hu Mi a Riak? A Database A Data Store A key/value store A NoSQL database Schemaless and data-type agnostic Written (primarily)

Részletesebben

Adatfolyam alapú RACER tömbprocesszor és algoritmus implementációs módszerek valamint azok alkalmazásai parallel, heterogén számítási architektúrákra

Adatfolyam alapú RACER tömbprocesszor és algoritmus implementációs módszerek valamint azok alkalmazásai parallel, heterogén számítási architektúrákra Adatfolyam alapú RACER tömbprocesszor és algoritmus implementációs módszerek valamint azok alkalmazásai parallel, heterogén számítási architektúrákra Témavezet : Dr. Cserey György 2014 szeptember 22. Kit

Részletesebben

Utolsó módosítás:

Utolsó módosítás: Utolsó módosítás:2010. 09. 15. 1 2 Kicsit konkrétabban: az utasítás hatására a belső regiszterek valamelyikének értékét módosítja, felhasználva regiszter értékeket és/vagy kívülről betöltött adatot. A

Részletesebben

Architektúra, megszakítási rendszerek

Architektúra, megszakítási rendszerek Architektúra, megszakítási ek Mirıl lesz szó? Megszakítás fogalma Megszakítás folyamata Többszintű megszakítási ek Koschek Vilmos Példa: Intel Pentium vkoschek@vonalkodhu Koschek Vilmos Fogalom A számítógép

Részletesebben

GPU-Accelerated Collocation Pattern Discovery

GPU-Accelerated Collocation Pattern Discovery GPU-Accelerated Collocation Pattern Discovery Térbeli együttes előfordulási minták GPU-val gyorsított felismerése Gyenes Csilla Sallai Levente Szabó Andrea Eötvös Loránd Tudományegyetem Informatikai Kar

Részletesebben

Pénzügyi algoritmusok

Pénzügyi algoritmusok Pénzügyi algoritmusok A C++ programozás alapjai Tömbök (3. rész) Konstansok Kivételkezelés Tömbök 3. Többdimenziós tömbök Többdimenziós tömbök int a; Többdimenziós tömbök int a[5]; Többdimenziós tömbök

Részletesebben

A számítógép egységei

A számítógép egységei A számítógép egységei A számítógépes rendszer két alapvető részből áll: Hardver (a fizikai eszközök összessége) Szoftver (a fizikai eszközöket működtető programok összessége) 1.) Hardver a) Alaplap: Kommunikációt

Részletesebben

C programozás. 6 óra Függvények, függvényszerű makrók, globális és

C programozás. 6 óra Függvények, függvényszerű makrók, globális és C programozás 6 óra Függvények, függvényszerű makrók, globális és lokális változók 1.Azonosítók A program bizonyos összetevőire névvel (azonosító) hivatkozunk Első karakter: _ vagy betű (csak ez lehet,

Részletesebben

Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei. kisszámítógépes rendszerekben. Kutató Intézet

Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei. kisszámítógépes rendszerekben. Kutató Intézet Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei Kutató Intézet kisszámítógépes rendszerekben Tudományos számításokban gyakran nagy mennyiségű aritmetikai művelet elvégzésére van

Részletesebben

Muppet: Gyors adatok MapReduce stílusú feldolgozása. Muppet: MapReduce-Style Processing of Fast Data

Muppet: Gyors adatok MapReduce stílusú feldolgozása. Muppet: MapReduce-Style Processing of Fast Data Muppet: Gyors adatok MapReduce stílusú feldolgozása Muppet: MapReduce-Style Processing of Fast Data Tartalom Bevezető MapReduce MapUpdate Muppet 1.0 Muppet 2.0 Eredmények Jelenlegi tendenciák Nagy mennyiségű

Részletesebben

Bevezetés a programozásba Előadás: Objektumszintű és osztályszintű elemek, hibakezelés

Bevezetés a programozásba Előadás: Objektumszintű és osztályszintű elemek, hibakezelés Bevezetés a programozásba 2 7. Előadás: Objektumszű és osztályszű elemek, hibakezelés ISMÉTLÉS Osztály class Particle { public: Particle( X, X, Y); virtual void mozog( ); ); virtual void rajzol( ) const;

Részletesebben

Bevezetés, a C++ osztályok. Pere László

Bevezetés, a C++ osztályok. Pere László Programozás módszertan II. p. Programozás módszertan II. Bevezetés, a C++ osztályok Pere László (pipas@linux.pte.hu) PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR INFORMATIKA ÉS ÁLTALÁNOS TECHNIKA TANSZÉK

Részletesebben

Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT

Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges

Részletesebben

Digitális technika VIMIAA01 9. hét

Digitális technika VIMIAA01 9. hét BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges

Részletesebben

Programozás II. 2. Dr. Iványi Péter

Programozás II. 2. Dr. Iványi Péter Programozás II. 2. Dr. Iványi Péter 1 C++ Bjarne Stroustrup, Bell Laboratórium Első implementáció, 1983 Kezdetben csak precompiler volt C++ konstrukciót C-re fordította A kiterjesztés alapján ismerte fel:.cpp.cc.c

Részletesebben

Kommunikációs rendszerek teljesítőképesség-vizsgálata

Kommunikációs rendszerek teljesítőképesség-vizsgálata Kommunikációs rendszerek teljesítőképesség-vizsgálata (3. előadás) Dr. Lencse Gábor lencse@sze.hu https://www.tilb.sze.hu/cgi-bin/tilb.cgi?0=m&1=targyak&2=krtv 1 Miről lesz szó? Az OMNeT++ diszkrét idejű

Részletesebben

GPGPU. Architektúra esettanulmány

GPGPU. Architektúra esettanulmány GPGPU Architektúra esettanulmány GeForce 7800 (2006) GeForce 7800 Rengeteg erőforrást fordítottak arra, hogy a throughput-ot maximalizálják Azaz a különböző típusú feldolgozóegységek (vertex és fragment

Részletesebben

VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek)

VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek) SzA35. VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek) Működési elvük: Jellemzőik: -függőségek kezelése statikusan, compiler által -hátránya: a compiler erősen

Részletesebben

Informatika el adás: Hardver

Informatika el adás: Hardver Informatika 1. 1. el adás: Hardver Wettl Ferenc és Kovács Kristóf prezentációjának felhasználásával Budapesti M szaki és Gazdaságtudományi Egyetem 2017-09-05 Követelmények 3 ZH 5. 9. 14. héten egyenként

Részletesebben

Weblog elemzés Hadoopon 1/39

Weblog elemzés Hadoopon 1/39 Weblog elemzés Hadoopon 1/39 Az előadás témái Egy Hadoop job életciklusa A Weblog-projekt 2/39 Mi a Hadoop? A Hadoop egy párhuzamos programozási séma egy implementációja. 3/39 A programozási séma: MapReduce

Részletesebben

Utolsó módosítás:

Utolsó módosítás: Utolsó módosítás:2011. 09. 29. 1 2 4 5 MMU!= fizikai memóriaillesztő áramkör. Az utóbbinak a feladata a memória modulok elektromos alacsonyszintű vezérlése, ez sokáig a CPU-n kívül a chipset északi hídban

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

HLSL programozás. Grafikus játékok fejlesztése Szécsi László t06-hlsl

HLSL programozás. Grafikus játékok fejlesztése Szécsi László t06-hlsl HLSL programozás Grafikus játékok fejlesztése Szécsi László 2013.02.16. t06-hlsl RESOURCES PIPELINE STAGES RENDER STATES Vertex buffer Instance buffer Constant buffers and textures Index buffer Constant

Részletesebben

Újrakonfigurálható technológiák nagy teljesítményű alkalmazásai

Újrakonfigurálható technológiák nagy teljesítményű alkalmazásai Újrakonfigurálható technológiák nagy teljesítményű alkalmazásai Gyakorlat: SSE utasításkészlet Szántó Péter BME MIT, FPGA Laboratórium Vektorizáció Inline assembly Minden fordító támogatja (kivéve VS x64

Részletesebben

Bevezetés a programozásba Előadás: A const

Bevezetés a programozásba Előadás: A const Bevezetés a programozásba 2 6. Előadás: A const ISMÉTLÉS Interface - Implementation struct Particle { int x,y; unsigned char r,g,b; void rajzol(); }; }; void Particle::rajzol() { gout

Részletesebben

Fejlett programozási nyelvek C++ Iterátorok

Fejlett programozási nyelvek C++ Iterátorok Fejlett programozási nyelvek C++ Iterátorok 10. előadás Antal Margit 2009 slide 1 Témakörök I. Bevezetés II. Iterátor definíció III. Iterátorok jellemzői IV. Iterátorkategóriák V. Iterátor adapterek slide

Részletesebben

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix 2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.

Részletesebben

LabView Academy. Alapismeretek II.

LabView Academy. Alapismeretek II. LabView Academy Alapismeretek II. A LabView grafikus fejlesztői környezet első verzióját több mint 20 éve, 1986-ban adta ki a National Instruments, és azóta vezető platform az ipari alkalmazások között,

Részletesebben

Függvények. Programozás I. Hatwágner F. Miklós november 16. Széchenyi István Egyetem, Gy r

Függvények. Programozás I. Hatwágner F. Miklós november 16. Széchenyi István Egyetem, Gy r Programozás I. Széchenyi István Egyetem, Gy r 2014. november 16. Áttekintés kel kapcsolatos fogalmak deklaráció Több, kompatibilis változat is elképzelhet. Meg kell el znie a fv. hívását. Mindenképp rögzíti

Részletesebben

KUTATÁSOK INFORMATIKAI TÁMOGATÁSA. Dr. Szénási Sándor

KUTATÁSOK INFORMATIKAI TÁMOGATÁSA. Dr. Szénási Sándor KUTATÁSOK INFORMATIKAI TÁMOGATÁSA Dr. Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet Alapvető jellemzői NVIDIA GTX 1080 2560

Részletesebben

Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Az UPPAAL egyes modellezési lehetőségeinek összefoglalása Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Résztvevők együttműködése (1) Automaták interakciói üzenetküldéssel Szinkron

Részletesebben

UNIX: folyamatok kommunikációja

UNIX: folyamatok kommunikációja UNIX: folyamatok kommunikációja kiegészítő fóliák az előadásokhoz Mészáros Tamás http://home.mit.bme.hu/~meszaros/ Budapesti Műszaki Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 A kommunikáció

Részletesebben

Memóriagazdálkodás. Kódgenerálás. Kódoptimalizálás

Memóriagazdálkodás. Kódgenerálás. Kódoptimalizálás Kódgenerálás Memóriagazdálkodás Kódgenerálás program prológus és epilógus értékadások fordítása kifejezések fordítása vezérlési szerkezetek fordítása Kódoptimalizálás L ATG E > TE' E' > + @StPushAX T @StPopBX

Részletesebben

Bepillantás a gépházba

Bepillantás a gépházba Bepillantás a gépházba Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív memória: A számítógép bekapcsolt

Részletesebben

Programozási nyelvek II. JAVA EA+GY 1. gyakolat

Programozási nyelvek II. JAVA EA+GY 1. gyakolat Programozási nyelvek II. JAVA EA+GY 1. gyakolat EÖTVÖS LORÁND TUDOMÁNYEGYTEM INFORMATIKAI KAR PROGRAMOZÁSI NYELVEK ÉS FORDÍTÓPROGRAMOK TANSZÉK 2017/2018. őszi félév Tartalom 1 Amit tudni kell a félévről

Részletesebben

1. Bevezetés szeptember 9. BME Fizika Intézet. Szám. szim. labor ea. Tőke Csaba. Tudnivalók. feladat. Tematika. Moodle Házi feladatok

1. Bevezetés szeptember 9. BME Fizika Intézet. Szám. szim. labor ea. Tőke Csaba. Tudnivalók. feladat. Tematika. Moodle Házi feladatok Számítógépes szimulációk 1. Bevezetés BME Fizika Intézet 2015. szeptember 9. Bevezetés A félév menete C-ismétlés, 1. rész Oktatók: Nagyfalusi Balázs: nagyfalusi@phy.bme.hu, F3 211. : tcsaba@eik.bme.hu,

Részletesebben

Grafikus kártyák, mint olcsó szuperszámítógépek - I.

Grafikus kártyák, mint olcsó szuperszámítógépek - I. (1) Grafikus kártyák, mint olcsó szuperszámítógépek - I. tanuló szeminárium Jurek Zoltán, Tóth Gyula SZFKI, Röntgendiffrakciós csoport (2) Vázlat I. Motiváció Beüzemelés C alapok CUDA programozási modell,

Részletesebben

GPU Lab. 4. fejezet. Fordítók felépítése. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc

GPU Lab. 4. fejezet. Fordítók felépítése. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc 4. fejezet Fordítók felépítése Grafikus Processzorok Tudományos Célú Programozása Fordítók Kézzel assembly kódot írni nem érdemes, mert: Egyszerűen nem skálázik nagy problémákhoz arányosan sok kódot kell

Részletesebben

Grafikus processzorok általános célú programozása (GPGPU)

Grafikus processzorok általános célú programozása (GPGPU) 2015. szeptember 17. Grafikus processzorok általános célú programozása (GPGPU) Eichhardt I., Hajder L. és V. Gábor eichhardt.ivan@sztaki.mta.hu, hajder.levente@sztaki.mta.hu, valasek@inf.elte.hu Eötvös

Részletesebben

Grafikus csővezeték 2 / 77

Grafikus csővezeték 2 / 77 Bevezetés 1 / 77 Grafikus csővezeték 2 / 77 Grafikus csővezeték Vertex feldolgozás A vertexek egyenként a képernyő térbe vannak transzformálva Primitív feldolgozás A vertexek primitívekbe vannak szervezve

Részletesebben

Operációs rendszerek. Az NT memóriakezelése

Operációs rendszerek. Az NT memóriakezelése Operációs rendszerek MS Windows NT (2000) memóriakezelés Az NT memóriakezelése 32-bites virtuális memóriakezelés: 4 GB-os címtartomány, alapesetben: a fels! 2 GB az alkalmazásoké, az alsó 2 GB az OPR-é.

Részletesebben

Szkriptnyelvek. 1. UNIX shell

Szkriptnyelvek. 1. UNIX shell Szkriptnyelvek 1. UNIX shell Szkriptek futtatása Parancsértelmez ő shell script neve paraméterek shell script neve paraméterek Ebben az esetben a szkript tartalmazza a parancsértelmezőt: #!/bin/bash Szkriptek

Részletesebben

A függvény kód szekvenciáját kapcsos zárójelek közt definiáljuk, a { } -ek közti részt a Bash héj kód blokknak (code block) nevezi.

A függvény kód szekvenciáját kapcsos zárójelek közt definiáljuk, a { } -ek közti részt a Bash héj kód blokknak (code block) nevezi. Függvények 1.Függvények...1 1.1.A függvény deníció szintaxisa... 1..Függvények érték visszatérítése...3 1.3.Környezettel kapcsolatos kérdések...4 1.4.Lokális változók használata...4 1.5.Rekurzív hívások...5.kód

Részletesebben

Programozási nyelvek (ADA)

Programozási nyelvek (ADA) Programozási nyelvek (ADA) Kozsik Tamás előadása alapján Készítette: Nagy Krisztián 1. előadás Hasznos weboldal http://kto.web.elte.hu Program felépítése Programegységek (program unit) eljárások (procedure)

Részletesebben

MapReduce paradigma a CAP-tétel kontextusában. Adatb haladóknak. Balassi Márton Adatbázisok haladóknak 2012.

MapReduce paradigma a CAP-tétel kontextusában. Adatb haladóknak. Balassi Márton Adatbázisok haladóknak 2012. MapReduce paradigma a CAP-tétel kontextusában Balassi Márton balassi.marton@gmail.com 2012. október 30. Adatbázisok haladóknak 2012. 2012. október 30. Miről lesz szó? Elosztott adatfeldolgozásról általában

Részletesebben

Programozás I. 3. gyakorlat. Szegedi Tudományegyetem Természettudományi és Informatikai Kar

Programozás I. 3. gyakorlat. Szegedi Tudományegyetem Természettudományi és Informatikai Kar Programozás I. 3. gyakorlat Szegedi Tudományegyetem Természettudományi és Informatikai Kar Antal Gábor 1 Primitív típusok Típus neve Érték Alap érték Foglalt tár Intervallum byte Előjeles egész 0 8 bit

Részletesebben

Máté: Számítógépes grafika alapjai

Máté: Számítógépes grafika alapjai Történeti áttekintés Interaktív grafikai rendszerek A számítógépes grafika osztályozása Valós és képzeletbeli objektumok (pl. tárgyak képei, függvények) szintézise számítógépes modelljeikből (pl. pontok,

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben