Kvantumfizikai jelenségek az élet- és orvostudományokban

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kvantumfizikai jelenségek az élet- és orvostudományokban"

Átírás

1 Kvantumfizikai jelenségek az élet- és orvostudományokban Röntgensugarak Maróti Péter egyetemi tanár, SZTE Röntgencső működés közben Ajánlott olvasmányok: Maróti P. és Laczkó G.: Bevezetés a biofizikába, JATEPress, Szeged, Damjanovich S., Fidy J. és Szőlősi J.: Orvosi biofizika, Semmelweis Kiadó, Budapest Maróti P. és Tandori J.: Biofizikai feladatok, JATEPress, Szeged, 1996.

2 Az eektromágneses sugárzás spektruma Az innováció iskolapéldája A röntgenkvantum energiája a diagnosztikában: kev a terápiában: 5-20 MeV Gyűrűs kéz (Hand with Rings): Wilhelm Conrad Röntgen első, orvosi tárgyú röntgenfelvétele felesége kezéről december 22-én.

3 A röntgensugarak tulajdonságai Röntgen már korai kísérleteivel bebizonyította, hogy a sugárzása: - lumineszcenciát vált ki a kisülési cső falában, - egyenes mentén terjed, - nem térül el mágneses indukcióban (térben), - vastagabb anyagrétegben jobban elnyelődik, mint vékonyabban, - szóródik, amikor (emberi) testen halad át, és - képes gázokat ionizálni. A röntgensugárzás tulajdonságait meghatározó legfontosabb paraméterek: - anódfeszültség: a röntgenkvantum (foton) energiáját határozza meg, - az anód anyagának kémiai összetétele: a karakterisztikus sugárzás hullámhosszát határozza meg, és - a szűrők minősége és vastagsága: a sugárzás keménységét (lágyságát) határozzák meg. Ez az előadás csak a fizikai alapokkal és azok közvetlen alkalmazásaival foglalkozik. A diagnosztikai és terapikus orvosi alkalmazások más előadások anyagát képezik.

4 félárnyék A röntgensugárzás előállítása Fókuszált röntgennyalábot adó cső Coolidge (nagy-vákuum) cső Kettős fókuszú röntgencső Minél kisebb F, annál élesebb a leképezés D nyílásméret, F tárgy R = F d/d d árnyékmag R Minél kisebb R, annál nagyobb a kontraszt. Rövid megvilágítás (hosszú izzószál) Hosszú megvilágítás (rövid izzószál)

5 Röntgencsövek Coolidge-típusú röntgencső 1917-ből. Az izzó katód a bal oldalon látható, az anód a jobb oldalon. A röntgensugarak lefelé hagyják el az anódot.

6 Különböző röntgencsövek A búra (lámpa) átmérője 7 cm A nagyobb cső hossza kb. 25 cm. Egy kis üvegrekeszben aktív szén van, amelyet felizzítanak, ha elromlik a belső vákuum (vákuumszabályzó). A kisebb cső 15 cm hosszú, az üveggömb (lámpa) átmérője 5 cm.

7 Tenyérben tartott röntgencső

8 A: Anód C: Katód T: Anód céltárgy W: röntgenablak árambevezetés a katód izzításához Forgó anódú röntgencső A vákuumcsövön kívüli álló tekercsek (sztátor) elektromágneses tere az anódot szabadon forgathatja, és ezzel az elektronok az anód különböző területeit bombázhatják. anódfeszültség

9 Forgó anódú röntgencső A röntgen emisszó hatásfoka csekély (~1%), azaz sokkal több elektron csapódik az antikatódba, mint amennyi röntgen kvantum onnan távozik. Az anódnak forgnia kellene, de a mozi technikailag még nem tökéletes.

10 Röntgensugárzás keltése gyorsítókkal Linac A lineáris gyorsító elektromágneses katapult, amely az álló elektronokat rövid, egyenes szakaszon relativisztikus (a fénysebességhez közeli) sebességre gyorsítja. Az elektronágyúból nagy sebességű elektronok jönnek ki, amelyeket a nyalábosító csomagokra bont, és felgyorsít. Az elektron pulzáló, nagyenergiájú, haladó mikrohullámú térben mozog. A gyorsító energia kis térrészre koncentrálódik. A gyorsítás hasonló módon történik, mint ahogy a lovon ülő zsoké hajtja a lovat, vagy ahogy az óceán hullámai gyorsítják a rajtuk lovagló szörfdeszkásokat. A négyszög alakú elektromos tér gyorsítja, és átsegíti a töltéseket a féltekék között A mágneses tér eltéríti a töltött részecskéket A ciklotron -elvű elektrongyorsítókat betatronok -nak nevezik.

11 Ciklotron Alapkérdés: Hogyan lehet az ionokat (elektronokat) körpályán tartani, miközben a sebességük állandóan növekszik? Mozogjon az m tömegű ion a homogén B +e mágneses indukcióra merőleges síkban R F sugarú körpályán állandó v sebességgel! A v R pályája stabilis, ha a ráható Lorentz-erő éppen a centripetális erőt adja: Noha a pálya sugara a sbességtől függ, a keringési idő B vagy a (ciklotron-) frekvencia NEM. T f evb R m m eb 2 v R v 2R 2 m v eb 1 eb T 2 m

12 A betatron (Donald Kerst, 1940) transzformátor-szerű elektrongyorsító, amelyben a szekundérkörben az elektronok egyre nagyobb sebességgel végzik körmozgásukat a primér körben folyó váltóáram hatására. Egy érdekes kérdés: hogyan kényszeríthetők az elektronok körpályára, ha egyre nagyobb és nagyobb sebességgel mozognak? Hordozható betatron röntgenkészülék működtetésére. A cirkuláris elektrongyorsító irányított és kemény röntgensugárzást ad. vákuumcső vasmag céltárgy e - α Technikai alapadatok: A kilépő Rtg-sugárzás energiája: 2-6 MeV Dózis-sebesség (3' levegőben): 3R (3cGy)/perc Fókusz nyílás-méret: 01" x.039" Nyalábdivergencia: 26 szögfok Radiografikus érzékenység minimuma: 0.5% AC bemenő teljesítmény: 110/240V 50/60 Hz A röntgensugár szögdivergenciája: α = m e c 2 /E m e az elektron tömege, c a fény terjedési sebessége és E a felgyorsított elektron energiája, amikor elhagyja a betatront.

13 Primértekercs Elektron B pálya Az elektronpályák stabilitási R Szekundértekercs B feltétele betatronban A primértekercsben átfolyó váltóáram időben változó mágneses fluxust kelt, amely az elektronpálya mentén V elektromos feszültséget indukál. Az elektronokat az a (pályamenti) V feszültség ill. a hozzátartozó elektromos térerősség E gyorsítja, amelyet a primér tekercs mágneses fluxusa indukál: Φ B V R 2 t t Newton 2. törvénye alapján: p V R B F e E e e t 2R 2 t V Lorentzerő = a körmozgás centripetális ereje 2 v v Elektronpálya e v Bpálya m p R R p t ( e R B t Ebből: p = e R B pálya és pálya) A mágneses indukciónak az elektronpálya mentén (B pálya ) fele akkorának kell lenni, mint a teljes elektron-térrészre vonatkozó (közepes) mágneses indukció (B). Ezt a mágneses pólusok megfelelő alakjával lehet elérni. B e R t B pálya pálya 1 2 B

14 LINAC (Linear Accelerator) Az elektronokat lineáris gyorsítóval, azaz egyenes mentén is fel lehet nagy sebességre gyorsítani. Ez azonban nem valamennyi elektronra, csupán elektronok csoportjára vonatkozik (impulzus-gyorsítás). Gyorsítási szakaszok ionforrás Elektronimpulzusok sorozata nagyfrekvenciás generátor A hengeres üregvezetőkben nagy frekvenciájú elektromágneses hullám halad, amelynek fázissebességét a szabályosan elhelyezett nyílások (blendék) segítségével az elektron aktuális sebeségéhez kell illeszteni.

15 Linac Céltárgy Ionforrás Nagyfrekvenciás nagyfeszültség Az elektronok meglovagolják a haladó elektromágneses hullámot. A beépített iriszblendék a nagyfrekvenciás elektromágneses hullám fázissebességét az elektron aktuális sebességéhez illesztik, ezzel az elektron együtt tud maradni a haladó hullámmal, és egyes csoportjai lokálisan gyorsíthatók.

16 A röntgensugárzás spektruma Karakterisztikus sugárzás: mivel az elektronok energia-szintjei az anód anyagának atomjaiban diszkrétek (kvantáltak), ezért az általuk keltett röntgensugárzás is kvantált. Ezt fejezik ki az anód anyagára jellemző (karakterisztikus) vonalak a spektrumban. Fékezési sugárzás: Az anódba nagy sebességgel becsapódó elektronok az atomokkal ütköznek, eltérülnek, és végül lefékeződnek. A gyorsuló (itt lassuló) töltés elektromágneses hullámot (röntgensugarat) emittál. Mivel az elektron mozgása nincs korlátoknak (kényszerfeltételeknek) alávetve, így energiája folytonos (nem kvantált). Emiatt a megfigyelt fékezési sugárzás spektruma is folytonos.

17 Beütés/s A 3D röntgenspektrumnak állandó (60 kv) anódfeszültségnél vett síkmetszete K α karakterisztikus K vonalak Anód: Rhodium (céltárgy) K β Fékezési sugárzás λ min hullámhossz (pm)

18 Folytonos és vonalas spektrum Röntgen-spektrum A röntgensugárzás intenzitása Atomi energiaszintek Frekvencia (energia) Hullámhossz A röntgensugarak a magokon kívülről, a belső elektronhéjról származnak. Két típusa van: (1) Karakterisztikus (K- vagy L) sugárzás, amely úgy keletkezik, amikor egy elektron egy külső pályáról a legbelső pályán felszabaduló üresedésbe ugrik. Az így felszabaduló röntgenfoton energiája az atom fajtájára jellemző, és ezzel a spektrométer kémiai elemek azonosítására használható fel. (2). A fékezési sugárzás akkor keletkezik, amikor a nagy sebességű elektronok az atom ill. atommag elektromos terében lefékeződnek. A spektrum folytonos egészen addig a maximális energiáig, amellyel a bombázó elektronok rendelkeznek.

19 Fékezési sugárzás: a Duane Hunt eltolódási törvény A Duane-Hunt törvény a röntgencső fékezési sugárzásának maximális frekvenciáját adja meg, miközben az e töltésű elektronok a V gyorsító (anód)feszültség hatására az anód anyagába ütköznek. Amennyiben az elektron teljes energiája (veszteség nélkül) röntgenkvantummá alakul át, az ehhez tartozó frekvencia, ami egyben a ν max maximális frekvencia is, könnyen meghatározható: ν max = ev/h. Ebből a röntgensugárzás hullámhosszának minimuma is adódik: λ min = (hc)/(ev), ahol h a Planck-állandó és c a vákuumbeli fénysebesség. Ez a törvény az energia megmaradásának elvét fejezi ki, mert a maximális frekvenciánál (minimális hullámhossznál) az elektron E = ev energiája teljes egészében a röntgenkvantum E = hν energiájává alakul át. A folyamatot fordított (inverz) fotoelektromos effektusnak is hívják.

20 Fékezési sugárzás: teljesítmény és hatásfok A teljes energia (vagy stacionárius esetben teljesítmény) a görbe alatti terület: Fejezzük ki E max ot az anódfeszültségből: 0 N Wtotal de E N Helyettesítsük a függvényt egyenessel: const Z E E és számítsuk ki az integrált (a háromszög alatti területet): P P total invested c Rtg W Z I total I anode const Z anode V V anode 2 anode E max 0 c E Rtg max max 2 max E EdE const Z 2 Z V anode 2 Wtotal const/2 Z e V A teljes teljesítmény az anódba időegység alatt beérkező elektronok számával, azaz az anódárammal egyenes arányban növekszik: 2 Ptotal crtg Z IanodeVanode E 2 anode Itt Z az anód anyagának rendszáma, V anod a gyorsító feszültség, I anod az anódáram és c Rtg V -1. A teljes (emittált) teljesítmény az anódfeszültség négyzetével arányos. A röntgensugárzás keltésének hatásfoka: Volfram anódra V anod = 100 kv feszültségnél η < 1%. Az energia főként hővé alakul.

21 rendszám A nehezebb elemeknek akár 3 vonaluk is van. Karakterisztikus sugárzás: Moseley törvénye Moseley a karakterisztikus röntgensugárzás K-sorozatának frekvenciáját mérte az anód anyagának (rendszámának) függvényében (Ca-tól Zn-ig). A különböző elemek karakterisztikus sugárzásának hullámhosszait az elemek rendszámai szerint lehetett rendezni. A könnyebb elemeknek 2 vonaluk van. frekvencia négyzetgyöke Lineáris összefüggés adódott az anód anyagának elemszáma (rendszáma) és a karakterisztikus sugárzás frekvenciájának négyzetgyöke között.

22 Moseley törvénye, mint empirikus törvény k1 Z k 2 ahol ν a röntgensugárzás fő (vagy K) vonalának frekvenciája, k 1 és k 2 állandók, amelyek a spektrumvonal típusától függnek, és Z az elem rendszáma. Például: k 1 = k 2 valamennyi K α vonalra, ezzel a kifejezés egyszerűbben felírható: ν = (Z - 1) 2 Hz

23 Moseley törvénye, mint a Bohr atommodell (energiarendszer) következménye A karakterisztikus röntgenvonalakat két energiaszint közötti átmenet következményeként is leírhatjuk, hasonlóan ahhoz, mint ahogy az optikai spektrumvonalakat a hidrogénatomban a Bohr modell alapján származtattuk. A röntgenátmenet hullámszáma (a hullámhossz reciproka): R Z nf ni ahol R a Rydberg állandó (1, m -1 ), Z az elem rendszáma, n a főkvantumszám, amelynek indexében f ill. i a végső ill. a kezdeti állapotot jelölik és σ egy állandót ( 1) jelent. Mivel a röntgensugárzásért felelős elektronátmenetek az atom legbelső elektronhéjain következnek be, Kezdet (i) Vég (f) ezért Z (az atommag elektromos töltése) erős befolyással bír a spektroszkópiai termekre (energiaszintekre). Emiatt jelenik meg Z a Moseley kifejezésben, noha az optikai spektroszkópiai termekből hiányzik (lásd a Balmer összefüggést).

24 Probléma A röntgencső céltárgya króm (Cr), a gyorsító anódfeszültség 60 kv. Vázolja fel a cső röntgensugárzásának spektrumát, és jelölje meg a karakterisztikus sugárzás K α és K β vonalait, valamint a fékezési sugárzás hullámhosszának minimumát (λ min )! Megoldás A króm karakterisztikus röntgensugárzásának K β és K α vonalai a fékezési sugárzás folytonos spektrumára ülve jelennek meg. Ki is számíthatjuk a K α vonal hullámhosszát és a fékezési sugárzás hullámhosszának minimumát (λ min ). A 24 Cr elemnek Z = 24 a rendszáma. A K α vonal hullámhosszát a Moseley-összefüggésből határozhatjuk meg: λ Kα = c/ν = ( m/s)/[2, (Z-1) 2 1/s] = 230 pm. A fékezési sugárzás legkisebb hullámhosszát a Duane-Hunt eltolódási szabály alapján számolhatjuk ki: λ min = hc/(ev) = 20,7 pm. A röntgensugárzás intenzitása Karakterisztikus vonalak λ min Folytonos spektrum

25 Röntgen-fluoreszcencia (X-ray fluorescence, XRF) Hevesy György röntgensugárral (és nem elektronokkal) gerjesztett karakterisztikus röntgensugárzást, mint ahogy fénnyel gerjesztünk fluoreszcenciát (innen is az elnevezés). A mért karakterisztikus röntgensugárzásból a minta elemösszetételét lehet meghatározni. Később neutron-bombázáson alapuló (neutron-) aktivációs analízist vezetett be, amely érzékenyebbnek bizonyult a röntgenfluoreszcencia módszerénél. Hevesy György 1943-ban kémiai Nobel díjat kapott az izotópos jelölési technika bevezetéséért a kémiai és biológiai folyamatok kinetikai vizsgálatában. Ő volt az első, aki a radioaktív izotópokat jelölésre vezette be a biológiában, majd később a nukleáris orvostudományban. Típikus röntgen-fluoreszcencia (XRF) spektrum. Vegyük észre a rendszámok folyamatos növekedését balra haladva.

26 PIXE: Részecskével kiváltott röntgenemisszió (részecske) röntgensugárzás PIXE: particle-induced X-ray emission Alfa-sugarakkal (vagy protonokkal) való bombázás nagyon sok anyagban az atomok belső elektronhéjaiban röntgenátmeneteket vált ki. A karakterisztikus röntgensugarak az atomok energiaszintjeiről adnak felvilágosítást, így az ismeretlen összetételű mintában az atomok azonosítására használhatók fel.

27 A röntgensugarak elhajlása (diffrakciója) HULLÁM + KRISTÁLY DIFFRAKCIÓ Ha fényhullám atomok (molekulák) szabályos térbeli elrendezésén (hálózatán), azaz KRISTÁLYon halad keresztül, akkor elhajlik, és interferencia-jelenség lép fel. Ez meg is fordítható: ha a sugárzás kristályon áthaladva elhajlási jelenséget mutat, akkor a sugárzás hullám-tulajdonságú, és nem részecskékből áll. Max von Laue kísérlete: a röntgensugárzás sókristályon áthaladva interferencia-képet mutatott, amely egyrészt annak bizonyítéka volt, hogy a sókristály szabályos szerkezetű (ez akkor nem volt általánosan elfogadott), másrészt a röntgensugárzás nem részecskékből áll, hanem hullám.

28 Minden fekete pont (ú.n. reflexió) a kristályrács atomjain szóródó (elemi) röntgenhullámok összeadódó erősítéséből (interferenciájából) keletkezik. A megfigyelt interferenciakép a kristály szerkezetére jellemző, ezért annak (bonyolult eljárással történő) meghatározására lehet felhasználni.

29 Bragg diffrakciós törvénye és a NaCl kristályszerkezete A Laue-féle diffrakciós képeket a hullámnak a kristálysíkokon való (formális) visszaverődés eredményének is tekinthetjük. L. W. Bragg a platine (Pt) L α karakterisztikus röntgensugarainak NaCl kristályon való elhajlását tanulmányozta, és arra a következtetésre jutott, hogy a kristály rácspontjaiban Na + és Cl - ionok (és nem NaCl molekulák) ülnek. A beeső hullámot minden rácspont szórja, és a megfigyelhető interferencia-kép ezen szórt elemi hullámok szuperpozíciója. Abban az irányban kapunk erősítést, amelyre Bragg törvénye fennáll: 2 d sin n n Erősítés csak abban az irányban lehetséges, amelyre a rétegekről szóródó hullámok közti útkülönbség a hullámhossz egész számú (n) többszöröse. 0,1,2,... ahol d két szomszédos krisztálysík távolsága és Θ a beeső λ hullám-hosszúságú sugárzás iránya és a kristálysík által bezárt szög. A felső és az alatta levő rétegről szóródó hullámok közti útkülönbség: 2d sinθ

30 Kristálysíkok, diffrakció és Bragg törvény elemi cella szórócentrumok hálózati sík hálózati sík hálózati sík Visszaverődési kristálysíkok (sraffozott területek) egyszerű (köbös) kristályban Kétatomos molekulákból felépülő köbös kristály: minden rácspontban két szórócentrum van. Bragg-visszaverődés a kétatomos molekulákból felépülő köbös kristályrács felületeiről jól meghatározott irányokban.

31 Diffrakciós kép Röntgenkrisztallográfia Fázis-probléma: a találkozó hullámok eredő intenzitás-viszonyait (és ebből az összetevők amplitúdóit) tudjuk közvetlenül mérni, de sajnos a hullámok közötti fázis-viszonyok rejtve maradnak. Vannak azonban módszerek, amelyekkel a fázis-információt (korlátozottan) ki tudjuk nyerni. Elektronsűrűségi térkép 1) Fourier-transzformáció; Fourier-finomítás, 2) Többszörös izomorf (nehéz atom) helyettesítés jól meghatározott helyeken, 3) Már ismert szerkezetű fehérjékkel (biomolekulákkal) való közvetlen összehasonlítás 3D szerkezet Goniométer Reakciócentrum-fehérje fotoszintetizáló baktériumból; ~100 kda savas, bázikus, hisztidin.

32 Röntgen-krisztallográfia: milyen a DNS szerkezete atomi feloldásban? Az 1950-s évek elején James Watson és Francis Crick (Cambridge Egyetem) javasolták a (B-)DNS kettős hélikális szerkezetét, amelyet a 20. század legnagyobb jelentőségű biológiai felfedezésének tartanak. Erre a legelső és legfontosabb bizonyítékokat a röntgenkrisztallográfiai mérések adták. A szokatlan DNS struktúrák (Holliday kapcsolódások) kulcsszerepet játszanak a roncsolódott DNS önjavító képességében, amely a biomedicinában is alkalmazásra talál. Alapvetően fontos a gének biológiai működését (mint pl. a genetikai kifejeződést, a DNS mutációit és javító-mechanizmusait) megérteni. Emellett a DNS szerkezetének megértése is lényeges: pl.egyes DNS szerkezeteket miért különösen könnyű károsítani vagy bennük mutációt létrehozni. A DNS szerkezetének megértése legalább annyira fontos, mint a génszekvencia ismerete. A humán genom program (azaz a teljes emberi genom genetikai szekvenciájának megismerése) csak az érem egyik oldala. A másik oldal a különböző típusú DNSek három dimenziós szerkezetei, amelyek ezeket a szekvenciákat (és így végül a biológiai funkciót is) meghatározzák.

33 A röntgensugárzás anyagbeli gyengülése (elnyelése): a Beer-törvény A röntgensugárzás anyagba hatolva fokozatosan, a távolsággal (a behatolási mélységgel) exponenciálisan gyengül: I I 0 e x ahol I 0 az abszorbens felületére merőlegesen beeső sugárzás intenzitása, x a homogén réteg vastagsága, I a sugárzás intenzitása, miután áthaladt, és elhagyja a réteget, valamint μ a gyengítési (abszorpciós) együttható, amely magában foglalja az abszorbens (pl. szövet) anyagi tulajdonságait és kölcsönhatását a sugárzással. I 0 0 Felezési rétegvastagság az a távolság, amelyen áthaladva a sugárzás intenzitása a beeső intenzitás felére csökken: I x H = (ln 2)/μ Tömeggyengítési együttható: μ m = μ/ρ az abszorbens anyagának sűrűségre (ρ) vonatkoztatott értéke. - di(x)=μ I(x)dx ln I/I 0 meredekség: -μ x μ x

34 Röntgen kvantum energiája E (MeV) levegő Z = 7,78 ρ = 0,0012 Tömeggyengítési együttható μ/ρ víz Z = 7,51 ρ = 0,9982 (cm 2 /g) zsír Z = 6,46 ρ = 0,92 izom Z = 7,64 ρ = 1,04 csont Z = 12,31 ρ = 1,65 0,01 5,12 5,329 3,268 5,356 28,51 0,1 0,1541 0,1707 0,1688 0,169 0, , , ,0708 0,0701 0, , , ,0214 0,0219 0, , , ,017 0,0179 0,0207

35 Lineáris gyengítési együttható A röntgensugár gyengítési együtthatójának energia-függése vízben I (x) = I(0) exp(-μ x) VÍZ Klasszikus szórás k Fotoeffektus Compton-effektus C Pár-képződés A röntgenkvantum energiája

36 A röntgenkvantumok az elektronokon rugalmasan (energiaveszteség nélkül) szóródnak. Klasszikus szóródás Gyengítési mechanizmusok Külső fotoeffektus esetén az ionizáló sugárzás egy héjelektront szabadít fel. Fotoelektromos abszorpció (fotoeffektus) A Compton-effektus fotonoknak (röntgen kvantumoknak) szabad vagy gyengén kötött elektronokon való szóródása. Compton-szórás Nagy hν >1,02 MeV energiákon a foton egy-egy, ellentett irányban mozgó elektronná és pozitronná alakulhat át az abszorbeáló anyag atommagjainak közvetlen közelében (az atommag Coulomb-terében). Párképződés

37 A különböző sugárgyengítési mechanizmusok összehasonlítása μ: gyengítési együttható, E: a kvantum energiája, Z: az anyag (kémiai elem) rendszáma mechanizmus Energia-tartomány lágy szövetben Koherens szórás Fotoelektromos abszorpció független Compton-effektus Párképződés

38 Anyag hullámvonalak = fotonpályák Ionizációs folyamatok fotonbesugárzás hatására A különböző kölcsönhatások áttekintése, amelyekkel az anyagba hatoló foton találkozhat. : fotoeffektus Gamma- vagy Röntgensugarak Párképződés Triplett-képződés Comptonszórás A halszálkák a keltett ionpárok pályáit jelölik. A halszálkák sűrűsége az ionizáció sűrűségét jelzik. : Pár-megsemmisülés Egyenes vonalak = elektron ill. pozitronpályák

39 Probléma. Ugyanakkora I 0 intenzitású röntgensugárzással világítunk át egy x 1 = 18 cm vastagságú lágyszövetet és egy ugyanilyen vastagságú szövetet, amelyben x 2 = 4 cm vastagságú csont van a lágyszöveti részben. A lágyszövet gyengítési együtthatója μ 1 = 0.19 cm -1, míg a csonté μ 2 = 0.42 cm -1. Mennyi a kilépő sugarak intenzitásainak aránya? Mennyi a csont kontrasztja? Megoldás. Az I 1 és I 2 intenzitások aránya: I1 I0 exp 1 x1 exp I I exp ( x x ) x ( ) x 2. 5 A radiológiában a háttérszövethez ill. a kérdéses anatómiai szerkezethez tartozó röntgensugárintenzitások relatív különbségét szövet-kontraszt-nak nevezik: C szövet I háttér I I háttér szövet I 1 I 2 x 1 x 2 lágyszövet I 0 I 0 ahol I szövet és I háttér a kérdéses szöveten ill. a (szomszédos) háttérszöveten áthaladó röntgensugárzás intenzitása. Ha a példánkban I 2 -t I szövet re cseréljük, és I 1 et I háttér -re, akkor a csontszövet kontrasztjára C csont = 0,6 adódik. csont

40 Röntgen számítógépes tomográfia, CT Tomográfia: rétegfelvétel; Számítógépes tomográfia: a rétegfelvételek számítógép segítségével való kiértékelése; Röntgen CT: a hagyományos Röntgen-átvilágítási technika szellemes továbbfejlesztése. Az objektumot vékony röntgensugár-nyalábbal világítják át, és a gyengítési együtthatók nagysága és térbeli eloszlása függvényében az objektum mögött elhelyezett detektor érzékeli az átjutott röntgen nyaláb intenzitását. Egy tojásdad alakú, kisebb áteresztőképességű maggal bíró testet világít át a röntgensugárnyaláb. A háttérben a detektor által észlelt intenzitás görbéje látható ben Allen M. Cormack és Godfrey N. Hounsfield orvosi Nobeldíjat kaptak a komputertomográfia kifejlesztésért. A sugárnyaláb körbeforgatásával ugyanebben a síkban átvilágítják a testet, és a mért intenzitásgörbékből kibontakozik az adott síkban (szeletben) elhelyezkedő részletek rajza. A modern CT berendezések egy körülfordulás alatt egyszere több (akár 128) szeletet térképeznek fel. A síkot ezután arrébb tolják, és újra körbeforgatják. Kép rekonstrukció: Hogyan lehet a digitális rétegfelvételekből (röntgensugáráteresztőképességekből) a vizsgált test térbeli szerkezetét megadni?

41 Képrekonstrukció Az algoritmus alapja: ugyanolyan méretű pixelek esetén az adott irányból megfigyelt eredő gyengítési együttható az egyes pixelekben megfigyelhető gyengítési együtthatók összege. Ez az (exponenciális) Beer-törvény egyszerű következménye. n Bármely sorra ill. oszlopra (ha az n darab, megegyező méretű pixelre van darabolva) a mérhető gyengítési együttható: i i1 Egy 5x5-ös pixel ismert ill. ismeretlen gyengítési együtthatókkal 3 jelzett irányban mért eredő gyengítési együtthatóval. Matematikai (számítógépes) feladat: Többismeretlenes lineáris egyenletrendszer megoldása

42 Röntgen számítógépes tomográfia, CT

43 Házi ill. szemináriumi feladatok 1. Mennyi a molibdén (Mo) K α vonalának hullámhossza és fékezési sugárzásának hullámhossz-minimuma, λ min? (Z = 42; a K α vonalra n i = 2 and n f =1; σ =1) 2. Melyik az az elem, amelynek K α sugárzásának hullámhossza λ Kα = 251 pm? (Megoldás: Z = 23, Vanadium) 3. Egy kisülési röntgencső anódja volfram (rendszáma 74). Adja meg a K α (n i = 2) és K β (n i = 3) karakterisztikus röntgensugárzás frekvenciáit! 4. Terápikus célokra olyan elektronokat használnak, amelyeket a betatron MeV energiára gyorsít. Mekkora annak a röntgensugárzásnak a divergenciája, amelyet ezek az elektronok keltenek, miután a betatronból való kilépést követően a céltárgyba ütköznek? 5. Mekkora annak a röntgen kvantumnak a maximális energiája, amely egy 10 kv-os kisülési csőben keletkezhet?

44 Házi ill. szemináriumi feladatok 6. Egy röntgencsőben az anódfeszültség 80 kv, az anódáram 6 ma. Az anód anyaga volfram. a) Mekkora a röntgenkvantum maximális energiája? b) Mi a a röntgen spektrum rövidhullámú határa? c) Mekkora a röntgencső sugárzási teljesítménye? d) Mekkora a röntgensugárzás keletkezésének hatásfoka? e) Mennyi hő termelődik percenként? f) Mekkora az elektron sebessége az anódba való ütközése előtti pillanatban? g) Mennyi elektron ütközik másodpercenként az anódba? 7. A röntgencsőben az anódfeszültséget egy C = 1 μf kapacitású nagyfeszültségű kondenzátor biztosítja. Hány százalékkal csökken az eredeti V = 100 kv anódfeszültség a 2 s-ig tartó és 5 ma anódáramot kívánó kisülés után? Miért szükséges a röntgenkisülés alatt az anódfeszültséget állandó értéken tartani?

45 Házi ill. szemináriumi feladatok 8. A mellkas röntgen-átvilágítására egy olyan röntgencsövet használnak, amelynek anódfeszültsége V = 80 kv, anódárama I = 5 ma és hatásfoka η = 0.65%. a) Mekkora a röntgensugárzás I 0 intenzitása a cső fókuszpontjától r = 1 m távolságban, ha a röntgencső 2π térszögben (azaz félgömb mentén) egyenletesen sugároz? b) Mekkora az abszorbeált dózis a röntgencsőtől r = 1 m távolságban levő mellkasban a t = 10 s ideig tartó átvilágítás alatt? Tételezzük fel, hogy a mellkas mindenütt egyenletesen vastag (x = 10 cm). Az átlagos gyengítési együttható μ = 0,18 cm -1, és az átlagos sűrűség ρ = 1,05 g cm Mekkora a vér kontrasztja lágyszöveti környezetben? Az aorta sugara x = 1 cm, a vér gyengítési együtthatója 0,215 cm -1, míg a lágyszöveti környezetéé 0,211 cm -1. Mennyire emelkedik a kontraszt, ha jódot keverünk a véráramba, amely a vér gyengítési együtthatóját 0,284 cm -1 értékre emeli? 10. A NaCl kristályrács köbös (kocka) rács, amelyben az elemi cella mérete 5,64 Å. Az elemi cella 4 Na + és 4 Cl - iont tartalmaz. A NaCl sűrűsége 2,163 g cm -3. Számítsuk ki ebből az Avogadro mennyiséget!

46 Házi ill. szemináriumi feladatok 11. Számítsuk ki az elsőrendű (n = 1) Bragg reflexió szögeit a λ = 154 pm hullámhosszú röntgensugárzásra, ha a hálózati kristálysíkok távolsága a) 500 pm, b) 1 nm és c) 100 nm! 12. A diffrakcióra vonatkozó Bragg-egyenletből az következik, hogy állandó λ hullámhossz esetén a kristálysíkok közötti d távolság fordítva arányos sin Θ-val. Más szóval, az a szórás, amely a legkisebb távolságnak felel meg, sin Θ maximális értékénél (azaz Θ = 90 o -nál) következik be. Mekkora a feloldás elméleti határa (azaz a legkisebb feloldható távolság), ha λ = 154 pm hullámhosszú röntgensugarat alkalmazunk?

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Röntgensugárzás. Röntgensugárzás

Röntgensugárzás. Röntgensugárzás Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Röntgenanalitika. Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD)

Röntgenanalitika. Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD) Röntgenanalitika Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD) A röntgensugárzás Felfedezése (1895, W. K. Röntgen, katódsugárcső,

Részletesebben

Röntgen. W. C. Röntgen. Fizika-Biofizika

Röntgen. W. C. Röntgen. Fizika-Biofizika Röntgen Fizika-Biofizika 2014. 11. 11. Thomas Edison (1847-1931, USA) Első működő fluoroszkóp (röntgen-készülék) feltalálása, 1896 Sugárvédelem hiánya égési sérülések Clarence Madison Dally (Edison aszisztense):

Részletesebben

Röntgendiagnosztika és CT

Röntgendiagnosztika és CT Röntgendiagnosztika és CT 2013.04.09. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Röntgendiagnosztikai alapok

Röntgendiagnosztikai alapok Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

A röntgendiagnosztika alapjai

A röntgendiagnosztika alapjai A röngtgendiagnosztika alapja: a sugárzás elnyelődése A röntgendiagnosztika alapjai A foton kölcsönhatásának lehetőségei: Compton-szórás Comptonszórás elnyelődés fotoeffektusban fotoeffektus nincs kölcsönhatás

Részletesebben

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

Orvosi biofizika II. Orvosi Biofizika II. Az X-sugár. Röntgen- sugárzás Előállítás, tulajdonságok

Orvosi biofizika II. Orvosi Biofizika II. Az X-sugár. Röntgen- sugárzás Előállítás, tulajdonságok Orvosi biofizika II Orvosi Biofizika II Röntgensugárzás előállítása és tulajdonságai Röntgendiagnosztikai alapok Az elektromosság orvosi alkalmazásai Termodinamika - egyensúly, változás, főtételek Diffúzió,

Részletesebben

Röntgensugárzás. Karakterisztikus röntgensugárzás

Röntgensugárzás. Karakterisztikus röntgensugárzás Röntgensugárzás Tudjuk, hogy a különböző körülmények között létrejövő, gyakorlati szempontból fontos elektromágneses hullámok (elektromágneses sugárzás) hullámhosszai egy igen széles mintegy 18 nagyságrendet

Részletesebben

Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november

Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Röntgendiagnosztika és CT

Röntgendiagnosztika és CT Röntgendiagnosztika és CT 2013.04.08. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és

Részletesebben

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD 2012.10.03 1976 2 1. 3 4 n 1 >n 2 5 6 7 8 9 10 11 12 13 14 2. Az ionizáló sugárzások

Részletesebben

A röntgensugárzás keltése Fékezési vagy folytonos Rtg sugárzás. Röntgensugárzás. A röntgensugárzás elektromágneses sugárzás

A röntgensugárzás keltése Fékezési vagy folytonos Rtg sugárzás. Röntgensugárzás. A röntgensugárzás elektromágneses sugárzás A röntgensugárzás elektromágneses sugárzás Röntgensugárzás ~3 futballpálya ~3 m ~3 cm 400-700 nm ~30 H-atom átmérő Hullámhossz 10-0.01 nm. Frekvencia 30x10 15-30x10 18 Hz. Energia 120 ev - 120 kev. (petaherz

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

A röntgendiagnosztika alapjai

A röntgendiagnosztika alapjai A fotonenergia növelésével csökken az elnyelődés. A röntgendiagnosztika alapjai A csökkenés markánsabb a fotoeffektusra nézve. Kis fotonenergiáknál τ m dominál. τ m markánsan változik az abszorbens rendszámával.

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus

Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Jelöljük meg a kérdésnek megfelelő válaszokat! 1, Hullámokról általában: alapösszefüggések a harmonikus hullámra. A Doppler-effektus Melyik egyenlet nem hullámot ír le? a) y = A sin 2π(ft x/λ) b) y = A

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése Sugárvédelem kurzus fogorvostanhallgatók számra 2. Az ionizáló sugárzás és az anyag kölcsönhatása. Fizikai dózisfogalmak és az ionizáló sugárzás mérése Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

A gamma-sugárzás kölcsönhatásai

A gamma-sugárzás kölcsönhatásai Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei Sugárterápia Sugárterápia: ionizáló sugárzások klinikai alkalmazása malignus daganatok eltávolításában. A sugárkezelés során célunk az ionizáló sugárzás terápiás dózisának elérése a kezelt daganatban a

Részletesebben

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze Röntgendiffrakció Kardos Roland 2010.03.08. Előadás vázlata Röntgen sugárzás Interferencia Huygens teória Diffrakció Diffrakciós eljárások Alkalmazás Röntgen sugárzás 1895 röntgen sugárzás felfedezés (1901

Részletesebben

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM Sugárfizikai alapismeretek. A röntgen sugárzás keletkezése és tulajdonságai. Salik Ádám, sugárvédelmi szakértő salik.adam@osski.hu, 30-349-9300 ORSZÁGOS SUGÁRBIOLÓGIAI

Részletesebben

A fény korpuszkuláris jellegét tükröző fizikai jelenségek

A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Abszorpciós spektrometria összefoglaló

Abszorpciós spektrometria összefoglaló Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség

Részletesebben

Arany-Tóth Attila. Sebészeti röntgenvizit: 8.30. Általános radiológia - előadás

Arany-Tóth Attila. Sebészeti röntgenvizit: 8.30. Általános radiológia - előadás 1 2 Röntgen Osztály 9-15 8.00 10.00 2. illetve 5. csoport 11.00 13.00 1. illetve 4. csoport 13.00 15.00 3. illetve 6. csoport 3 4 Sebészeti röntgenvizit: 8.30 5 6 Honlapok www. univet.hu egységek sebészet

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez 1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Röntgensugárzást alkalmazó fıbb tudományterületek

Röntgensugárzást alkalmazó fıbb tudományterületek Röntgensugárzást alkalmazó fıbb tudományterületek -Röntgenradiológia, Komputertomográfia (CT) -Röntgenfluoreszcens spektrometria (XRF) -Röntgenkrisztallográfia Röntgendiffrakció (XRD) Történeti áttekintés

Részletesebben

Röntgensugárzás, röntgendiffrakció Biofizika szeminárium

Röntgensugárzás, röntgendiffrakció Biofizika szeminárium Történet Röntgensugárzás, röntgendiffrakció Biofizika szeminárium Ivan Puljuj (1845-1918): Nagyfeszültségű kisülési cső (Crookes cső) sugárzásába helyezett becsomagolt fotolemezek megfeketednek, 1886 Nicola

Részletesebben

3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL

3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL 3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL A gamma-sugárzás elektromágneses sugárzás, amely vákuumban fénysebességgel terjed. Anyagba ütközve kölcsönhatásba lép az anyag alkotóelemeivel,

Részletesebben

A TÖMEGSPEKTROMETRIA ALAPJAI

A TÖMEGSPEKTROMETRIA ALAPJAI A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Theory hungarian (Hungary)

Theory hungarian (Hungary) Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető

Részletesebben

Radioaktív sugárzás elnyelődésének vizsgálata

Radioaktív sugárzás elnyelődésének vizsgálata 11. fejezet Radioaktív sugárzás elnyelődésének vizsgálata Az ólomtorony és a szcintillációs számláló A természetes radioaktív anyagok esetében háromféle sugárzást lehet megkülönböztetni. Erre egyszerű

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

Kifejtendő kérdések június 13. Gyakorló feladatok

Kifejtendő kérdések június 13. Gyakorló feladatok Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)

Részletesebben

Az elektron hullámtermészete. Készítette Kiss László

Az elektron hullámtermészete. Készítette Kiss László Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses

Részletesebben

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás 9/1/014 Röntgen Röntgen keletkezése Tulajdonságok Anyaggal való kölcsönhatás Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken on December 1895 and presented

Részletesebben

2015.02. Általános radiológia - előadás. Arany-Tóth Attila. Radiológia-Aneszteziológia: 6. félév: 3 kredit

2015.02. Általános radiológia - előadás. Arany-Tóth Attila. Radiológia-Aneszteziológia: 6. félév: 3 kredit 1 4 Sebészeti és Szemészeti Tanszék és Klinika Radiológia-Aneszteziológia: 6. félév: 3 kredit KOLLOKVIUM Általános és részletes sebészet I. 7. félév: 2 kredit Részletes sebészet II.: 8. félév: 6 kredit

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria 2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,

Részletesebben

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-16/14-M Dr. Szalóki Imre, egyetemi docens Radócz Gábor, PhD

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

Mérési jegyzőkönyv. 3. mérés: Röntgen-cső, emissziós spektrumok, abszorpció

Mérési jegyzőkönyv. 3. mérés: Röntgen-cső, emissziós spektrumok, abszorpció Mérési jegyzőkönyv 3. mérés: Röntgen-cső, emissziós spektrumok, abszorpció A mérés helyszíne: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium A mérés időpontja: 2013.02.27. A

Részletesebben

AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE

AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE A Planck-féle sugárzási törvény Hipotézis 1.: A hősugárzást (elektromágneses hullámokat) kis, apró rezgő oszcillátorok hozzák létre. Egy ilyen oszcillátor

Részletesebben

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Geometriai és hullámoptika. Utolsó módosítás: május 10.. Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

Mit értünk a termikus neutronok fogalma alatt? Becsüljük meg a sebességüket 27 o C hőmérsékleten!

Mit értünk a termikus neutronok fogalma alatt? Becsüljük meg a sebességüket 27 o C hőmérsékleten! Országos Szilárd Leó fizikaverseny Elődöntő 04. Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrenen lehet megoldani. A megoldáshoz bármilyen segédeszköz használható. Rendelkezésre

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Felhevített tárgyak több száz fokos hőmérsékletet elérve először vörösen majd még magasabb hőmérsékleten sárgán izzanak, tehát fényt (elektromágneses hullámokat a látható tartományban)

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2014. szeptember 9.-12. 1/13 2014/2015 I. félév, Horváth Attila c Hullámtermészet:

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

KVANTUMMECHANIKA. a11.b-nek

KVANTUMMECHANIKA. a11.b-nek KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300

Részletesebben

Fizika 2 - Gyakorló feladatok

Fizika 2 - Gyakorló feladatok 2015. június 19. ε o =8.85 10-12 AsV -1 m -1 μ o =4π10-7 VsA -1 m -1 e=1,6 10-19 C m e =9,11 10-31 kg m p =1,67 10-27 kg h=6,63 10-34 Js 1. Egy R sugarú gömbben -ρ állandó töltéssűrűség van. a. Határozza

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás Pásztázó elektronmikroszkóp Scanning Electron Microscope (SEM) Rasterelektronenmikroskope (REM) Alapelv Egy elektronágyúval vékony elektronnyalábot állítunk elő. Ezzel pásztázzuk (eltérítő tekercsek segítségével)

Részletesebben

Az atom felépítése Alapfogalmak

Az atom felépítése Alapfogalmak Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet

Részletesebben

Diagnosztikai röntgen képalkotás, CT

Diagnosztikai röntgen képalkotás, CT Diagnosztikai röntgen képalkotás, CT ALAPELVEK A röntgenkép a röntgensugárzással átvilágított test árnyéka. A detektor vagy film az áthaladó, azaz nem elnyelt sugarakat érzékeli. A képen az elnyelő tárgyaknak

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 14. 1/15 2011/2012 II. félév, Horváth Attila c XIX sz. vége,

Részletesebben

Talián Csaba Gábor Biofizikai Intézet 2012. április 17.

Talián Csaba Gábor Biofizikai Intézet 2012. április 17. SUGÁRZÁSOK. ELEKTROMÁGNESES HULLÁMOK. Talián Csaba Gábor Biofizikai Intézet 2012. április 17. MI A SUGÁRZÁS? ENERGIA TERJEDÉSE A TÉRBEN RÉSZECSKÉK VAGY HULLÁMOK HALADÓ MOZGÁSA RÉVÉN Részecske: α-, β-sugárzás

Részletesebben

1. Az ionizáló sugárzások és az anyag kölcsönhatása

1. Az ionizáló sugárzások és az anyag kölcsönhatása Az ionizáló sugárzások és az anyag kölcsönhatása. A sugárzások érése KAD 2018.03.26 1. Az ionizáló sugárzások és az anyag kölcsönhatása Gondolat, 1976 1 2 levegőben (átlagosan) 1 ionpár keltéséhez 34 ev

Részletesebben

2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok).

2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok). 2. tétel - Gyorsítók és nyalábok (x target, ütköz nyalábok, e, p, nyalábok). Gyorsítók Cockcroft-Walton generátor (1928) Kondenzátorokból és diódákból épített gyorsító, amit sokáig használtak el gyorsítóként.

Részletesebben

IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN

IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN ! " #! " 154 IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN (Ludwig Boltzman) (James Clerk Maxwell)!" #!!$ %!" % " " ( Bay Zoltán )

Részletesebben